

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	1164
Number of Logic Elements/Cells	10476
Total RAM Bits	368640
Number of I/O	190
Number of Gates	500000
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 125°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FTBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xa3s500e-4ft256q

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XA Spartan-3E FPGAs support the following differential standards:

- LVDS
- Bus LVDS
- mini-LVDS
- RSDS

- Differential HSTL (1.8V, Types I and III)
- Differential SSTL (2.5V and 1.8V, Type I)
- 2.5V LVPECL inputs

Table 2: Available User I/Os and Differential (Diff) I/O Pairs

Package	VQG	100	CPG	132	TQG	i144	PQC	3208	FTG	i256	FGG	400	FGG	484
Size (mm)	16 >	c 16	8 :	x 8	22 >	c 22	28 2	x 28	17 x 17		21 x 21		23 x 23	
Device	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff	User	Diff
XA3S100E	66 (7)	30 <i>(2)</i>	83 (11)	35 <i>(2)</i>	108 (28)	40 (4)	-	-	-	-	-	-	-	-
XA3S250E	66 (7)	30 (2)	92 (7)	41 (2)	108 (28)	40 (4)	158 (32)	65 (5)	172 (40)	68 (8)	-	-	-	-
XA3S500E	-	-	92 (7)	41 (2)	-	-	158 (32)	65 (5)	190 (41)	77 (8)	-	-	-	-
XA3S1200E	-	-	-	-	-	-	-	-	190 (40)	77 (8)	304 (72)	124 (20)	-	-
XA3S1600E	-	-	-	-	-	-	-	-	-	-	304 (72)	124 <i>(20)</i>	376 (82)	156 (21)

All XA Spartan-3E devices provided in the same package are pin-compatible as further described in Module 4: Pinout Descriptions of DS312.

^{2.} The number shown in **bold** indicates the maximum number of I/O and input-only pins. The number shown in (*italics*) indicates the number of input-only pins.

Package Marking

Figure 2 provides a top marking example for XA Spartan-3E FPGAs in the quad-flat packages. Figure 3 shows the top marking for XA Spartan-3E FPGAs in BGA packages except the 132-ball chip-scale package (CPG132). The markings for the BGA packages are nearly identical to those

for the quad-flat packages, except that the marking is rotated with respect to the ball A1 indicator. Figure 4 shows the top marking for XA Spartan-3E FPGAs in the CPG132 package.

Note: No marking is shown for stepping.

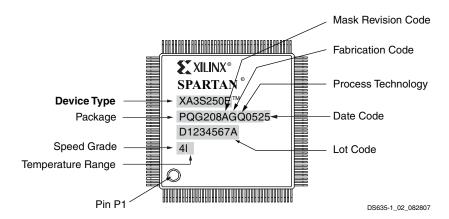


Figure 2: XA Spartan-3E FPGA QFP Package Marking Example

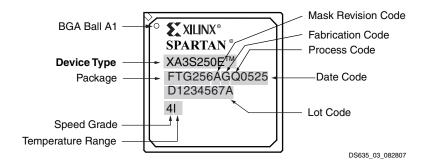


Figure 3: XA Spartan-3E FPGA BGA Package Marking Example

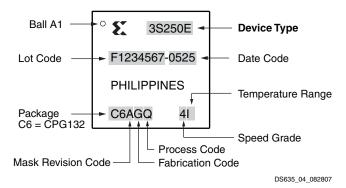
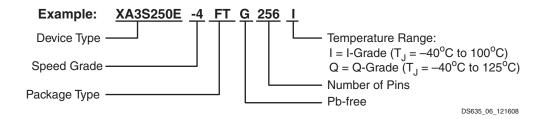


Figure 4: XA Spartan-3E FPGA CPG132 Package Marking Example



Ordering Information

XA Spartan-3E FPGAs are available in Pb-free packaging options for all device/package combinations. All devices are in Pb-free packages only, with a "G" character to the ordering code. All devices are available in either I-Grade or

Q-Grade temperature ranges. Only the -4 speed grade is available for the XA Spartan-3E family. See Table 2 for valid device/package combinations.

Pb-Free Packaging

Device		Speed Grade		Package Type / Number of Pins		Temperature Range (T _J)
XA3S100E	-4	Only	VQG100	100-pin Very Thin Quad Flat Pack (VQFP)	I	I-Grade (-40°C to 100°C)
XA3S250E			CPG132	132-ball Chip-Scale Package (CSP)	Q	Q-Grade (-40°C to 125°C)
XA3S500E			TQG144	144-pin Thin Quad Flat Pack (TQFP)		
XA3S1200E			PQG208	208-pin Plastic Quad Flat Pack (PQFP)		
XA3S1600E	-		FTG256	256-ball Fine-Pitch Thin Ball Grid Array (FTBGA)		
	1		FGG400	400-ball Fine-Pitch Ball Grid Array (FBGA)		
			FGG484	484-ball Fine-Pitch Ball Grid Array (FBGA)		

Power Supply Specifications

Table 3: Supply Voltage Thresholds for Power-On Reset

Symbol	Description	Min	Max	Units
V _{CCINTT}	Threshold for the V _{CCINT} supply	0.4	1.0	V
V _{CCAUXT}	Threshold for the V _{CCAUX} supply	0.8	2.0	V
V _{CCO2T}	Threshold for the V _{CCO} Bank 2 supply	0.4	1.0	V

Notes:

- V_{CCINT}, V_{CCAUX}, and V_{CCO} supplies to the FPGA can be applied in any order. However, the FPGA's configuration source (SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source.
- 2. To ensure successful power-on, V_{CCINT}, V_{CCO} Bank 2, and V_{CCAUX} supplies must rise through their respective threshold-voltage ranges with no dips at any point.

