



Welcome to <u>E-XFL.COM</u>

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| Details                        |                                                               |
|--------------------------------|---------------------------------------------------------------|
| Product Status                 | Obsolete                                                      |
| Number of LABs/CLBs            | 1164                                                          |
| Number of Logic Elements/Cells | 10476                                                         |
| Total RAM Bits                 | 368640                                                        |
| Number of I/O                  | 158                                                           |
| Number of Gates                | 500000                                                        |
| Voltage - Supply               | 1.14V ~ 1.26V                                                 |
| Mounting Type                  | Surface Mount                                                 |
| Operating Temperature          | -40°C ~ 100°C (TJ)                                            |
| Package / Case                 | 208-BFQFP                                                     |
| Supplier Device Package        | 208-PQFP (28x28)                                              |
| Purchase URL                   | https://www.e-xfl.com/product-detail/xilinx/xa3s500e-4pqg208i |
|                                |                                                               |

Email: info@E-XFL.COM

D - 4 - 11 -

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# Key Feature Differences from Commercial XC Devices

- AEC-Q100 device qualification and full production part approval process (PPAP) documentation support available in both extended temperature I- and Q-Grades
- Guaranteed to meet full electrical specification over the  $T_J = -40^{\circ}$ C to +125°C temperature range (Q-Grade)
- XA Spartan-3E devices are available in the -4 speed grade only.
- PCI-66 is not supported in the XA Spartan-3E FPGA product line.
- The readback feature is not supported in the XA

## Table 1: Summary of XA Spartan-3E FPGA Attributes

Spartan-3E FPGA product line.

- XA Spartan-3E devices are available in Step 1 only.
- JTAG configuration frequency reduced from 30 MHz to 25 MHz.
- Platform Flash is not supported within the XA family.
- XA Spartan-3E devices are available in Pb-free packaging only.
- MultiBoot is not supported in XA versions of this product.
- The XA Spartan-3E device must be power cycled prior to reconfiguration.

|           |                 | Equivalent     | (    | CLB Array<br>(One CLB = Four Slices) |               |                 | Block                                  |                            |                          |      | Maximum             |                           |
|-----------|-----------------|----------------|------|--------------------------------------|---------------|-----------------|----------------------------------------|----------------------------|--------------------------|------|---------------------|---------------------------|
| Device    | System<br>Gates | Logic<br>Cells | Rows | Columns                              | Total<br>CLBs | Total<br>Slices | Distributed<br>RAM bits <sup>(1)</sup> | RAM<br>bits <sup>(1)</sup> | Dedicated<br>Multipliers | DCMs | Maximum<br>User I/O | Differential<br>I/O Pairs |
| XA3S100E  | 100K            | 2,160          | 22   | 16                                   | 240           | 960             | 15K                                    | 72K                        | 4                        | 2    | 108                 | 40                        |
| XA3S250E  | 250K            | 5,508          | 34   | 26                                   | 612           | 2,448           | 38K                                    | 216K                       | 12                       | 4    | 172                 | 68                        |
| XA3S500E  | 500K            | 10,476         | 46   | 34                                   | 1,164         | 4,656           | 73K                                    | 360K                       | 20                       | 4    | 190                 | 77                        |
| XA3S1200E | 1200K           | 19,512         | 60   | 46                                   | 2,168         | 8,672           | 136K                                   | 504K                       | 28                       | 8    | 304                 | 124                       |
| XA3S1600E | 1600K           | 33,192         | 76   | 58                                   | 3,688         | 14,752          | 231K                                   | 648K                       | 36                       | 8    | 376                 | 156                       |

Notes:

1. By convention, one Kb is equivalent to 1,024 bits.

# **Architectural Overview**

The XA Spartan-3E family architecture consists of five fundamental programmable functional elements:

- Configurable Logic Blocks (CLBs) contain flexible Look-Up Tables (LUTs) that implement logic plus storage elements used as flip-flops or latches. CLBs perform a wide variety of logical functions as well as store data.
- Input/Output Blocks (IOBs) control the flow of data between the I/O pins and the internal logic of the device. Each IOB supports bidirectional data flow plus 3-state operation. Supports a variety of signal standards, including four high-performance differential standards. Double Data-Rate (DDR) registers are included.
- **Block RAM** provides data storage in the form of 18-Kbit dual-port blocks.
- **Multiplier Blocks** accept two 18-bit binary numbers as inputs and calculate the product.

 Digital Clock Manager (DCM) Blocks provide self-calibrating, fully digital solutions for distributing, delaying, multiplying, dividing, and phase-shifting clock signals.

These elements are organized as shown in Figure 1. A ring of IOBs surrounds a regular array of CLBs. Each device has two columns of block RAM except for the XA3S100E, which has one column. Each RAM column consists of several 18-Kbit RAM blocks. Each block RAM is associated with a dedicated multiplier. The DCMs are positioned in the center with two at the top and two at the bottom of the device. The XA3S100E has only one DCM at the top and bottom, while the XA3S1200E and XA3S1600E add two DCMs in the middle of the left and right sides.

The XA Spartan-3E family features a rich network of traces that interconnect all five functional elements, transmitting signals among them. Each functional element has an associated switch matrix that permits multiple connections to the routing.



#### Notes:

1. The XA3S1200E and XA3S1600E have two additional DCMs on both the left and right sides as indicated by the dashed lines. The XA3S100E has only one DCM at the top and one at the bottom.

#### Figure 1: XA Spartan-3E Family Architecture

# Configuration

XA Spartan-3E FPGAs are programmed by loading configuration data into robust, reprogrammable, static CMOS configuration latches (CCLs) that collectively control all functional elements and routing resources. The FPGA's configuration data is stored externally in a PROM or some other non-volatile medium, either on or off the board. After applying power, the configuration data is written to the FPGA using any of five different modes:

- Serial Peripheral Interface (SPI) from an industry-standard SPI serial Flash
- Byte Peripheral Interface (BPI) Up or Down from an industry-standard x8 or x8/x16 parallel NOR Flash
- Slave Serial, typically downloaded from a processor
- Slave Parallel, typically downloaded from a processor
- Boundary Scan (JTAG), typically downloaded from a processor or system tester.

# **I/O Capabilities**

The XA Spartan-3E FPGA SelectIO interface supports many popular single-ended and differential standards. Table 2 shows the number of user I/Os as well as the number of differential I/O pairs available for each device/package combination.

XA Spartan-3E FPGAs support the following single-ended standards:

- 3.3V low-voltage TTL (LVTTL)
- Low-voltage CMOS (LVCMOS) at 3.3V, 2.5V, 1.8V, 1.5V, or 1.2V
- 3V PCI at 33 MHz
- HSTL I and III at 1.8V, commonly used in memory applications
- SSTL I at 1.8V and 2.5V, commonly used for memory applications

# 

XA Spartan-3E FPGAs support the following differential standards:

- LVDS
- Bus LVDS
- mini-LVDS
- RSDS

## Table 2: Available User I/Os and Differential (Diff) I/O Pairs

| Package   | VQC              | G100             | CPG               | a132                    | TQC                | à144             | PQG                | 208              | FTG                | i256             | FGG                | <b>3400</b>        | FGG                | i484               |
|-----------|------------------|------------------|-------------------|-------------------------|--------------------|------------------|--------------------|------------------|--------------------|------------------|--------------------|--------------------|--------------------|--------------------|
| Size (mm) | 16 :             | c 16             | 8                 | x 8                     | 22 >               | c 22             | 28 3               | c 28             | 17 >               | c 17             | 21 :               | x 21               | 23 x               | 23                 |
| Device    | User             | Diff             | User              | Diff                    | User               | Diff             | User               | Diff             | User               | Diff             | User               | Diff               | User               | Diff               |
| XA3S100E  | 66<br>(7)        | <b>30</b><br>(2) | <b>83</b><br>(11) | <b>35</b><br>(2)        | <b>108</b><br>(28) | <b>40</b><br>(4) | -                  | -                | -                  | -                | -                  | -                  | -                  | -                  |
| XA3S250E  | <b>66</b><br>(7) | <b>30</b><br>(2) | <b>92</b><br>(7)  | <b>41</b><br><i>(2)</i> | <b>108</b><br>(28) | <b>40</b><br>(4) | <b>158</b><br>(32) | <b>65</b><br>(5) | <b>172</b><br>(40) | <b>68</b><br>(8) | -                  | -                  | -                  | -                  |
| XA3S500E  | -                | -                | <b>92</b><br>(7)  | <b>41</b><br><i>(2)</i> | -                  | -                | <b>158</b><br>(32) | <b>65</b><br>(5) | <b>190</b><br>(41) | <b>77</b><br>(8) | -                  | -                  | -                  | -                  |
| XA3S1200E | -                | -                | -                 | -                       | -                  | -                | -                  | -                | <b>190</b><br>(40) | 77<br>(8)        | <b>304</b><br>(72) | <b>124</b><br>(20) | -                  | -                  |
| XA3S1600E | -                | -                | -                 | -                       | -                  | -                | -                  | -                | -                  | -                | <b>304</b><br>(72) | <b>124</b><br>(20) | <b>376</b><br>(82) | <b>156</b><br>(21) |

