

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	792
Total RAM Bits	-
Number of I/O	120
Number of Gates	30000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	289-TFBGA, CSBGA
Supplier Device Package	289-CSP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/aglp030v2-cs289

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Each I/O module contains several input, output, and output enable registers.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered-up system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Wide Range I/O Support

IGLOO PLUS devices support JEDEC-defined wide range I/O operation. IGLOO PLUS devices support both the JESD8-B specification, covering 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to 1.575 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-4 on page 1-8).
 - Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
 - 1 I/O is set to drive out logic High
 - 0 I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming Z -Tri-State: I/O is tristated

2 – IGLOO PLUS DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 •	Absolute	Maximum	Ratings
-------------	----------	---------	---------

Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	–0.3 to 1.65	V
VJTAG	JTAG DC voltage	-0.3 to 3.75	V
VPUMP	Programming voltage	-0.3 to 3.75	V
VCCPLL	Analog power supply (PLL)	–0.3 to 1.65	V
VCCI	DC I/O buffer supply voltage	-0.3 to 3.75	V
VI ¹	I/O input voltage	–0.3 V to 3.6 V	V
T _{STG} ²	Storage temperature	–65 to +150	°C
T _J ²	Junction temperature	+125	°C

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

2. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2.

Microsemi.

IGLOO PLUS DC and Switching Characteristics

Symbol	Pa	rameter	Commercial	Industrial	Units
Τ _J	Junction temperature ²		0 to + 85	-40 to +100	°C
VCC ³	1.5 V DC core supply voltage	4	1.425 to 1.575	1.425 to 1.575	V
	1.2 V–1.5 V wide range core	voltage ^{5,6}	1.14 to 1.575	1.14 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP ⁷	Programming voltage	Programming mode	3.15 to 3.45	3.15 to 3.45	V
		Operation	0 to 3.6	0 to 3.6	V
VCCPLL ⁸	Analog power supply (PLL)	1.5 V DC core supply voltage ⁴	1.425 to 1.575	1.425 to 1.575	V
	/CCPLL ⁸ Analog power supply (PLL) /CCI 1.2 V DC supply voltage ⁵	1.2 V-1.5 V wide range core voltage ⁵	1.14 to 1.575	1.14 to 1.575	V
VCCI	1.2 V DC supply voltage ⁵		1.14 to 1.26	1.14 to 1.26	V
1.5 V DC core supply votage 1.2 V–1.5 V wide range core VJTAG JTAG DC voltage VPUMP ⁷ Programming voltage VCCPLL ⁸ Analog power supply (PLL) VCCI 1.2 V DC supply voltage ⁵ 1.2 V DC wide range supply 1.5 V DC supply voltage 1.8 V DC supply voltage 2.5 V DC supply voltage 3.3 V wide range DC supply	voltage ⁵	1.14 to 1.575	1.14 to 1.575	V	
	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.3 V wide range DC supply	voltage ⁹	2.7 to 3.6	2.7 to 3.6	V
	3.3 V DC supply voltage		3.0 to 3.6	3.0 to 3.6	V

Table 2-2 • Recommended Operating Conditions^{1,2}

Notes:

- 1. All parameters representing voltages are measured with respect to GND unless otherwise specified.
- 2. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi's timing and power simulation tools.
- 3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-21 on page 2-19. VCCI should be at the same voltage within a given I/O bank.
- 4. For IGLOO[®] PLUS V5 devices
- 5. For IGLOO PLUS V2 devices only, operating at VCCI \geq VCC.
- 6. All IGLOO PLUS devices (V5 and V2) must be programmed with the VCC core voltage at 1.5 V. Applications using V2 devices powered by a 1.2 V supply must switch the core supply to 1.5 V for in-system programming.
- 7. VPUMP can be left floating during operation (not programming mode).
- 8. VCCPLL pins should be tied to VCC pins. See the Pin Descriptions chapter of the IGLOO PLUS FPGA Fabric User's Guide for further information.
- 9. 3.3 V wide range is compliant to the JDEC8b specification and supports 3.0 V VCCI operation.
- 10. VMV pins must be connected to the corresponding VCCI pins. See the "Pin Descriptions" chapter of the IGLOO FPGA Fabric User's Guide for further information.
- 11. Software Default Junction Temperature Range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information regarding custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help.