Table 4: Supply Voltage Ramp Rate

Symbol	Description	Min	Max	Units
V _{CCINTR}	Ramp rate from GND to valid V _{CCINT} supply level	0.2	50	ms
V _{CCAUXR}	Ramp rate from GND to valid V _{CCAUX} supply level	0.2	50	ms
V _{CCO2R}	Ramp rate from GND to valid V_{CCO} Bank 2 supply level	0.2	50	ms

Notes:

- 1. V_{CCINT}, V_{CCAUX}, and V_{CCO} supplies to the FPGA can be applied in any order. However, the FPGA's configuration source (SPI Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source.
- 2. To ensure successful power-on, V_{CCINT}, V_{CCO} Bank 2, and V_{CCAUX} supplies must rise through their respective threshold-voltage ranges with no dips at any point.

Table 5: Supply Voltage Levels Necessary for Preserving RAM Contents

Symbol	Description	Min	Units
V _{DRINT}	V _{CCINT} level required to retain RAM data	1.0	V
V _{DRAUX}	V _{CCAUX} level required to retain RAM data	2.0	V

Notes:

RAM contents include configuration data.

Table 7: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins (Continued)

Symbol	Description	Test Conditions	Min	Тур	Max	Units
I _{RPD} ⁽²⁾	Current through pull-down resistor at User I/O, Dual-Purpose, Input-only, and Dedicated pins	$V_{IN} = V_{CCO}$	0.10	-	0.75	mA
R _{PD} ⁽²⁾	Equivalent pull-down resistor value at	$V_{IN} = V_{CCO} = 3.0V \text{ to } 3.45V$	4.0	_	34.5	kΩ
	User I/O, Dual-Purpose, Input-only, and Dedicated pins (based on I _{RPD}	$V_{IN} = V_{CCO} = 2.3V \text{ to } 2.7V$	3.0	_	27.0	kΩ
	per Note 2)	$V_{IN} = V_{CCO} = 1.7V \text{ to } 1.9V$	2.3	_	19.0	kΩ
		$V_{IN} = V_{CCO} = 1.4V \text{ to } 1.6V$				
		$V_{IN} = V_{CCO} = 1.14V \text{ to } 1.26V$	1.5	_	12.6	kΩ
I _{REF}	V _{REF} current per pin	All V _{CCO} levels	-10	_	+10	μΑ
C _{IN}	Input capacitance	-	_	_	10	pF
R _{DT}	Resistance of optional differential termination circuit within a differential I/O pair. Not available on Input-only pairs.	V_{OCM} Min $\leq V_{ICM} \leq V_{OCM}$ Max V_{OD} Min $\leq V_{ID} \leq V_{OD}$ Max $V_{CCO} = 2.5V$	_	120	_	Ω

- 1. The numbers in this table are based on the conditions set forth in Table 6.
- 2. This parameter is based on characterization. The pull-up resistance $R_{PU} = V_{CCO} / I_{RPU}$. The pull-down resistance $R_{PD} = V_{IN} / I_{RPD}$.

Table 8: Quiescent Supply Current Characteristics

Symbol	Description	Device	I-Grade Maximum	Q-Grade Maximum	Units
I _{CCINTQ}	Quiescent V _{CCINT}	XA3S100E	36	58	mA
supply current	supply current	XA3S250E	104	158	mA
	XA3S500E	145	300	mA	
		XA3S1200E	324	500	mA
		XA3S1600E	457	750	mA
Iccoq	Quiescent V _{CCO}	XA3S100E	1.5	2.0	mA
	supply current	XA3S250E	1.5	3.0	mA
		XA3S500E	1.5	3.0	mA
		XA3S1200E	2.5	4.0	mA
		XA3S1600E	2.5	4.0	mA

Table 10: DC Characteristics of User I/Os Using **Single-Ended Standards**

			st itions		Level teristics
IOSTANDAR Attribute	RD	I _{OL} (mA)	I _{OH} (mA)	V _{OL} Max (V)	V _{OH} Min (V)
LVTTL ⁽³⁾	2	2	-2	0.4	2.4
	4	4	-4		
	6	6	-6		
	8	8	-8		
	12	12	-12		
	16	16	-16		
LVCMOS33 ⁽³⁾	2	2	-2	0.4	V _{CCO} - 0.4
	4	4	-4		
	6	6	-6		
	8	8	-8		
	12	12	-12		
	16	16	-16		
LVCMOS25 ⁽³⁾	2	2	-2	0.4	V _{CCO} - 0.4
	4	4	-4		
	6	6	-6		
	8	8	-8		
	12	12	-12		
LVCMOS18 ⁽³⁾	2	2	-2	0.4	V _{CCO} - 0.4
	4	4	-4		
	6	6	-6		
	8	8	-8		
LVCMOS15 ⁽³⁾	2	2	-2	0.4	V _{CCO} - 0.4
	4	4	-4		
	6	6	-6		