•

٠

•

Differential HSTL (1.8V, Types I and III)

2.5V LVPECL inputs

Differential SSTL (2.5V and 1.8V, Type I)

#### Notes:

1. All XA Spartan-3E devices provided in the same package are pin-compatible as further described in Module 4: Pinout Descriptions of DS312.

2. The number shown in **bold** indicates the maximum number of I/O and input-only pins. The number shown in (*italics*) indicates the number of input-only pins.



# **Package Marking**

Figure 2 provides a top marking example for XA Spartan-3E FPGAs in the quad-flat packages. Figure 3 shows the top marking for XA Spartan-3E FPGAs in BGA packages except the 132-ball chip-scale package (CPG132). The markings for the BGA packages are nearly identical to those

for the quad-flat packages, except that the marking is rotated with respect to the ball A1 indicator. Figure 4 shows the top marking for XA Spartan-3E FPGAs in the CPG132 package.





Figure 2: XA Spartan-3E FPGA QFP Package Marking Example



Figure 3: XA Spartan-3E FPGA BGA Package Marking Example



Figure 4: XA Spartan-3E FPGA CPG132 Package Marking Example

# **DC Specifications**

#### Table 6: General Recommended Operating Conditions

| Symbol                               | Descriptio                                                       | n                                                        | Min   | Nominal | Мах                      | Units |
|--------------------------------------|------------------------------------------------------------------|----------------------------------------------------------|-------|---------|--------------------------|-------|
| TJ                                   | Junction temperature                                             | I-Grade                                                  | -40   | 25      | 100                      | °C    |
|                                      |                                                                  | Q-Grade                                                  |       | 25      | 125                      | °C    |
| V <sub>CCINT</sub>                   | Internal supply voltage                                          |                                                          | 1.140 | 1.200   | 1.260                    | V     |
| V <sub>CCO</sub> <sup>(1)</sup>      | Output driver supply voltage                                     | 1.100                                                    | -     | 3.465   | V                        |       |
| V <sub>CCAUX</sub>                   | Auxiliary supply voltage                                         | 2.375                                                    | 2.500 | 2.625   | V                        |       |
| $\Delta V_{CCAUX}^{(2)}$             | Voltage variance on $V_{CCAUX}$ whe                              | en using a DCM                                           | -     | -       | 10                       | mV/ms |
| V <sub>IN</sub> <sup>(3,4,5,6)</sup> | Input voltage extremes to avoid turning on I/O protection diodes | I/O, Input-only, and<br>Dual-Purpose pins <sup>(3)</sup> | -0.5  | -       | V <sub>CCO</sub> + 0.5   | V     |
|                                      |                                                                  | Dedicated pins <sup>(4)</sup>                            | -0.5  | _       | V <sub>CCAUX</sub> + 0.5 | V     |
| T <sub>IN</sub>                      | Input signal transition time <sup>(7)</sup>                      | ·                                                        | -     | -       | 500                      | ns    |

#### Notes:

- 1. This  $V_{CCO}$  range spans the lowest and highest operating voltages for all supported I/O standards. Table 9 lists the recommended  $V_{CCO}$  range specific to each of the single-ended I/O standards, and Table 11 lists that specific to the differential standards.
- 2. Only during DCM operation is it recommended that the rate of change of  $V_{CCAUX}$  not exceed 10 mV/ms.
- Each of the User I/O and Dual-Purpose pins is associated with one of the four banks' V<sub>CCO</sub> rails. Meeting the V<sub>IN</sub> limit ensures that the internal diode junctions that exist between these pins and their associated V<sub>CCO</sub> and GND rails do not turn on. See Absolute Maximum Ratings in <u>DS312</u>).
- 4. All Dedicated pins (PROG\_B, DONE, TCK, TDI, TDO, and TMS) draw power from the V<sub>CCAUX</sub> rail (2.5V). Meeting the V<sub>IN</sub> max limit ensures that the internal diode junctions that exist between each of these pins and the V<sub>CCAUX</sub> and GND rails do not turn on.
- 5. Input voltages outside the recommended range is permissible provided that the I<sub>IK</sub> input clamp diode rating is met and no more than 100 pins exceed the range simultaneously. See Absolute Maximum Ratings in <u>DS312</u>).
- 6. See XAPP459, "Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins."
- 7. Measured between 10% and 90%  $V_{CCO}$ . Follow Signal Integrity recommendations.

# **General DC Characteristics for I/O Pins**

#### Table 7: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins

| Symbol                          | Description                                                                     | Test Conditions                                                                    | Min   | Тур | Мах   | Units |
|---------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------|-----|-------|-------|
| ι <sub>L</sub>                  | Leakage current at User I/O,<br>Input-only, Dual-Purpose, and<br>Dedicated pins | Driver is in a high-impedance state, $V_{IN} = 0V$ or $V_{CCO}$ max, sample-tested | -10   | _   | +10   | μA    |
| I <sub>RPU</sub> <sup>(2)</sup> | Current through pull-up resistor at                                             | $V_{IN} = 0V, V_{CCO} = 3.3V$                                                      | -0.36 | -   | -1.24 | mA    |
|                                 | User I/O, Dual-Purpose, Input-only,<br>and Dedicated pins                       | $V_{IN} = 0V, V_{CCO} = 2.5V$                                                      | -0.22 | -   | -0.80 | mA    |
|                                 |                                                                                 | $V_{IN} = 0V, V_{CCO} = 1.8V$                                                      | -0.10 | -   | -0.42 | mA    |
|                                 |                                                                                 | $V_{IN} = 0V, V_{CCO} = 1.5V$                                                      | -0.06 | -   | -0.27 | mA    |
|                                 |                                                                                 | $V_{IN} = 0V, V_{CCO} = 1.2V$                                                      | -0.04 | -   | -0.22 | mA    |
| R <sub>PU</sub> <sup>(2)</sup>  | Equivalent pull-up resistor value at                                            | $V_{IN} = 0V, V_{CCO} = 3.0V \text{ to } 3.465V$                                   | 2.4   | -   | 10.8  | kΩ    |
|                                 | and Dedicated pins (based on I <sub>BPU</sub>                                   | $V_{IN} = 0V, V_{CCO} = 2.3V \text{ to } 2.7V$                                     | 2.7   | _   | 11.8  | kΩ    |
|                                 | per Note 2)                                                                     | $V_{IN} = 0V, V_{CCO} = 1.7V \text{ to } 1.9V$                                     | 4.3   | _   | 20.2  | kΩ    |
|                                 |                                                                                 | V <sub>IN</sub> = 0V, V <sub>CCO</sub> =1.4V to 1.6V                               | 5.0   | _   | 25.9  | kΩ    |
|                                 |                                                                                 | $V_{\rm IN} = 0$ V, $V_{\rm CCO} = 1.14$ V to 1.26V                                | 5.5   | _   | 32.0  | kΩ    |

www.xilinx.com

# Single-Ended I/O Standards

| Table | <u>9</u> : | <b>Recommended O</b> | perating | Conditions for | or User I/Os | Usina Sin | ale-Ended  | Standards  |
|-------|------------|----------------------|----------|----------------|--------------|-----------|------------|------------|
| iubio | υ.         |                      | porading | oonantiono it  |              |           | gio Ellava | oturraurao |