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C) ²	Maximum Operating Junction Temperature T _J (°C) ²
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature ¹

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

Table 2-4 •	Overshoot and	Undershoot Limits	I

vcci	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

Notes:

1. Based on reliability requirements at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every IGLOO PLUS device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4.

There are five regions to consider during power-up.

IGLOO PLUS I/Os are activated only if ALL of the following three conditions are met:

- 1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 and Figure 2-2 on page 2-5).
- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up (V5 devices): 0.6 V < trip_point_up < 1.2 V Ramping down (V5 devices): 0.5 V < trip_point_down < 1.1 V Ramping up (V2 devices): 0.75 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.65 V < trip_point_down < 0.95 V

VCC Trip Point:

Ramping up (V5 devices): 0.6 V < trip_point_up < 1.1 V Ramping down (V5 devices): 0.5 V < trip_point_down < 1.0 V

IGLOO PLUS DC and Switching Characteristics

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- · The number of combinatorial and sequential cells used in the design
- · The internal clock frequencies
- · The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-19 on page 2-14.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-20 on page 2-14.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-20 on page 2-14. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—PTOTAL

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—PSTAT

P_{STAT} = (PDC1 or PDC2 or PDC3) + N_{BANKS} * PDC5

 N_{BANKS} is the number of I/O banks powered in the design.

Total Dynamic Power Consumption—P_{DYN}

 $P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}$

Global Clock Contribution—P_{CLOCK}

 $P_{CLOCK} = (PAC1 + N_{SPINE}*PAC2 + N_{ROW}*PAC3 + N_{S-CELL}*PAC4) * F_{CLK}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *IGLOO PLUS FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *IGLOO PLUS FPGA Fabric User's Guide*.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

PAC1, PAC2, PAC3, and PAC4 are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

 $P_{S-CELL} = N_{S-CELL} * (PAC5 + \alpha_1 / 2 * PAC6) * F_{CLK}$

 $N_{S\mbox{-}CELL}$ is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-14.

F_{CLK} is the global clock signal frequency.

Parameter	Parameter Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{HZ}	Enable to Pad delay through the Output Buffer—High to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to High
t _{LZ}	Enable to Pad delay through the Output Buffer—Low to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to Low
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to High
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to Low

Table 2-24 • I/O AC Parameter Definitions

Applies to 1.2 V DC Core Voltage

Table 2-44 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{РY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
100 µA	4 mA	STD	0.98	6.68	0.19	1.32	1.92	0.67	6.68	5.74	3.13	3.47	ns
100 µA	6 mA	STD	0.98	5.51	0.19	1.32	1.92	0.67	5.51	4.94	3.48	4.11	ns
100 µA	8 mA	STD	0.98	5.51	0.19	1.32	1.92	0.67	5.51	4.94	3.48	4.11	ns
100 µA	12 mA	STD	0.98	4.75	0.19	1.32	1.92	0.67	4.75	4.36	3.73	4.52	ns
100 µA	16 mA	STD	0.98	4.75	0.19	1.32	1.92	0.67	4.75	4.36	3.73	4.52	ns

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-45 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{eout}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	Units
100 µA	4 mA	STD	0.98	4.16	0.19	1.32	1.92	0.67	4.16	3.32	3.12	3.66	ns
100 µA	6 mA	STD	0.98	3.54	0.19	1.32	1.92	0.67	3.54	2.79	3.48	4.31	ns
100 µA	8 mA	STD	0.98	3.54	0.19	1.32	1.92	0.67	3.54	2.79	3.48	4.31	ns
100 µA	12 mA	STD	0.98	3.21	0.19	1.32	1.92	0.67	3.21	2.52	3.73	4.73	ns
100 µA	16 mA	STD	0.98	3.21	0.19	1.32	1.92	0.67	3.21	2.52	3.73	4.73	ns

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3. Software default selection highlighted in gray.

static Microsemi.