Table 10: DC Characteristics of User I/Os Using Single-Ended Standards (Continued)

				Logic Level Characteristics			
IOSTANDAR Attribute	I _{OL} (mA)	I _{OH} (mA)	V _{OL} Max (V)	V _{OH} Min (V)			
LVCMOS12 ⁽³⁾	2	2	-2	0.4	V _{CCO} - 0.4		
PCI33_3 ⁽⁴⁾		1.5	-0.5	10% V _{CCO}	90% V _{CCO}		
HSTL_I_18		8	-8	0.4	V _{CCO} - 0.4		
HSTL_III_18		24	-8	0.4	V _{CCO} - 0.4		
SSTL18_I		6.7	-6.7	V _{TT} – 0.475	V _{TT} + 0.475		
SSTL2_I		8.1	-8.1	V _{TT} – 0.61	V _{TT} + 0.61		

- The numbers in this table are based on the conditions set forth in Table 6 and Table 9.
- Descriptions of the symbols used in this table are as follows:
 - $\rm I_{OL}$ the output current condition under which $\rm V_{OL}$ is tested $\rm I_{OH}$ the output current condition under which $\rm V_{OH}$ is tested

 - ${
 m V}_{
 m OL}$ the output voltage that indicates a Low logic level $V_{\rm OH}^{--}$ the output voltage that indicates a High logic level
 - V_{CCO} the supply voltage for output drivers
 - V_{TT} the voltage applied to a resistor termination
- For the LVCMOS and LVTTL standards: the same $\rm V_{OL}$ and $\rm V_{OH}$ limits apply for both the Fast and Slow slew attributes.
- Tested according to the relevant PCI specifications. For information on PCI IP solutions, see www.xilinx.com/pci.

Differential I/O Standards

Table 11: Recommended Operating Conditions for User I/Os Using Differential Signal Standards

	Vcc	O for Drive	rs ⁽¹⁾		V _{ID}		V _{ICM}			
IOSTANDARD Attribute	Min (V)	Nom (V)	Max (V)	Min (mV)	Nom (mV)	Max (mV)	Min (V)	Nom (V)	Max (V)	
LVDS_25	2.375	2.50	2.625	100	350	600	0.30	1.25	2.20	
BLVDS_25	2.375	2.50	2.625	100	350	600	0.30	1.25	2.20	
MINI_LVDS_25	2.375	2.50	2.625	200	-	600	0.30	-	2.2	
LVPECL_25 ⁽²⁾		Inputs Only		100	800	1000	0.5	1.2	2.0	
RSDS_25	2.375	2.50	2.625	100	200	-	0.3	1.20	1.4	
DIFF_HSTL_I_18	1.7	1.8	1.9	100	-	-	0.8	-	1.1	
DIFF_HSTL_III_18	1.7	1.8	1.9	100	-	-	0.8	-	1.1	
DIFF_SSTL18_I	1.7	1.8	1.9	100	-	-	0.7	-	1.1	
DIFF_SSTL2_I	2.3	2.5	2.7	100	-	-	1.0	-	1.5	

Notes:

- The V_{CCO} rails supply only differential output drivers, not input circuits.
- 2. V_{REF} inputs are not used for any of the differential I/O standards.

Table 12: DC Characteristics of User I/Os Using Differential Signal Standards

		V_{OD} ΔV_{OD}		OD		V _{OCM}		ΔV	ОСМ	V _{OH}	V _{OL}	
IOSTANDARD Attribute	Min (mV)	Typ (mV)	Max (mV)	Min (mV)	Max (mV)	Min (V)	Typ (V)	Max (V)	Min (mV)	Max (mV)	Min (V)	Max (V)
LVDS_25	250	350	450	_	_	1.125	-	1.375	-	_	-	_
BLVDS_25	250	350	450	-	-	_	1.20	-	_	_	_	_
MINI_LVDS_25	300	_	600	_	50	1.0	_	1.4	_	50	_	_
RSDS_25	100	_	400	-	_	1.1	-	1.4	-	_	_	_
DIFF_HSTL_I_18	_	_	-	_	_	_	-	_	_	_	V _{CCO} - 0.4	0.4
DIFF_HSTL_III_18	-	-	-	-	-	_	-	_	-	-	V _{CCO} - 0.4	0.4
DIFF_SSTL18_I	_	_	_	-	_	-	_	_	-	-	V _{TT} + 0.475	V _{TT} – 0.475
DIFF_SSTL2_I	_	-	-	_	_	-	-	_	_	_	V _{TT} + 0.61	V _{TT} – 0.61

- 1. The numbers in this table are based on the conditions set forth in Table 6, and Table 11.
- 2. Output voltage measurements for all differential standards are made with a termination resistor (R_T) of 100Ω across the N and P pins of the differential signal pair. The exception is for BLVDS, shown in Figure 5 below.
- 3. At any given time, no more than two of the following differential output standards may be assigned to an I/O bank: LVDS_25, RSDS_25, MINI_LVDS_25