| IOSTANDARD                | V <sub>CC</sub> | <sub>CO</sub> for Drive | rs <sup>(2)</sup> |                        | V <sub>REF</sub>                         |               | V <sub>IL</sub>          | V <sub>IH</sub>          |
|---------------------------|-----------------|-------------------------|-------------------|------------------------|------------------------------------------|---------------|--------------------------|--------------------------|
| Attribute                 | Min (V)         | Nom (V)                 | Max (V)           | Min (V)                | Nom (V)                                  | Max (V)       | Max (V)                  | Min (V)                  |
| LVTTL                     | 3.0             | 3.3                     | 3.465             |                        |                                          |               | 0.8                      | 2.0                      |
| LVCMOS33 <sup>(4)</sup>   | 3.0             | 3.3                     | 3.465             |                        |                                          |               | 0.8                      | 2.0                      |
| LVCMOS25 <sup>(4,5)</sup> | 2.3             | 2.5                     | 2.7               | 0.7                    |                                          | 0.7           | 1.7                      |                          |
| LVCMOS18                  | 1.65            | 1.8                     | 1.95              | V <sub>RE</sub><br>the | <sub>EF</sub> is not use<br>se I/O stand | d for<br>ards | 0.4                      | 0.8                      |
| LVCMOS15                  | 1.4             | 1.5                     | 1.6               |                        |                                          |               | 0.4                      | 0.8                      |
| LVCMOS12                  | 1.1             | 1.2                     | 1.3               |                        |                                          |               | 0.4                      | 0.7                      |
| PCI33_3                   | 3.0             | 3.3                     | 3.465             |                        |                                          |               | 0.3 * V <sub>CCO</sub>   | 0.5 * V <sub>CCO</sub>   |
| HSTL_I_18                 | 1.7             | 1.8                     | 1.9               | 0.8                    | 0.9                                      | 1.1           | V <sub>REF</sub> - 0.1   | V <sub>REF</sub> + 0.1   |
| HSTL_III_18               | 1.7             | 1.8                     | 1.9               | -                      | 1.1                                      | -             | V <sub>REF</sub> - 0.1   | V <sub>REF</sub> + 0.1   |
| SSTL18_I                  | 1.7             | 1.8                     | 1.9               | 0.833 0.900 0.969      |                                          |               | V <sub>REF</sub> - 0.125 | V <sub>REF</sub> + 0.125 |
| SSTL2_I                   | 2.3             | 2.5                     | 2.7               | 1.15                   | 1.25                                     | 1.35          | V <sub>REF</sub> - 0.125 | V <sub>REF</sub> + 0.125 |

#### Notes:

- 1. Descriptions of the symbols used in this table are as follows:

  - $\label{eq:V_CCO} V_{CCO} \text{the supply voltage for output drivers} \\ V_{REF} \text{the reference voltage for setting the input switching threshold} \\ V_{IL} \text{the input voltage that indicates a Low logic level} \\ V_{IH} \text{the input voltage that indicates a High logic level} \\ \end{array}$
- 2. The V<sub>CCO</sub> rails supply only output drivers, not input circuits.
- For device operation, the maximum signal voltage ( $V_{IH}$  max) may be as high as  $V_{IN}$  max. See Table 72 in DS312. З.
- There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards. 4.
- All Dedicated pins (PROG\_B, DONE, TCK, TDI, TDO, and TMS) use the LVCMOS25 standard and draw power from the V<sub>CCAUX</sub> rail (2.5V). 5. The Dual-Purpose configuration pins use the LVCMOS standard before the User mode. When using these pins as part of a standard 2.5V configuration interface, apply 2.5V to the  $V_{CCO}$  lines of Banks 0, 1, and 2 at power-on as well as throughout configuration.
- For information on PCI IP solutions, see www.xilinx.com/pci. 6.



# Table 10: DC Characteristics of User I/Os UsingSingle-Ended Standards

|                         |    | Te<br>Cond              | est<br>itions           | Logic<br>Charac            | : Level<br>teristics       |
|-------------------------|----|-------------------------|-------------------------|----------------------------|----------------------------|
| IOSTANDAR<br>Attribute  | D  | I <sub>OL</sub><br>(mA) | I <sub>OH</sub><br>(mA) | V <sub>OL</sub><br>Max (V) | V <sub>OH</sub><br>Min (V) |
| LVTTL <sup>(3)</sup>    | 2  | 2                       | -2                      | 0.4                        | 2.4                        |
|                         | 4  | 4                       | -4                      |                            |                            |
|                         | 6  | 6                       | -6                      |                            |                            |
|                         | 8  | 8                       | -8                      |                            |                            |
|                         | 12 | 12                      | -12                     |                            |                            |
|                         | 16 | 16                      | -16                     |                            |                            |
| LVCMOS33 <sup>(3)</sup> | 2  | 2                       | -2                      | 0.4                        | V <sub>CCO</sub> – 0.4     |
|                         | 4  | 4                       | -4                      |                            |                            |
|                         | 6  | 6                       | -6                      |                            |                            |
|                         | 8  | 8                       | -8                      |                            |                            |
|                         | 12 | 12                      | -12                     |                            |                            |
|                         | 16 | 16                      | -16                     |                            |                            |
| LVCMOS25 <sup>(3)</sup> | 2  | 2                       | -2                      | 0.4                        | V <sub>CCO</sub> – 0.4     |
|                         | 4  | 4                       | -4                      |                            |                            |
|                         | 6  | 6                       | -6                      |                            |                            |
|                         | 8  | 8                       | -8                      |                            |                            |
|                         | 12 | 12                      | -12                     |                            |                            |
| LVCMOS18 <sup>(3)</sup> | 2  | 2                       | -2                      | 0.4                        | $V_{CCO} - 0.4$            |
|                         | 4  | 4                       | -4                      |                            |                            |
|                         | 6  | 6                       | -6                      |                            |                            |
|                         | 8  | 8                       | -8                      |                            |                            |
| LVCMOS15 <sup>(3)</sup> | 2  | 2                       | -2                      | 0.4                        | V <sub>CCO</sub> – 0.4     |
|                         | 4  | 4                       | -4                      |                            |                            |
|                         | 6  | 6                       | -6                      |                            |                            |

# Table 10: DC Characteristics of User I/Os Using Single-Ended Standards (Continued)

|                         |   | Te<br>Cond              | est<br>itions           | Logic Level<br>Characteristics |                            |  |  |
|-------------------------|---|-------------------------|-------------------------|--------------------------------|----------------------------|--|--|
| IOSTANDAR<br>Attribute  | D | I <sub>OL</sub><br>(mA) | I <sub>OH</sub><br>(mA) | V <sub>OL</sub><br>Max (V)     | V <sub>OH</sub><br>Min (V) |  |  |
| LVCMOS12 <sup>(3)</sup> | 2 | 2                       | -2                      | 0.4                            | V <sub>CCO</sub> - 0.4     |  |  |
| PCI33_3 <sup>(4)</sup>  |   | 1.5                     | -0.5                    | 10% V <sub>CCO</sub>           | 90% V <sub>CCO</sub>       |  |  |
| HSTL_I_18               |   | 8                       | -8                      | 0.4                            | V <sub>CCO</sub> - 0.4     |  |  |
| HSTL_III_18             |   | 24                      | -8                      | 0.4                            | V <sub>CCO</sub> - 0.4     |  |  |
| SSTL18_I                |   | 6.7                     | -6.7                    | V <sub>TT</sub> – 0.475        | V <sub>TT</sub> + 0.475    |  |  |
| SSTL2_I                 |   | 8.1                     | -8.1                    | V <sub>TT</sub> – 0.61         | V <sub>TT</sub> + 0.61     |  |  |

#### Notes:

1. The numbers in this table are based on the conditions set forth in Table 6 and Table 9.

2. Descriptions of the symbols used in this table are as follows:  $I_{OL}$  — the output current condition under which  $V_{OL}$  is tested  $I_{OH}$  — the output current condition under which  $V_{OH}$  is tested  $V_{OL}$  — the output voltage that indicates a Low logic level  $V_{OH}$  — the output voltage that indicates a High logic level  $V_{CCO}$  — the supply voltage for output drivers  $V_{TT}$  — the voltage applied to a resistor termination