IGLOO PLUS DC and Switching Characteristics

Timing Characteristics

Applies to 1.2 V DC Core Voltage

Table 2-70 • 1.2 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	STD	0.98	8.27	0.19	1.57	2.34	0.67	7.94	6.77	3.00	3.11	ns

Notes:

 The minimum drive strength for any LVCMOS 1.2 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-71 • 1.2 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zн}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	STD	0.98	3.38	0.19	1.57	2.34	0.67	3.26	2.78	2.99	3.24	ns

Notes:

1. The minimum drive strength for any LVCMOS 1.2 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3. Software default selection highlighted in gray.

Microsemi.

IGLOO PLUS DC and Switching Characteristics

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	H, DOUT
tosud	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{oeclkq}	Clock-to-Q of the Output Enable Register	H, EOUT
toesud	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Table 2-72 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-12 on page 2-41 for more information.

Timing Characteristics 1.5 V DC Core Voltage

Table 2-82 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.89	ns
t _{SUD}	Data Setup Time for the Core Register	0.81	ns
t _{HD}	Data Hold Time for the Core Register	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.73	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.60	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.62	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.24	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.23	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.30	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.30	ns
t _{CKMPWH}	Clock Minimum Pulse Width High for the Core Register	0.56	ns
t _{CKMPWL}	Clock Minimum Pulse Width Low for the Core Register	0.56	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Microsemi.

IGLOO PLUS DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-83 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	1.61	ns
t _{SUD}	Data Setup Time for the Core Register	1.17	ns
t _{HD}	Data Hold Time for the Core Register	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	1.29	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.87	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.89	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.24	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.24	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.46	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.46	ns
t _{CKMPWH}	Clock Minimum Pulse Width High for the Core Register	0.95	ns
t _{CKMPWL}	Clock Minimum Pulse Width Low for the Core Register	0.95	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-90 • IGLOO PLUS CCC/PLL Specification

For IGLOO PLUS V2 or V5 devices, 1.5 V DC Core Supply Voltage

Parameter	Min.	Тур.	Max.	Units
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		250	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		250	MHz
Delay Increments in Programmable Delay Blocks ^{1, 2}		360 ³		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Serial Clock (SCLK) for Dynamic PLL ^{4,5}			100	MHz
Input Cycle-to-Cycle Jitter (peak magnitude)			1	ns
Acquisition Time				
LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁶				
LockControl = 0			2.5	ns
LockControl = 1			1.5	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1, 2}	1.25		15.65	ns
Delay Range in Block: Programmable Delay 2 ^{1, 2}	0.469		15.65	ns
Delay Range in Block: Fixed Delay ^{1, 2}		3.5		ns
VCO Output Peak-to-Peak Period Jitter F _{CCC_OUT} ⁷	Maximu	m Peak-to-	Peak Period	I Jitter ^{7,8,9}
	$SSO \leq 2$	$SSO \leq 4$	$SSO \leq 8$	$\text{SSO} \leq 16$
0.75 MHz to 50 MHz	0.50%	0.60%	0.80%	1.20%
50 MHz to 250 MHz	2.50%	4.00%	6.00%	12.00%

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-6 for deratings.

2. $T_J = 25^{\circ}C$, VCC = 1.5 V

- 3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.
- 4. Maximum value obtained for a STD speed grade device in Worst Case Commercial Conditions. For specific junction temperature and voltage supply, refer to Table 2-6 on page 2-6 and Table 2-7 on page 2-6 for derating values.
- 5. The AGLP030 device does not support a PLL.
- 6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.
- 7. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the per cent jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, regardless of the output divider settings.
- 8. Measurements done with LVTTL 3.3 V 8 mA I/O drive strength and high slew rate, VCC/VCCPLL = 1.425 V, VCCI = 3.3 V, VQ/PQ/TQ type of packages, 20 pF load.
- 9. SSO are outputs that are synchronous to a single clock domain and have clock-to-out times that are within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO PLUS FPGA Fabric User's Guide.