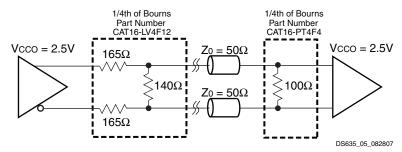


Figure 5: External Termination Resistors for BLVDS Transmitter and BLVDS Receiver

Switching Characteristics

I/O Timing

Table 13: Pin-to-Pin Clock-to-Output Times for the IOB Output Path

				-4 Speed Grade	
Symbol	Description	Conditions	Device	Max	Units
Clock-to-Outpu	ut Times				
T _{ICKOFDCM}	When reading from the Output	LVCMOS25 ⁽²⁾ , 12mA	XA3S100E	2.79	ns
	Flip-Flop (OFF), the time from the active transition on the Global Clock pin to data	output drive, Fast slew rate, with DCM ⁽³⁾	XA3S250E	3.45	ns
			XA3S500E	3.46	ns
	appearing at the Output pin. The DCM is used.		XA3S1200E	3.46	ns
			XA3S1600E	3.45	ns
T _{ICKOF}	When reading from OFF, the	LVCMOS25 ⁽²⁾ , 12mA	XA3S100E	5.92	ns
	time from the active transition on the Global Clock pin to data	output drive, Fast slew rate, without DCM	XA3S250E	5.43	ns
	appearing at the Output pin. The		XA3S500E	5.51	ns
	DCM is not used.		XA3S1200E	5.94	ns
			XA3S1600E	6.05	ns

- 1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6 and Table 9.
- 2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, add the appropriate Input adjustment from Table 17. If the latter is true, add the appropriate Output adjustment from Table 18.
- 3. DCM output jitter is included in all measurements.
- 4. For minimums, use the values reported by the Xilinx timing analyzer.

Table 19: Test Methods for Timing Measurement at I/Os

Signal	Standard		Inputs		Out	puts	Inputs and Outputs
•	NDARD)	V _{REF} (V)	$V_L(V)$ $V_H(V)$ $R_T(\Omega)$ V		V _T (V)	V _M (V)	
Single-Ende	ed						
LVTTL		-	0	3.3	1M	0	1.4
LVCMOS33		-	0	3.3	1M	0	1.65
LVCMOS25		-	0	2.5	1M	0	1.25
LVCMOS18		-	0	1.8	1M	0	0.9
LVCMOS15		-	0	1.5	1M	0	0.75
LVCMOS12		-	0	1.2	1M	0	0.6
PCl33_3	Rising	-	Note 3	Note 3	25	0	0.94
	Falling				25	3.3	2.03
HSTL_I_18		0.9	V _{REF} - 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
HSTL_III_18		1.1	V _{REF} - 0.5	V _{REF} + 0.5	50	1.8	V _{REF}
SSTL18_I		0.9	V _{REF} - 0.5	V _{REF} + 0.5	50	0.9	V _{REF}
SSTL2_I		1.25	V _{REF} – 0.75	V _{REF} + 0.75	50	1.25	V _{REF}
Differential							
LVDS_25		-	V _{ICM} - 0.125	V _{ICM} + 0.125	50	1.2	V_{ICM}
BLVDS_25		-	V _{ICM} - 0.125	V _{ICM} + 0.125	1M	0	V _{ICM}
MINI_LVDS_	_25	-	V _{ICM} - 0.125	V _{ICM} + 0.125	50	1.2	V _{ICM}
LVPECL_25		-	V _{ICM} - 0.3	V _{ICM} + 0.3	1M	0	V _{ICM}
RSDS_25		-	V _{ICM} - 0.1	V _{ICM} + 0.1	50	1.2	V _{ICM}
DIFF_HSTL	_l_18	-	V _{REF} - 0.5	V _{REF} + 0.5	50	0.9	V _{ICM}
DIFF_HSTL	_III_18	-	V _{REF} - 0.5	V _{REF} + 0.5	50	1.8	V _{ICM}
DIFF_SSTL	I8_I	-	V _{REF} - 0.5	V _{REF} + 0.5	50	0.9	V _{ICM}
DIFF_SSTL2	<u>2</u> _l	-	V _{REF} - 0.5	V _{REF} + 0.5	50	1.25	V _{ICM}

- Descriptions of the relevant symbols are as follows:
 - $V_{\mbox{\scriptsize REF}}$ The reference voltage for setting the input switching threshold

 - V_{ICM} The common mode input voltage V_M Voltage of measurement point on signal transition V_L Low-level test voltage at Input pin V_H High-level test voltage at Input pin

 - R_T^{-} Effective termination resistance, which takes on a value of 1M Ω when no parallel termination is required
 - V_T Termination voltage
- The load capacitance (C₁) at the Output pin is 0 pF for all signal standards.
- According to the PCI specification.

Table 25: Block RAM Timing (Continued)

		-4 Spee		
Symbol	Description	Min	Max	Units
Clock Timir	ng			+
T _{BPWH}	High pulse width of the CLK signal	1.59	-	ns
T _{BPWL}	Low pulse width of the CLK signal	1.59	-	ns
Clock Frequ	uency	ı		
F _{BRAM}	Block RAM clock frequency. RAM read output value written back into RAM, for shift registers and circular buffers. Write-only or read-only performance is faster.	0	230	MHz

Digital Clock Manager Timing

For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS).

Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 26 and Table 27) apply to any application that only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the specifications listed in the DFS and PS tables (Table 28 through Table 31) supersede any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions are presented in Table 26 and Table 27.

Period jitter and cycle-cycle jitter are two of many different ways of specifying clock jitter. Both specifications describe statistical variation from a mean value.

Period jitter is the worst-case deviation from the ideal clock period over a collection of millions of samples. In a histogram of period jitter, the mean value is the clock period.

Cycle-cycle jitter is the worst-case difference in clock period between adjacent clock cycles in the collection of clock periods sampled. In a histogram of cycle-cycle jitter, the mean value is zero.

Spread Spectrum

DCMs accept typical spread spectrum clocks as long as they meet the input requirements. The DLL will track the frequency changes created by the spread spectrum clock to drive the global clocks to the FPGA logic. See XAPP469, Spread-Spectrum Clocking Reception for Displays for details.

^{1.} The numbers in this table are based on the operating conditions set forth in Table 6.

Delay-Locked Loop

Table 26: Recommended Operating Conditions for the DLL

				-4 Spee	ed Grade	
	Symbol	Des	scription	Min	Max	Units
Input Fr	equency Ranges			:	:	
F _{CLKIN}	CLKIN_FREQ_DLL	Frequency of the CLKIN clock in	nput	5(2)	240 ⁽³⁾	MHz
Input Pu	ulse Requirements					
CLKIN_I	PULSE	CLKIN pulse width as a	F _{CLKIN} ≤ 150 MHz	40%	60%	-
		percentage of the CLKIN period	F _{CLKIN} > 150 MHz	45%	55%	_
Input CI	lock Jitter Tolerance and	d Delay Path Variation ⁽⁴⁾		1	1	
CLKIN_0	CYC_JITT_DLL_LF	Cycle-to-cycle jitter at the	F _{CLKIN} ≤ 150 MHz	-	±300	ps
CLKIN_0	CYC_JITT_DLL_HF	CLKIN input	F _{CLKIN} > 150 MHz	-	±150	ps
CLKIN_I	PER_JITT_DLL	Period jitter at the CLKIN input		-	±1	ns
CLKFB_	DELAY_VAR_EXT	Allowable variation of off-chip fee the CLKFB input	edback delay from the DCM output to	-	±1	ns

- 1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.
- 2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 28.
- To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input.
- 4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.

Table 27: Switching Characteristics for the DLL

		-4 Spe	ed Grade	
Symbol	Description	Min	Max	Units
Output Frequency Ranges				
CLKOUT_FREQ_CLK0	Frequency for the CLK0 and CLK180 outputs	5	240	MHz
CLKOUT_FREQ_CLK90	Frequency for the CLK90 and CLK270 outputs	5	200	MHz
CLKOUT_FREQ_2X	Frequency for the CLK2X and CLK2X180 outputs	10	311	MHz
CLKOUT_FREQ_DV	Frequency for the CLKDV output	0.3125	160	MHz
Output Clock Jitter(2,3,4)		I		
CLKOUT_PER_JITT_0	Period jitter at the CLK0 output	-	±100	ps
CLKOUT_PER_JITT_90	Period jitter at the CLK90 output	-	±150	ps
CLKOUT_PER_JITT_180	Period jitter at the CLK180 output	-	±150	ps
CLKOUT_PER_JITT_270	Period jitter at the CLK270 output	-	±150	ps
CLKOUT_PER_JITT_2X	Period jitter at the CLK2X and CLK2X180 outputs	-	±[1% of CLKIN period + 150]	ps
CLKOUT_PER_JITT_DV1	Period jitter at the CLKDV output when performing integer division	-	±150	ps
CLKOUT_PER_JITT_DV2	Period jitter at the CLKDV output when performing non-integer division	-	±[1% of CLKIN period + 200]	ps

Table 31: Switching Characteristics for the PS in Variable Phase Mode

Symbol	Description			Units
Phase Shifting Range				
MAX_STEPS ⁽²⁾	Maximum allowed number of DCM_DELAY_STEP steps for a given CLKIN clock period, where T = CLKIN	CLKIN < 60 MHz	±[INTEGER(10 • (T _{CLKIN} − 3 ns))]	steps
	clock period in ns. If using CLKIN_DIVIDE_BY_2 = TRUE, double the clock effective clock period.	CLKIN <u>></u> 60 MHz	±[INTEGER(15 • (T _{CLKIN} − 3 ns))]	steps
FINE_SHIFT_RANGE_MIN	Minimum guaranteed delay for variable phase shifting	±[MAX_S DCM_DELAY	STEPS • '_STEP_MIN]	ns
FINE_SHIFT_RANGE_MAX	Maximum guaranteed delay for variable phase shifting	±[MAX_S DCM_DELAY	STEPS • _STEP_MAX]	ns

- 1. The numbers in this table are based on the operating conditions set forth in Table 6 and Table 30.
- 2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, i.e., the PHASE_SHIFT attribute is set to 0.
- 3. The DCM_DELAY_STEP values are provided at the bottom of Table 27.