- 3. For the LVCMOS and LVTTL standards: the same  $\rm V_{OL}$  and  $\rm V_{OH}$  limits apply for both the Fast and Slow slew attributes.
- Tested according to the relevant PCI specifications. For information on PCI IP solutions, see <u>www.xilinx.com/pci.</u>

| Table | 15: | Setup and H | Hold Times | for the | <b>IOB</b> Input | Path |
|-------|-----|-------------|------------|---------|------------------|------|
|-------|-----|-------------|------------|---------|------------------|------|

|                      |                                                                                                                                                              |                                                  | IFD_<br>DELAY |           | -4<br>Speed<br>Grade |       |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|-----------|----------------------|-------|
| Symbol               | Description                                                                                                                                                  | Conditions                                       | VALUE         | Device    | Min                  | Units |
| Setup Tim            | es                                                                                                                                                           |                                                  |               |           |                      |       |
| T <sub>IOPICK</sub>  | Time from the setup of data at the Input<br>pin to the active transition at the ICLK input<br>of the Input Flip-Flop (IFF). No Input Delay<br>is programmed. | LVCMOS25 <sup>(2)</sup> ,<br>IFD_DELAY_VALUE = 0 | 0             | All       | 2.12                 | ns    |
| T <sub>IOPICKD</sub> | Time from the setup of data at the Input                                                                                                                     | LVCMOS25 <sup>(2)</sup> ,                        | 2             | XA3S100E  | 6.49                 | ns    |
|                      | pin to the active transition at the IFF's ICLK                                                                                                               | IFD_DELAY_VALUE =<br>default software setting    | 3             | XA3S250E  | 6.85                 | ns    |
|                      |                                                                                                                                                              | de la dificienta le certing                      | 2             | XA3S500E  | 7.01                 | ns    |
|                      |                                                                                                                                                              |                                                  | 5             | XA3S1200E | 8.67                 | ns    |
|                      |                                                                                                                                                              |                                                  | 4             | XA3S1600E | 7.69                 | ns    |
| Hold Time            | S                                                                                                                                                            |                                                  |               | -         |                      |       |
| T <sub>IOICKP</sub>  | Time from the active transition at the IFF's ICLK input to the point where data must be held at the Input pin. No Input Delay is programmed.                 | LVCMOS25 <sup>(2)</sup> ,<br>IFD_DELAY_VALUE = 0 | 0             | All       | -0.76                | ns    |
| T <sub>IOICKPD</sub> | Time from the active transition at the IFF's                                                                                                                 | LVCMOS25 <sup>(2)</sup> ,                        | 2             | XA3S100E  | -3.93                | ns    |
|                      | ICLK input to the point where data must be<br>held at the Input pin. The Input Delay is                                                                      | IFD_DELAY_VALUE =                                | 3             | XA3S250E  | -3.51                | ns    |
|                      | programmed.                                                                                                                                                  | doladit ootware ootting                          | 2             | XA3S500E  | -3.74                | ns    |
|                      |                                                                                                                                                              |                                                  | 5             | XA3S1200E | -4.30                | ns    |
|                      |                                                                                                                                                              |                                                  | 4             | XA3S1600E | -4.14                | ns    |
| Set/Reset            | Pulse Width                                                                                                                                                  |                                                  |               |           | •                    | •     |
| T <sub>RPW_IOB</sub> | Minimum pulse width to SR control input on IOB                                                                                                               |                                                  |               | All       | 1.80                 | ns    |

Notes:

1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6 and Table 9.

2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the appropriate Input adjustment from Table 17.

3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract the appropriate Input adjustment from Table 17. When the hold time is negative, it is possible to change the data before the clock's active edge.



## Table 16: Propagation Times for the IOB Input Path

|                     |                                                                                                                                       |                                                  | IFD_<br>DELAY |           | -4 Speed<br>Grade |       |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|-----------|-------------------|-------|
| Symbol              | Description                                                                                                                           | Conditions                                       | VALUE         | Device    | Max               | Units |
| Propagatio          | on Times                                                                                                                              |                                                  |               |           |                   |       |
| T <sub>IOPLI</sub>  | The time it takes for data to<br>travel from the Input pin through<br>the IFF latch to the I output with<br>no input delay programmed | LVCMOS25 <sup>(2)</sup> ,<br>IFD_DELAY_VALUE = 0 | 0             | All       | 2.25              | ns    |
| T <sub>IOPLID</sub> | The time it takes for data to                                                                                                         | LVCMOS25 <sup>(2)</sup> ,                        | 2             | XA3S100E  | 5.97              | ns    |
|                     | travel from the Input pin through<br>the IFF latch to the I output with                                                               | IFD_DELAY_VALUE = default software setting       | 3             | XA3S250E  | 6.33              | ns    |
|                     | the input delay programmed                                                                                                            | g                                                | 2             | XA3S500E  | 6.49              | ns    |
|                     |                                                                                                                                       |                                                  | 5             | XA3S1200E | 8.15              | ns    |
|                     |                                                                                                                                       |                                                  | 4             | XA3S1600E | 7.16              | ns    |

Notes:

1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6 and Table 9.

2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is true, *add* the appropriate Input adjustment from Table 17.

#### Table 17: Input Timing Adjustments by IOSTANDARD

| Convert Input Time from<br>LVCMOS25 to the Following | Add the<br>Adjustment Below |       |
|------------------------------------------------------|-----------------------------|-------|
| (IOSTANDARD)                                         | -4 Speed Grade              | Units |
| Single-Ended Standards                               |                             |       |
| LVTTL                                                | 0.43                        | ns    |
| LVCMOS33                                             | 0.43                        | ns    |
| LVCMOS25                                             | 0                           | ns    |
| LVCMOS18                                             | 0.98                        | ns    |
| LVCMOS15                                             | 0.63                        | ns    |
| LVCMOS12                                             | 0.27                        | ns    |
| PCI33_3                                              | 0.42                        | ns    |
| HSTL_I_18                                            | 0.12                        | ns    |
| HSTL_III_18                                          | 0.17                        | ns    |
| SSTL18_I                                             | 0.30                        | ns    |
| SSTL2_I                                              | 0.15                        | ns    |

#### Table 17: Input Timing Adjustments by IOSTANDARD

| Convert Input Time from<br>LVCMOS25 to the Following<br>Signal Standard | Add the<br>Adjustment Below |       |
|-------------------------------------------------------------------------|-----------------------------|-------|
| (IOSTANDARD)                                                            | -4 Speed Grade              | Units |
| Differential Standards                                                  |                             |       |
| LVDS_25                                                                 | 0.49                        | ns    |
| BLVDS_25                                                                | 0.39                        | ns    |
| MINI_LVDS_25                                                            | 0.49                        | ns    |
| LVPECL_25                                                               | 0.27                        | ns    |
| RSDS_25                                                                 | 0.49                        | ns    |
| DIFF_HSTL_I_18                                                          | 0.49                        | ns    |
| DIFF_HSTL_III_18                                                        | 0.49                        | ns    |
| DIFF_SSTL18_I                                                           | 0.30                        | ns    |
| DIFF_SSTL2_I                                                            | 0.32                        | ns    |
|                                                                         |                             |       |

#### Notes:

- 1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6, Table 9, and Table 11.
- 2. These adjustments are used to convert input path times originally specified for the LVCMOS25 standard to times that correspond to other signal standards.