Figure 2-28 • RAM Reset

IGLOO PLUS DC and Switching Characteristics

Timing Characteristics 1.5 V DC Core Voltage

Table 2-96 • FIFO

Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.66	ns
t _{ENH}	REN, WEN Hold Time	0.13	ns
t _{BKS}	BLK Setup Time	0.30	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.63	ns
t _{DH}	Input Data (WD) Hold Time	0.20	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.77	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	1.50	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	2.94	ns
t _{WCKFF}	WCLK High to Full Flag Valid	2.79	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	10.71	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	2.90	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	10.60	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	1.68	ns
	RESET Low to Data Out Low on RD (pipelined)	1.68	ns
t _{REMRSTB}	RESET Removal	0.51	ns
t _{RECRSTB}	RESET Recovery	2.68	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.68	ns
t _{CYC}	Clock Cycle Time	6.24	ns
F _{MAX}	Maximum Frequency for FIFO	160	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO PLUS Low Power Flash FPGAs

VQ176		VQ176		VQ176		
Pin Number	AGLP060 Function	Pin Number	AGLP060 Function	Pin Number	AGLP060 Function	
1	GAA2/IO156RSB3	36	IO119RSB3	70	IO89RSB2	
2	IO155RSB3	37	GND	71	IO88RSB2	
3	GAB2/IO154RSB3	38	VCCIB3	72	IO87RSB2	
4	IO153RSB3	39	GEC1/IO116RSB3	73	IO86RSB2	
5	GAC2/IO152RSB3	40	GEB1/IO114RSB3	74	IO85RSB2	
6	GND	41	GEC0/IO115RSB3	75	IO84RSB2	
7	VCCIB3	42	GEB0/IO113RSB3	76	GND	
8	IO149RSB3	43	GEA1/IO112RSB3	77	VCCIB2	
9	IO147RSB3	44	GEA0/IO111RSB3	78	IO83RSB2	
10	IO145RSB3	45	GEA2/IO110RSB2	79	IO82RSB2	
11	IO144RSB3	46	NC	80	GDC2/IO80RSB2	
12	IO143RSB3	47	FF/GEB2/IO109R	81	IO81RSB2	
13	VCC		SB2	82	GDA2/IO78RSB2	
14	IO141RSB3	48	GEC2/IO108RSB2	83	GDB2/IO79RSB2	
15	GFC1/IO140RSB3	49	IO106RSB2	84	NC	
16	GFB1/IO138RSB3	50	IO107RSB2	85	NC	
17	GFB0/IO137RSB3	51	IO104RSB2	86	ТСК	
18	VCOMPLF	52	IO105RSB2	87	TDI	
19	GFA1/IO136RSB3	53	IO102RSB2	88	TMS	
20	VCCPLF	54	IO103RSB2	89	VPUMP	
21	GFA0/IO135RSB3	55	GND	90	TDO	
22	GND	56	VCCIB2	91	TRST	
23	VCCIB3	57	IO101RSB2	92	VJTAG	
24	GFA2/IO134RSB3	58	IO100RSB2	93	GDA1/IO76RSB1	
25	GFB2/IO133RSB3	59	IO99RSB2	94	GDC0/IO73RSB1	
26	GFC2/IO132RSB3	60	IO98RSB2	95	GDB1/IO74RSB1	
27	IO131RSB3	61	IO97RSB2	96	GDC1/IO72RSB1	
28	IO130RSB3	62	IO96RSB2	97	VCCIB1	
29	IO129RSB3	63	IO95RSB2	98	GND	
30	IO127RSB3	64	IO94RSB2	99	IO70RSB1	
31	IO126RSB3	65	IO93RSB2	100	IO69RSB1	
32	IO125RSB3	66	VCC	101	IO67RSB1	
33	IO123RSB3	67	IO92RSB2	102	IO66RSB1	
34	IO122RSB3	68	IO91RSB2	103	IO65RSB1	
35	IO121RSB3	69	IO90RSB2	104	IO63RSB1	