Miscellaneous DCM Timing

Table 32: Miscellaneous DCM Timing

Symbol	Description	Min	Max	Units
DCM_RST_PW_MIN ⁽¹⁾	Minimum duration of a RST pulse width	3	-	CLKIN cycles
DCM_RST_PW_MAX ⁽²⁾	Maximum duration of a RST pulse width	N/A	N/A	seconds
		N/A	N/A	seconds
DCM_CONFIG_LAG_TIME ⁽³⁾	Maximum duration from V _{CCINT} applied to FPGA	N/A	N/A	minutes
	configuration successfully completed (DONE pin goes High) and clocks applied to DCM DLL		N/A	minutes

- This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV). The DCM DFS outputs (CLKFX, CLKFX180) are unaffected.
- 2. This specification is equivalent to the Virtex-4 DCM_RESET specification. This specification does not apply for Spartan-3E FPGAs.
- 3. This specification is equivalent to the Virtex-4 TCONFIG specification. This specification does not apply for Spartan-3E FPGAs.

Configuration and JTAG Timing

Table 33: Power-On Timing and the Beginning of Configuration

			-4 Spee	d Grade	
Symbol	Description	Device	Min	Max	Units
T _{POR} ⁽²⁾	The time from the application of V_{CCINT} , V_{CCAUX} , and V_{CCO}	XA3S100E	-	5	ms
	Bank 2 supply voltage ramps (whichever occurs last) to the	XA3S250E	-	5	ms
	rising transition of the INIT_B pin	XA3S500E	-	5	ms
		XA3S1200E	-	5	ms
		XA3S1600E	-	7	ms
T _{PROG}	The width of the low-going pulse on the PROG_B pin	All	0.5	-	μs
T _{PL} ⁽²⁾	The time from the rising edge of the PROG_B pin to the	XA3S100E	-	0.5	ms
	rising transition on the INIT_B pin	XA3S250E	-	0.5	ms
		XA3S500E	-	1	ms
		XA3S1200E	-	2	ms
		XA3S1600E	-	2	ms
T _{INIT}	Minimum Low pulse width on INIT_B output	All	250	-	ns
T _{ICCK} ⁽³⁾	The time from the rising edge of the INIT_B pin to the generation of the configuration clock signal at the CCLK output pin	All	0.5	4.0	μs

The numbers in this table are based on the operating conditions set forth in Table 6. This means power must be applied to all V_{CCINT}, V_{CCO}, and V_{CCAUX} lines.

^{2.} Power-on reset and the clearing of configuration memory occurs during this period.

^{3.} This specification applies only to the Master Serial, SPI, BPI-Up, and BPI-Down modes.

Configuration Clock (CCLK) Characteristics

Table 34: Master Mode CCLK Output Period by ConfigRate Option Setting

Symbol	Description	ConfigRate Setting	Temperature Range	Minimum	Maximum	Units
T _{CCLK1}	CCLK clock period by ConfigRate setting	1 (power-on value and default value)	I-Grade Q-Grade	485	1,250	ns
T _{CCLK3}		3	I-Grade Q-Grade	242	625	ns
T _{CCLK6}		6	I-Grade Q-Grade	121	313	ns
T _{CCLK12}		12	I-Grade Q-Grade	60.6	157	ns
T _{CCLK25}		25	I-Grade Q-Grade	30.3	78.2	ns
T _{CCLK50}		50	I-Grade Q-Grade	15.1	39.1	ns

Notes:

Table 35: Master Mode CCLK Output Frequency by ConfigRate Option Setting

Symbol	Description	ConfigRate Setting	Temperature Range	Minimum	Maximum	Units
F _{CCLK1}	Equivalent CCLK clock frequency by ConfigRate setting	1 (power-on value and default value)	I-Grade Q-Grade	0.8	2.1	MHz
F _{CCLK3}		3	I-Grade Q-Grade	1.6	4.2	MHz
F _{CCLK6}		6	I-Grade Q-Grade	3.2	8.3	MHz
F _{CCLK12}		12	I-Grade Q-Grade	6.4	16.5	MHz
F _{CCLK25}		25	I-Grade Q-Grade	12.8	33.0	MHz
F _{CCLK50}		50	I-Grade Q-Grade	25.6	66.0	MHz

Table 36: Master Mode CCLK Output Minimum Low and High Time

Symbol	Description	ConfigRate Setting						Units	
	Description		1	3	6	12	25	50	Ullits
T _{MCCL} , T _{MCCH}	Master mode CCLK minimum Low and High time	I-Grade Q-Grade	235	117	58	29.3	14.5	7.3	ns

Table 37: Slave Mode CCLK Input Low and High Time

Symbol	Description	Min	Max	Units
T _{SCCL,} T _{SCCH}	CCLK Low and High time	5	∞	ns

^{1.} Set the *ConfigRate* option value when generating a configuration bitstream. See Bitstream Generator (BitGen) Options in DS312, Module 2.