| Convert C<br>LVCMOS25 w | Putput Time<br>vith 12mA [ | e from<br>Drive and | Add the<br>Adjustment<br>Below | -     |
|-------------------------|----------------------------|---------------------|--------------------------------|-------|
| Signal Stand            | ard (IOSTA                 | NDARD)              | -4 Speed<br>Grade              | Units |
| Single-Ended            | Standards                  |                     | I                              |       |
| LVTTL                   | Slow                       | 2 mA                | 5.41                           | ns    |
|                         |                            | 4 mA                | 2.41                           | ns    |
|                         |                            | 6 mA                | 1.90                           | ns    |
|                         |                            | 8 mA                | 0.67                           | ns    |
|                         |                            | 12 mA               | 0.70                           | ns    |
|                         |                            | 16 mA               | 0.43                           | ns    |
|                         | Fast                       | 2 mA                | 5.00                           | ns    |
|                         |                            | 4 mA                | 1.96                           | ns    |
|                         |                            | 6 mA                | 1.45                           | ns    |
|                         |                            | 8 mA                | 0.34                           | ns    |
|                         |                            | 12 mA               | 0.30                           | ns    |
|                         |                            | 16 mA               | 0.30                           | ns    |
| LVCMOS33                | Slow                       | 2 mA                | 5.29                           | ns    |
|                         |                            | 4 mA                | 1.89                           | ns    |
|                         |                            | 6 mA                | 1.04                           | ns    |
|                         |                            | 8 mA                | 0.69                           | ns    |
|                         |                            | 12 mA               | 0.42                           | ns    |
|                         |                            | 16 mA               | 0.43                           | ns    |
|                         | Fast                       | 2 mA                | 4.87                           | ns    |
|                         |                            | 4 mA                | 1.52                           | ns    |
|                         |                            | 6 mA                | 0.39                           | ns    |
|                         |                            | 8 mA                | 0.34                           | ns    |
|                         |                            | 12 mA               | 0.30                           | ns    |
|                         |                            | 16 mA               | 0.30                           | ns    |
| LVCMOS25                | Slow                       | 2 mA                | 4.21                           | ns    |
|                         |                            | 4 mA                | 2.26                           | ns    |
|                         |                            | 6 mA                | 1.52                           | ns    |
|                         |                            | 8 mA                | 1.08                           | ns    |
|                         |                            | 12 mA               | 0.68                           | ns    |
|                         | Fast                       | 2 mA                | 3.67                           | ns    |
|                         |                            | 4 mA                | 1.72                           | ns    |
|                         |                            | 6 mA                | 0.46                           | ns    |
|                         |                            | 8 mA                | 0.21                           | ns    |
|                         |                            | 12 mA               | 0                              | ns    |

#### Table 18: Output Timing Adjustments for IOB

#### Table 18: Output Timing Adjustments for IOB (Continued)

| Convert Output Time from<br>LVCMOS25 with 12mA Drive and<br>Fast Slew Rate to the Following |           | Add the<br>Adjustment<br>Below |       |       |
|---------------------------------------------------------------------------------------------|-----------|--------------------------------|-------|-------|
| Signal Standa                                                                               | rd (IOSTA | NDARD)                         | Grade | Units |
| LVCMOS18                                                                                    | Slow      | 2 mA                           | 5.24  | ns    |
|                                                                                             |           | 4 mA                           | 3.21  | ns    |
|                                                                                             |           | 6 mA                           | 2.49  | ns    |
|                                                                                             |           | 8 mA                           | 1.90  | ns    |
|                                                                                             | Fast      | 2 mA                           | 4.15  | ns    |
|                                                                                             |           | 4 mA                           | 2.13  | ns    |
|                                                                                             |           | 6 mA                           | 1.14  | ns    |
|                                                                                             |           | 8 mA                           | 0.75  | ns    |
| LVCMOS15                                                                                    | Slow      | 2 mA                           | 4.68  | ns    |
|                                                                                             |           | 4 mA                           | 3.97  | ns    |
|                                                                                             |           | 6 mA                           | 3.11  | ns    |
|                                                                                             | Fast      | 2 mA                           | 3.38  | ns    |
|                                                                                             |           | 4 mA                           | 2.70  | ns    |
|                                                                                             |           | 6 mA                           | 1.53  | ns    |
| LVCMOS12                                                                                    | Slow      | 2 mA                           | 6.63  | ns    |
|                                                                                             | Fast      | 2 mA                           | 4.44  | ns    |
| HSTL_I_18                                                                                   |           |                                | 0.34  | ns    |
| HSTL_III_18                                                                                 |           |                                | 0.55  | ns    |
| PCI33_3                                                                                     |           |                                | 0.46  | ns    |
| SSTL18_I                                                                                    |           |                                | 0.25  | ns    |
| SSTL2_I                                                                                     |           |                                | -0.20 | ns    |
| Differential Star                                                                           | ndards    |                                |       |       |
| LVDS_25                                                                                     |           |                                | -0.55 | ns    |
| BLVDS_25                                                                                    |           |                                | 0.04  | ns    |
| MINI_LVDS_25                                                                                |           | -0.56                          | ns    |       |
| LVPECL_25                                                                                   |           | Input Only                     | ns    |       |
| RSDS_25                                                                                     |           | -0.48                          | ns    |       |
| DIFF_HSTL_I_18                                                                              |           | 0.42                           | ns    |       |
| DIFF_HSTL_III_                                                                              | 18        |                                | 0.55  | ns    |
| DIFF_SSTL18_I                                                                               |           |                                | 0.40  | ns    |
| DIFF_SSTL2_I                                                                                |           |                                | 0.44  | ns    |

#### Notes:

1. The numbers in this table are tested using the methodology presented in Table 19 and are based on the operating conditions set forth in Table 6, Table 9, and Table 11.

 These adjustments are used to convert output- and three-state-path times originally specified for the LVCMOS25 standard with 12 mA drive and Fast slew rate to times that correspond to other signal standards. Do not adjust times that measure when outputs go into a high-impedance state.

### Table 24: 18 x 18 Embedded Multiplier Timing (Continued)

|                   |                                                                                                                                                   | -4 Speed Grade |     |       |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|-------|--|
| Symbol            | Description                                                                                                                                       | Min            | Мах | Units |  |
| Clock Frequency   |                                                                                                                                                   |                |     |       |  |
| F <sub>MULT</sub> | Internal operating frequency for a two-stage 18x18 multiplier using the AREG and BREG input registers and the PREG output register <sup>(1)</sup> | 0              | 240 | MHz   |  |

Notes:

1. Combinatorial delay is less and pipelined performance is higher when multiplying input data with less than 18 bits.

2. The PREG register is typically used in both single-stage and two-stage pipelined multiplier implementations.

3. Input registers AREG or BREG are typically used when inferring a two-stage multiplier.

## **Block RAM Timing**

#### Table 25: Block RAM Timing

|                   | -4 Speed Grade                                                                                                          |      | d Grade |       |
|-------------------|-------------------------------------------------------------------------------------------------------------------------|------|---------|-------|
| Symbol            | Description                                                                                                             | Min  | Max     | Units |
| Clock-to-Out      | put Times                                                                                                               |      |         |       |
| Т <sub>ВСКО</sub> | When reading from block RAM, the delay from the active transition at the CLK input to data appearing at the DOUT output | -    | 2.82    | ns    |
| Setup Times       |                                                                                                                         |      | I       | I     |
| T <sub>BACK</sub> | Setup time for the ADDR inputs before the active transition at the CLK input of the block RAM                           | 0.38 | -       | ns    |
| T <sub>BDCK</sub> | Setup time for data at the DIN inputs before the active transition at the CLK input of the block RAM                    | 0.23 | -       | ns    |
| T <sub>BECK</sub> | Setup time for the EN input before the active transition at the CLK input of the block RAM                              | 0.77 | -       | ns    |
| T <sub>BWCK</sub> | Setup time for the WE input before the active transition at the CLK input of the block RAM                              | 1.26 | -       | ns    |
| Hold Times        |                                                                                                                         |      |         | 1     |
| Т <sub>ВСКА</sub> | Hold time on the ADDR inputs after the active transition at the CLK input                                               | 0.14 | -       | ns    |
| T <sub>BCKD</sub> | Hold time on the DIN inputs after the active transition at the CLK input                                                | 0.13 | -       | ns    |
| T <sub>BCKE</sub> | Hold time on the EN input after the active transition at the CLK input                                                  | 0    | -       | ns    |
| T <sub>BCKW</sub> | Hold time on the WE input after the active transition at the CLK input                                                  | 0    | -       | ns    |

www.xilinx.com

## Table 25: Block RAM Timing (Continued)

|                   |                                                                                                                                                                        | -4 Speed Grade |     |       |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|-------|
| Symbol            | Description                                                                                                                                                            | Min            | Max | Units |
| Clock Timing      |                                                                                                                                                                        | ,              | ,   | ,     |
| T <sub>BPWH</sub> | High pulse width of the CLK signal                                                                                                                                     | 1.59           | -   | ns    |
| T <sub>BPWL</sub> | Low pulse width of the CLK signal                                                                                                                                      |                | -   | ns    |
| Clock Frequency   |                                                                                                                                                                        |                |     |       |
| F <sub>BRAM</sub> | Block RAM clock frequency. RAM read output value written back<br>into RAM, for shift registers and circular buffers. Write-only or<br>read-only performance is faster. | 0              | 230 | MHz   |

#### Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6.

# **Digital Clock Manager Timing**

For specification purposes, the DCM consists of three key components: the Delay-Locked Loop (DLL), the Digital Frequency Synthesizer (DFS), and the Phase Shifter (PS).

Aspects of DLL operation play a role in all DCM applications. All such applications inevitably use the CLKIN and the CLKFB inputs connected to either the CLK0 or the CLK2X feedback, respectively. Thus, specifications in the DLL tables (Table 26 and Table 27) apply to any application that only employs the DLL component. When the DFS and/or the PS components are used together with the DLL, then the specifications listed in the DFS and PS tables (Table 28 through Table 31) supersede any corresponding ones in the DLL tables. DLL specifications that do not change with the addition of DFS or PS functions are presented in Table 26 and Table 27.

Period jitter and cycle-cycle jitter are two of many different ways of specifying clock jitter. Both specifications describe statistical variation from a mean value.

Period jitter is the worst-case deviation from the ideal clock period over a collection of millions of samples. In a histogram of period jitter, the mean value is the clock period.

Cycle-cycle jitter is the worst-case difference in clock period between adjacent clock cycles in the collection of clock periods sampled. In a histogram of cycle-cycle jitter, the mean value is zero.

## Spread Spectrum

DCMs accept typical spread spectrum clocks as long as they meet the input requirements. The DLL will track the frequency changes created by the spread spectrum clock to drive the global clocks to the FPGA logic. See <u>XAPP469</u>, *Spread-Spectrum Clocking Reception for Displays* for details.

## Delay-Locked Loop

## Table 26: Recommended Operating Conditions for the DLL

|                                  |                          |                                                        |                                                                                       | -4 Speed Grade   |                    |       |
|----------------------------------|--------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------|------------------|--------------------|-------|
|                                  | Symbol                   | Des                                                    | scription                                                                             | Min              | Max                | Units |
| Input Frequency Ranges           |                          |                                                        |                                                                                       |                  |                    |       |
| F <sub>CLKIN</sub>               | CLKIN_FREQ_DLL           | Frequency of the CLKIN clock in                        | nput                                                                                  | 5 <sup>(2)</sup> | 240 <sup>(3)</sup> | MHz   |
| Input Pulse Requirements         |                          |                                                        |                                                                                       |                  | •                  |       |
| CLKIN_PULSE CLKIN percent period |                          | CLKIN pulse width as a percentage of the CLKIN period  | F <sub>CLKIN</sub> ≤ 150 MHz                                                          | 40%              | 60%                | -     |
|                                  |                          |                                                        | F <sub>CLKIN</sub> > 150 MHz                                                          | 45%              | 55%                | -     |
| Input Cl                         | ock Jitter Tolerance and | I Delay Path Variation <sup>(4)</sup>                  |                                                                                       |                  |                    |       |
| CLKIN_C                          | CYC_JITT_DLL_LF          | Cycle-to-cycle jitter at the                           | F <sub>CLKIN</sub> ≤ 150 MHz                                                          | -                | ±300               | ps    |
| CLKIN_C                          | CYC_JITT_DLL_HF          | CLKIN input                                            | F <sub>CLKIN</sub> > 150 MHz                                                          | -                | ±150               | ps    |
| CLKIN_F                          | PER_JITT_DLL             | Period jitter at the CLKIN input                       |                                                                                       | -                | ±1                 | ns    |
| CLKFB_                           | DELAY_VAR_EXT            | Allowable variation of off-chip fee<br>the CLKFB input | Allowable variation of off-chip feedback delay from the DCM output to the CLKFB input |                  | ±1                 | ns    |

#### Notes:

1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.

2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Table 28.

3. To support double the maximum effective FCLKIN limit, set the CLKIN\_DIVIDE\_BY\_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input.

4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.

#### Table 27: Switching Characteristics for the DLL

|                                        |                                                                        | -4 Spe |                                   |       |
|----------------------------------------|------------------------------------------------------------------------|--------|-----------------------------------|-------|
| Symbol                                 | Description                                                            | Min    | Max                               | Units |
| Output Frequency Ranges                | •                                                                      |        |                                   |       |
| CLKOUT_FREQ_CLK0                       | Frequency for the CLK0 and CLK180 outputs                              | 5      | 240                               | MHz   |
| CLKOUT_FREQ_CLK90                      | Frequency for the CLK90 and CLK270 outputs                             | 5      | 200                               | MHz   |
| CLKOUT_FREQ_2X                         | Frequency for the CLK2X and CLK2X180 outputs                           | 10     | 311                               | MHz   |
| CLKOUT_FREQ_DV                         | Frequency for the CLKDV output                                         | 0.3125 | 160                               | MHz   |
| Output Clock Jitter <sup>(2,3,4)</sup> | 1                                                                      | L      | I                                 |       |
| CLKOUT_PER_JITT_0                      | Period jitter at the CLK0 output                                       | -      | ±100                              | ps    |
| CLKOUT_PER_JITT_90                     | Period jitter at the CLK90 output                                      | -      | ±150                              | ps    |
| CLKOUT_PER_JITT_180                    | Period jitter at the CLK180 output                                     | -      | ±150                              | ps    |
| CLKOUT_PER_JITT_270                    | Period jitter at the CLK270 output                                     | -      | ±150                              | ps    |
| CLKOUT_PER_JITT_2X                     | Period jitter at the CLK2X and CLK2X180 outputs                        | -      | ±[1% of<br>CLKIN period<br>+ 150] | ps    |
| CLKOUT_PER_JITT_DV1                    | Period jitter at the CLKDV output when performing integer division     | -      | ±150                              | ps    |
| CLKOUT_PER_JITT_DV2                    | Period jitter at the CLKDV output when performing non-integer division | -      | ±[1% of<br>CLKIN period<br>+ 200] | ps    |

www.xilinx.com

## Table 27: Switching Characteristics for the DLL (Continued)

|                                |                                                                                                                                                                                                             |                                                                                                  | -4 Spe | ed Grade                          |       |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------|-----------------------------------|-------|
| Symbol                         | Description                                                                                                                                                                                                 | -                                                                                                | Min    | Max                               | Units |
| Duty Cycle <sup>(4)</sup>      | ·                                                                                                                                                                                                           |                                                                                                  |        |                                   |       |
| CLKOUT_DUTY_CYCLE_DLL          | Duty cycle variation for the CLK0, CLK90, CLK180,<br>CLK270, CLK2X, CLK2X180, and CLKDV outputs,<br>including the BUFGMUX and clock tree duty-cycle<br>distortion                                           |                                                                                                  | -      | ±[1% of<br>CLKIN period<br>+ 400] | ps    |
| Phase Alignment <sup>(4)</sup> |                                                                                                                                                                                                             |                                                                                                  |        |                                   |       |
| CLKIN_CLKFB_PHASE              | Phase offset between the CLKIN and                                                                                                                                                                          | I CLKFB inputs                                                                                   | -      | ±200                              | ps    |
| CLKOUT_PHASE_DLL               | Phase offset between DLL outputs                                                                                                                                                                            | CLK0 to CLK2X<br>(not CLK2X180)                                                                  | -      | ±[1% of<br>CLKIN period<br>+ 100] | ps    |
|                                |                                                                                                                                                                                                             | All others                                                                                       | -      | ±[1% of<br>CLKIN period<br>+ 200] | ps    |
| Lock Time                      |                                                                                                                                                                                                             | · · · · ·                                                                                        |        |                                   |       |
| LOCK_DLL <sup>(3)</sup>        | When using the DLL alone: The time<br>from deassertion at the DCM's Reset<br>input to the rising transition at its<br>LOCKED output. When the DCM is<br>locked, the CLKIN and CLKFB<br>signals are in phase | $\begin{array}{c} 5 \text{ MHz} \leq \text{F}_{\text{CLKIN}} \leq \\ 15 \text{ MHz} \end{array}$ | -      | 5                                 | ms    |
|                                |                                                                                                                                                                                                             | F <sub>CLKIN</sub> > 15 MHz                                                                      | -      | 600                               | μs    |
| Delay Lines                    |                                                                                                                                                                                                             |                                                                                                  |        |                                   |       |
| DCM_DELAY_STEP                 | Finest delay resolution                                                                                                                                                                                     |                                                                                                  | 20     | 40                                | ps    |

#### Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6 and Table 26.