Master Serial and Slave Serial Mode Timing

Table 38: Timing for the Master Serial and Slave Serial Configuration Modes

				-4 Speed Grade		
Symbol	Descri	ption	Slave/ Master	Min	Max	Units
Clock-to-0	Output Times					
T _{CCO}	The time from the falling transition on the CCLK pin to data appearing at the DOUT pin			1.5	10.0	ns
Setup Tim	es					
T _{DCC}	The time from the setup of data at the DIN pin to the active edge of the CCLK pin		Both	11.0	-	ns
Hold Time	es		1			
T _{CCD}	The time from the active edge of t data is last held at the DIN pin	Both	0	-	ns	
Clock Tim	ing					
T _{CCH}	High pulse width at the CCLK input pin		Master	See Table 36		}
			Slave	See Table 37		,
T _{CCL}	Low pulse width at the CCLK input pin		Master	See Table 36		,
			Slave	Se	e Table 37	,
F _{CCSER}	Frequency of the clock signal at	No bitstream compression	Slave	0	66 ⁽²⁾	MHz
	the CCLK input pin	With bitstream compression		0	20	MHz

^{1.} The numbers in this table are based on the operating conditions set forth in Table 6.

^{2.} For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.

Slave Parallel Mode Timing

Table 39: Timing for the Slave Parallel Configuration Mode

	Description			-4 Speed Grade		
Symbol				Min	Max	Units
Clock-to-Ou	tput Times					
T _{SMCKBY}	The time from the rising transition on the CCLK pin to a signal transition at the BUSY pin				12.0	ns
Setup Times	S					
T _{SMDCC}	The time from the setup of data at the D0-D7 pins to the active edge the CCLK pin		11.0	-	ns	
T _{SMCSCC}	Setup time on the CSI_B p	in before the activ	e edge of the CCLK pin	10.0	-	ns
T _{SMCCW} ⁽²⁾	Setup time on the RDWR_	B pin before active	e edge of the CCLK pin	23.0	-	ns
Hold Times				I		-
T _{SMCCD}	The time from the active edge of the CCLK pin to the point when data is last held at the D0-D7 pins		1.0	-	ns	
T _{SMCCCS}	The time from the active edge of the CCLK pin to the point when a logic level is last held at the CSO_B pin			0	-	ns
T _{SMWCC}	The time from the active edge of the CCLK pin to the point when a logic level is last held at the RDWR_B pin			0	-	ns
Clock Timin	ıg			l	1	
T _{CCH}	The High pulse width at the CCLK input pin		5	-	ns	
T _{CCL}	The Low pulse width at the CCLK input pin		5	-	ns	
F _{CCPAR}	Frequency of the clock signal at the CCLK input pin	No bitstream compression	Not using the BUSY pin ⁽²⁾	0	50	MHz
			Using the BUSY pin	0	66	MHz
	,	With bitstream co	ompression	0	20	MHz

- 1. The numbers in this table are based on the operating conditions set forth in Table 6.
- 2. In the Slave Parallel mode, it is necessary to use the BUSY pin when the CCLK frequency exceeds this maximum specification.
- 3. Some Xilinx documents refer to Parallel modes as "SelectMAP" modes.

Serial Peripheral Interface Configuration Timing

Table 40: Timing for SPI Configuration Mode

Symbol	Description	Minimum	Maximum	Units
T _{CCLK1}	Initial CCLK clock period	(see Table 34)		
T _{CCLK} n	CCLK clock period after FPGA loads ConfigRate setting	(see Table 34)		
T _{MINIT}	Setup time on VS[2:0] and M[2:0] mode pins before the rising edge of INIT_B	50 - ns		
T _{INITM}	Hold time on VS[2:0] and M[2:0]mode pins after the rising edge of INIT_B	0 - ns		
T _{CCO}	MOSI output valid after CCLK edge	See Table 38		
T _{DCC}	Setup time on DIN data input before CCLK edge	See Table 38		
T _{CCD}	Hold time on DIN data input after CCLK edge	See Table 38		

Table 41: Configuration Timing Requirements for Attached SPI Serial Flash

Symbol	Description	Requirement	Units
T _{CCS}	SPI serial Flash PROM chip-select time	T _{CCS} ≤ T _{MCCL1} - T _{CCO}	ns
T _{DSU}	SPI serial Flash PROM data input setup time	$T_{DSU} \le T_{MCCL1} - T_{CCO}$	ns
T _{DH}	SPI serial Flash PROM data input hold time	T _{DH} ≤T _{MCCH1}	ns
T _V	SPI serial Flash PROM data clock-to-output time	$T_V \le T_{MCCLn} - T_{DCC}$	ns
f _C or f _R	Maximum SPI serial Flash PROM clock frequency (also depends on specific read command used)	$f_C \ge \frac{1}{T_{CCLKn(min)}}$	MHz

^{1.} These requirements are for successful FPGA configuration in SPI mode, where the FPGA provides the CCLK frequency. The post configuration timing can be different to support the specific needs of the application loaded into the FPGA and the resulting clock source.

^{2.} Subtract additional printed circuit board routing delay as required by the application.