- 2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.
- 3. For optimal jitter tolerance and faster lock time, use the CLKIN\_PERIOD attribute.
- Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. *Example:* The data sheet specifies a maximum jitter of "±[1% of CLKIN period + 150]". Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 150 ps] = ±250ps.

## Digital Frequency Synthesizer

#### Table 28: Recommended Operating Conditions for the DFS

|                                       |                                             |                                           |                              | -4 Spee | d Grade            |     |
|---------------------------------------|---------------------------------------------|-------------------------------------------|------------------------------|---------|--------------------|-----|
|                                       | Symbol Description                          |                                           | Min                          | Max     | Units              |     |
| Input Frequency Ranges <sup>(2)</sup> |                                             |                                           |                              |         |                    |     |
| F <sub>CLKIN</sub>                    | CLKIN_FREQ_FX                               | Frequency for the CLKIN input             |                              | 0.200   | 333 <sup>(4)</sup> | MHz |
| Input Clock                           | Input Clock Jitter Tolerance <sup>(3)</sup> |                                           |                              |         |                    |     |
| CLKIN_CYC                             | _JITT_FX_LF                                 | Cycle-to-cycle jitter at the CLKIN        | F <sub>CLKFX</sub> ≤ 150 MHz | -       | ±300               | ps  |
| CLKIN_CYC                             | _JITT_FX_HF                                 | input, based on CLKFX output<br>frequency | F <sub>CLKFX</sub> > 150 MHz | -       | ±150               | ps  |
| CLKIN_PER                             | _JITT_FX                                    | Period jitter at the CLKIN input          |                              | -       | ±1                 | ns  |

#### Notes:

1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.

2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN\_FREQ\_DLL specifications in Table 26.

3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.

 To support double the maximum effective FCLKIN limit, set the CLKIN\_DIVIDE\_BY\_2 attribute to TRUE. This attribute divides the incoming clock frequency by two as it enters the DCM.

## Table 31: Switching Characteristics for the PS in Variable Phase Mode

| Symbol                   | Description                                                                                                                                                                                                |                                      |                                                 | Units |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------|-------|
| Phase Shifting Range     |                                                                                                                                                                                                            |                                      |                                                 |       |
| MAX_STEPS <sup>(2)</sup> | Maximum allowed number of DCM_DELAY_STEP<br>steps for a given CLKIN clock period, where T = CLKIN<br>clock period in ns. If using<br>CLKIN_DIVIDE_BY_2 = TRUE, double the clock<br>effective clock period. | CLKIN < 60 MHz                       | ±[INTEGER(10 ●<br>(T <sub>CLKIN</sub> – 3 ns))] | steps |
|                          |                                                                                                                                                                                                            | CLKIN <u>&gt;</u> 60 MHz             | ±[INTEGER(15 ●<br>(T <sub>CLKIN</sub> – 3 ns))] | steps |
| FINE_SHIFT_RANGE_MIN     | Minimum guaranteed delay for variable phase shifting                                                                                                                                                       | ±[MAX_STEPS ●<br>DCM_DELAY_STEP_MIN] |                                                 | ns    |
| FINE_SHIFT_RANGE_MAX     | Maximum guaranteed delay for variable phase shifting                                                                                                                                                       | ±[MAX_STEPS ●<br>DCM_DELAY_STEP_MAX] |                                                 | ns    |

#### Notes:

- 1. The numbers in this table are based on the operating conditions set forth in Table 6 and Table 30.
- 2. The maximum variable phase shift range, MAX\_STEPS, is only valid when the DCM is has no initial fixed phase shifting, i.e., the PHASE\_SHIFT attribute is set to 0.
- 3. The DCM\_DELAY\_STEP values are provided at the bottom of Table 27.

## Miscellaneous DCM Timing

#### Table 32: Miscellaneous DCM Timing

| Symbol                                                                                      | Description                                                                                | Min | Max | Units           |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----|-----|-----------------|
| DCM_RST_PW_MIN <sup>(1)</sup>                                                               | Minimum duration of a RST pulse width                                                      | 3   | -   | CLKIN<br>cycles |
| DCM_RST_PW_MAX <sup>(2)</sup>                                                               | Maximum duration of a RST pulse width                                                      | N/A | N/A | seconds         |
|                                                                                             |                                                                                            | N/A | N/A | seconds         |
| DCM_CONFIG_LAG_TIME <sup>(3)</sup> Maximum duration from V <sub>CCINT</sub> applied to FPGA |                                                                                            | N/A | N/A | minutes         |
|                                                                                             | configuration successfully completed (DONE pin goes<br>High) and clocks applied to DCM DLL |     | N/A | minutes         |

#### Notes:

1. This limit only applies to applications that use the DCM DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV). The DCM DFS outputs (CLKFX, CLKFX180) are unaffected.

- 2. This specification is equivalent to the Virtex-4 DCM\_RESET specification. This specification does not apply for Spartan-3E FPGAs.
- 3. This specification is equivalent to the Virtex-4 TCONFIG specification. This specification does not apply for Spartan-3E FPGAs.



# **Configuration and JTAG Timing**

## Table 33: Power-On Timing and the Beginning of Configuration

|                                  |                                                                                                                            |           | -4 Spee | d Grade |       |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|---------|---------|-------|
| Symbol                           | Description                                                                                                                | Device    | Min     | Max     | Units |
| T <sub>POR</sub> <sup>(2)</sup>  | The time from the application of $V_{CCINT}\!, V_{CCAUX}\!,$ and $V_{CCO}$                                                 | XA3S100E  | -       | 5       | ms    |
|                                  | Bank 2 supply voltage ramps (whichever occurs last) to the                                                                 | XA3S250E  | -       | 5       | ms    |
|                                  |                                                                                                                            | XA3S500E  | -       | 5       | ms    |
|                                  |                                                                                                                            | XA3S1200E | -       | 5       | ms    |
|                                  |                                                                                                                            | XA3S1600E | -       | 7       | ms    |
| T <sub>PROG</sub>                | The width of the low-going pulse on the PROG_B pin                                                                         | All       | 0.5     | -       | μs    |
| T <sub>PL</sub> <sup>(2)</sup>   | The time from the rising edge of the PROG_B pin to the rising transition on the INIT_B pin                                 | XA3S100E  | -       | 0.5     | ms    |
|                                  |                                                                                                                            | XA3S250E  | -       | 0.5     | ms    |
|                                  |                                                                                                                            | XA3S500E  | -       | 1       | ms    |
|                                  |                                                                                                                            | XA3S1200E | -       | 2       | ms    |
|                                  |                                                                                                                            | XA3S1600E | -       | 2       | ms    |
| T <sub>INIT</sub>                | Minimum Low pulse width on INIT_B output                                                                                   | All       | 250     | -       | ns    |
| T <sub>ICCK</sub> <sup>(3)</sup> | The time from the rising edge of the INIT_B pin to the generation of the configuration clock signal at the CCLK output pin | All       | 0.5     | 4.0     | μs    |

#### Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6. This means power must be applied to all  $V_{CCINT}$ ,  $V_{CCO}$ , and  $V_{CCAUX}$  lines.

2. Power-on reset and the clearing of configuration memory occurs during this period.

3. This specification applies only to the Master Serial, SPI, BPI-Up, and BPI-Down modes.



# Master Serial and Slave Serial Mode Timing

| Table | 38: | Timing for | r the Master | Serial and | <b>Slave Serial</b> | Configuration | Modes |
|-------|-----|------------|--------------|------------|---------------------|---------------|-------|
|-------|-----|------------|--------------|------------|---------------------|---------------|-------|

|                                                                        |                                                                                                  |                            | Slave/ | -4 Speed Grade |                   |       |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------|--------|----------------|-------------------|-------|
| Symbol                                                                 | Descri                                                                                           | ption                      | Master | Min            | Max               | Units |
| Clock-to-Output Times                                                  |                                                                                                  |                            |        |                |                   |       |
| T <sub>CCO</sub>                                                       | The time from the falling transition on the CCLK pin to data appearing at the DOUT pin           |                            | Both   | 1.5            | 10.0              | ns    |
| Setup Tim                                                              | es                                                                                               |                            |        |                |                   |       |
| T <sub>DCC</sub>                                                       | The time from the setup of data at the DIN pin to the active edge of the CCLK pin                |                            |        | 11.0           | -                 | ns    |
| Hold Time                                                              | S                                                                                                |                            |        |                |                   |       |
| T <sub>CCD</sub>                                                       | The time from the active edge of the CCLK pin to the point when data is last held at the DIN pin |                            |        | 0              | -                 | ns    |
| Clock Tim                                                              | ing                                                                                              |                            |        |                |                   |       |
| т <sub>ссн</sub>                                                       | High pulse width at the CCLK input pin                                                           |                            | Master | See Table 36   |                   |       |
|                                                                        |                                                                                                  |                            |        | See Table 37   |                   |       |
| T <sub>CCL</sub>                                                       | Low pulse width at the CCLK input pin                                                            |                            | Master | See Table 36   |                   |       |
|                                                                        |                                                                                                  |                            |        | Se             | e Table 37        |       |
| F <sub>CCSER</sub> Frequency of the clock signal at the CCLK input pin |                                                                                                  | No bitstream compression   | Slave  | 0              | 66 <sup>(2)</sup> | MHz   |
|                                                                        |                                                                                                  | With bitstream compression |        | 0              | 20                | MHz   |

#### Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6.

2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.



# Slave Parallel Mode Timing

## Table 39: Timing for the Slave Parallel Configuration Mode

|                                   |                                                                                                              |                            | -4 Speed Grad                         |      |      |       |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------|------|------|-------|
| Symbol                            | Description                                                                                                  |                            |                                       | Min  | Max  | Units |
| Clock-to-Out                      | out Times                                                                                                    |                            |                                       |      |      |       |
| T <sub>SMCKBY</sub>               | The time from the rising tran<br>BUSY pin                                                                    | nsition on the CCL         | K pin to a signal transition at the   | -    | 12.0 | ns    |
| Setup Times                       | •                                                                                                            |                            |                                       |      | •    | +     |
| T <sub>SMDCC</sub>                | The time from the setup of o pin                                                                             | data at the D0-D7 p        | ins to the active edge the CCLK       | 11.0 | -    | ns    |
| T <sub>SMCSCC</sub>               | Setup time on the CSI_B p                                                                                    | in before the active       | edge of the CCLK pin                  | 10.0 | -    | ns    |
| T <sub>SMCCW</sub> <sup>(2)</sup> | Setup time on the RDWR_                                                                                      | B pin before active        | edge of the CCLK pin                  | 23.0 | -    | ns    |
| Hold Times                        |                                                                                                              |                            |                                       |      |      |       |
| T <sub>SMCCD</sub>                | The time from the active edge of the CCLK pin to the point when data is last held at the D0-D7 pins          |                            |                                       | 1.0  | -    | ns    |
| T <sub>SMCCCS</sub>               | The time from the active edge of the CCLK pin to the point when a logic level is last held at the CSO_B pin  |                            |                                       |      | -    | ns    |
| T <sub>SMWCC</sub>                | The time from the active edge of the CCLK pin to the point when a logic level is last held at the RDWR_B pin |                            |                                       | 0    | -    | ns    |
| <b>Clock Timing</b>               |                                                                                                              |                            |                                       |      |      |       |
| Т <sub>ССН</sub>                  | The High pulse width at the                                                                                  | e CCLK input pin           |                                       | 5    | -    | ns    |
| T <sub>CCL</sub>                  | The Low pulse width at the CCLK input pin                                                                    |                            |                                       | 5    | -    | ns    |
| F <sub>CCPAR</sub>                | Frequency of the clock<br>signal at the CCLK input<br>pin                                                    | No bitstream compression   | Not using the BUSY pin <sup>(2)</sup> | 0    | 50   | MHz   |
|                                   |                                                                                                              |                            | Using the BUSY pin                    | 0    | 66   | MHz   |
|                                   |                                                                                                              | With bitstream compression |                                       | 0    | 20   | MHz   |

Notes:

1. The numbers in this table are based on the operating conditions set forth in Table 6.

2. In the Slave Parallel mode, it is necessary to use the BUSY pin when the CCLK frequency exceeds this maximum specification.

3. Some Xilinx documents refer to Parallel modes as "SelectMAP" modes.

# Byte Peripheral Interface Configuration Timing

### Table 42: Timing for BPI Configuration Mode

| Symbol                | Description                                                                                                    |                                 |              | Maximum      | Units                        |
|-----------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------|--------------|--------------|------------------------------|
| T <sub>CCLK1</sub>    | Initial CCLK clock period                                                                                      |                                 |              | ee Table 34) |                              |
| T <sub>CCLKn</sub>    | CCLK clock period after FPGA loads ConfigRate setting                                                          |                                 |              | ee Table 34) |                              |
| T <sub>MINIT</sub>    | Setup time on CSI_B, RDWR_B, and M[2:0] mode pins before the rising edge of INIT_B                             |                                 |              | -            | ns                           |
| T <sub>INITM</sub>    | Hold time on CSI_B, RDWR_B, and M[2:0] mode pins after the rising edge of INIT_B                               |                                 |              | -            | ns                           |
| T <sub>INITADDR</sub> | Minimum period of initial A[23:0] address cycle;BPI-UP:LDC[2:0] and HDC are asserted and valid(M[2:0]=<0:1:0>) |                                 | 5            | 5            | T <sub>CCLK1</sub><br>cycles |
|                       |                                                                                                                | <b>BPI-DN:</b> (M[2:0]=<0:1:1>) | 2            | 2            |                              |
| T <sub>CCO</sub>      | Address A[23:0] outputs valid after CCLK falling edge                                                          |                                 |              | ee Table 38  |                              |
| T <sub>DCC</sub>      | Setup time on D[7:0] data inputs before CCLK rising edge                                                       |                                 |              | ee Table 38  |                              |
| T <sub>CCD</sub>      | Hold time on D[7:0] data inputs after CCLK rising edg                                                          | ge                              | See Table 38 |              |                              |

## Table 43: Configuration Timing Requirements for Attached Parallel NOR Flash

| Symbol                                                          | Description                                                      | Requirement                                                | Units |
|-----------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|-------|
| T <sub>CE</sub><br>(t <sub>ELQV</sub> )                         | Parallel NOR Flash PROM chip-select time                         | T <sub>CE</sub> ≤ T <sub>INITADDR</sub>                    | ns    |
| T <sub>OE</sub><br>(t <sub>GLQV</sub> )                         | Parallel NOR Flash PROM output-enable time                       | T <sub>OE</sub> ≤ T <sub>INITADDR</sub>                    | ns    |
| T <sub>ACC</sub><br>(t <sub>AVQV</sub> )                        | Parallel NOR Flash PROM read access time                         | $T_{ACC} \leq 0.5T_{CCLKn(min)} - T_{CCO} - T_{DCC} - PCB$ | ns    |
| T <sub>BYTE</sub><br>(t <sub>FLQV,</sub><br>t <sub>FHQV</sub> ) | For x8/x16 PROMs only: BYTE# to output valid time <sup>(3)</sup> | T <sub>byte</sub> ≤T <sub>initaddr</sub>                   | ns    |

Notes:

1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA provides the CCLK frequency. The post configuration timing can be different to support the specific needs of the application loaded into the FPGA and the resulting clock source.

2. Subtract additional printed circuit board routing delay as required by the application.

3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA's LDC2 pin. The resistor value also depends on whether the FPGA's HSWAP pin is High or Low.



# **Automotive Applications Disclaimer**

XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III) USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.