Byte Peripheral Interface Configuration Timing

Table 42: Timing for BPI Configuration Mode

Symbol	Description			Maximum	Units	
T _{CCLK1}	Initial CCLK clock period			(see Table 34)		
T _{CCLKn}	CCLK clock period after FPGA loads ConfigRate setting			(see Table 34)		
T _{MINIT}	Setup time on CSI_B, RDWR_B, and M[2:0] mode pins before the rising edge of INIT_B			-	ns	
T _{INITM}	Hold time on CSI_B, RDWR_B, and M[2:0] mode pine edge of INIT_B	0	-	ns		
T _{INITADDR}	Minimum period of initial A[23:0] address cycle; LDC[2:0] and HDC are asserted and valid (M[2:0]=<0:1:0>)		5	5	T _{CCLK1} cycles	
		BPI-DN: (M[2:0]=<0:1:1>)	2	2		
T _{CCO}	Address A[23:0] outputs valid after CCLK falling edge	S	ee Table 38			
T _{DCC}	Setup time on D[7:0] data inputs before CCLK rising edge			ee Table 38		
T _{CCD}	Hold time on D[7:0] data inputs after CCLK rising edge			See Table 38		

Table 43: Configuration Timing Requirements for Attached Parallel NOR Flash

Symbol	Description Requirement		Units
T _{CE} (t _{ELQV})	Parallel NOR Flash PROM chip-select time	T _{CE} ≤ T _{INITADDR}	ns
T _{OE} (t _{GLQV})	Parallel NOR Flash PROM output-enable time	T _{OE} ≤ T _{INITADDR}	
T _{ACC} (t _{AVQV})	Parallel NOR Flash PROM read access time	$T_{ACC} \le 0.5T_{CCLKn(min)} - T_{CCO} - T_{DCC} - PCB$	ns
T _{BYTE} (t _{FLQV,} t _{FHQV})	For x8/x16 PROMs only: BYTE# to output valid time ⁽³⁾	T _{BYTE} ≤ T _{INITADDR}	ns

- 1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA provides the CCLK frequency. The post configuration timing can be different to support the specific needs of the application loaded into the FPGA and the resulting clock source.
- 2. Subtract additional printed circuit board routing delay as required by the application.
- 3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA's LDC2 pin. The resistor value also depends on whether the FPGA's HSWAP pin is High or Low.

IEEE 1149.1/1553 JTAG Test Access Port Timing

Table 44: Timing for the JTAG Test Access Port

	-4 Spe		ed Grade		
Symbol	Description	Min	Max	Units	
Clock-to-Outp	ut Times				
T _{TCKTDO}	The time from the falling transition on the TCK pin to data appearing at the TDO pin	1.0	11.0	ns	
Setup Times				+	
T _{TDITCK}	The time from the setup of data at the TDI pin to the rising transition at the TCK pin	7.0	-	ns	
T _{TMSTCK}	The time from the setup of a logic level at the TMS pin to the rising transition at the TCK pin	7.0	-	ns	
Hold Times				•	
T _{TCKTDI}	The time from the rising transition at the TCK pin to the point when data is last held at the TDI pin	0	-	ns	
T _{TCKTMS}	The time from the rising transition at the TCK pin to the point when a logic level is last held at the TMS pin	0	-	ns	
Clock Timing					
T _{CCH}	The High pulse width at the TCK pin	5	-	ns	
T _{CCL}	The Low pulse width at the TCK pin	5	-	ns	
F _{TCK}	Frequency of the TCK signal	-	25	MHz	

^{1.} The numbers in this table are based on the operating conditions set forth in Table 6.

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
08/31/07	1.0	Initial Xilinx release.
01/20/09	1.1	 Updated "Key Feature Differences from Commercial XC Devices." Updated T_{ACC} requirement in Table 43. Updated description of T_{DCC} and T_{CCD} in Table 42. Removed Table 45: MultiBoot Trigger Timing.
09/09/09	2.0	 Added package sizes to Table 2, page 4. Removed Genealogy Viewer Link from "Package Marking," page 5. Updated data and notes for Table 6, page 8. Updated test conditions for R_{PU} and maximum value for C_{IN} in Table 7, page 8. Updated notes for Table 8, page 9. Updated Max V_{CCO} for LVTTL and LVCMOS33, removed PCIX data, updated V_{IL} Max for LVCMOS18, LVCMOS15, and LVCMOS12, updated V_{IH} Min for LVCMOS12, and added note 6 in Table 9, page 11. Removed PCIX data, revised note 2, and added note 4 in Table 10, page 12. Updated figure description of Figure 5, page 14. Added note 4 to Table 13, page 14. Removed PC166_3 and PCIX adjustment values from Table 17, page 17. Deleted Table 18 (duplicate of Table 17, page 17). Subsequent tables renumbered. Removed PCIX data Table 18, page 18. Removed PCIX data Table 18, page 18. Removed PCIX data and removed V_{REF} values for DIFF_HSTL_I_18, DIFF_HSTL_III_18, DIFF_SSTL18_I, and DIFF_SSTL2_I from Table 19, page 19. Updated T_{DICK} minimum setup time in Table 20, page 20. Updated notes, references to notes, and revised the maximum clock-to-output times for T_{MSCKP_P} Table 24, page 22. Added "Spread Spectrum," page 24. Updated note 3 in Table 26, page 25. Added note 4 Table 28, page 26. Updated notes, references to notes, and CLKOUT_PER_JITT_FX data in Table 29, page 27. Updated MAX_STEPS data in Table 31, page 28. Updated ConfigRate Setting for T_{CCLK1} to indicate 1 is the default value in Table 34, page 30. Updated ConfigRate Setting for F_{CCLK1} to indicate 1 is the default value in Table 35, page 30.

Notice of Disclaimer

THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.