Package Pin Assignments

VQ176 VQ176		/Q176	
Pin Number	AGLP060 Function	Pin Number	AGLP060 Function
105	IO62RSB1	140	GBB0/IO32RSB0
106	IO61RSB1	141	GBC0/IO30RSB0
107	GCC2/IO60RSB1	142	IO29RSB0
108	GCB2/IO59RSB1	143	IO28RSB0
109	GCA2/IO58RSB1	144	IO27RSB0
110	GCA0/IO57RSB1	145	VCCIB0
111	GCA1/IO56RSB1	146	GND
112	VCCIB1	147	IO26RSB0
113	GND	148	IO25RSB0
114	GCB0/IO55RSB1	149	IO24RSB0
115	GCB1/IO54RSB1	150	IO23RSB0
116	GCC0/IO53RSB1	151	IO22RSB0
117	GCC1/IO52RSB1	152	IO21RSB0
118	IO51RSB1	153	IO20RSB0
119	IO50RSB1	154	IO19RSB0
120	VCC	155	IO18RSB0
121	IO48RSB1	156	VCC
122	IO47RSB1	157	IO17RSB0
123	IO45RSB1	158	IO16RSB0
124	IO44RSB1	159	IO15RSB0
125	IO43RSB1	160	IO14RSB0
126	VCCIB1	161	IO13RSB0
127	GND	162	IO12RSB0
128	GBC2/IO40RSB1	163	IO11RSB0
129	IO39RSB1	164	IO10RSB0
130	GBB2/IO38RSB1	165	IO09RSB0
131	IO37RSB1	166	VCCIB0
132	GBA2/IO36RSB1	167	GND
133	GBA1/IO35RSB0	168	IO07RSB0
134	NC	169	IO08RSB0
135	GBA0/IO34RSB0	170	GAC1/IO05RSB0
136	NC	171	IO06RSB0
137	GBB1/IO33RSB0	172	GAB1/IO03RSB0
138	NC	173	GAC0/IO04RSB0
139	GBC1/IO31RSB0	174	GAB0/IO02RSB0

VQ176			
Pin Number	AGLP060 Function		
175	GAA1/IO01RSB0		
176	GAA0/IO00RSB0		

CS281

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

🌜 Microsemi.
IGLOO PLUS Low Power Flash FPGAs

	CS281	CS281		
Pin Number	AGLP125 Function	Pin Number	AGLP125 Function	
R15	IO109RSB2	V10	IO133RSB2	
R16	GDA1/IO103RSB1	V11	IO127RSB2	
R18	GDB0/IO102RSB1	V12	IO123RSB2	
R19	GDC0/IO100RSB1	V13	IO120RSB2	
T1	IO171RSB3	V14	GND	
T2	GEC0/IO169RSB3	V15	IO113RSB2	
T4	GEB0/IO167RSB3	V16	GDA2/IO105RSB2	
T5	IO157RSB2	V17	TDI	
T6	IO158RSB2	V18	VCCIB2	
T7	IO148RSB2	V19	TDO	
T8	IO145RSB2	W1	GND	
Т9	IO143RSB2	W2	FF/GEB2/IO163RSB	
T10	GND		2	
T11	IO129RSB2	W3	IO155RSB2	
T12	IO126RSB2	W4	IO152RSB2	
T13	IO125RSB2	W5	IO150RSB2	
T14	IO116RSB2	W6	IO147RSB2	
T15	GDC2/IO107RSB2	W7	IO142RSB2	
T16	TMS	W8	IO139RSB2	
T18	VJTAG	W9	IO136RSB2	
T19	GDB1/IO101RSB1	W10	VCCIB2	
U1	IO160RSB2	W11	IO128RSB2	
U2	GEA1/IO166RSB3	W12	IO124RSB2	
U6	IO151RSB2	W13	IO119RSB2	
U14	IO121RSB2	W14	IO115RSB2	
U18	TRST	W15	IO114RSB2	
U19	GDA0/IO104RSB1	W16	IO110RSB2	
V1	IO159RSB2	W17	GDB2/IO106RSB2	
V2	VCCIB3	W18	ТСК	
V3	GEC2/IO162RSB2	W19	GND	
V4	IO156RSB2			
V5	IO153RSB2			
V6	GND			
V7	IO144RSB2			
V8	IO141RSB2			

V9

IO140RSB2

5 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each revision of the IGLOO PLUS datasheet.

Revision	Changes	Page
Revision 17 (December 2015)	Updated Commercial and Industrial temperature range to show junction temperature in "IGLOO PLUS Ordering Information" section and "Temperature Grade Offerings" section (SAR 73547).	1-III, 1-IV
	Removed Ambient temperature parameter in Table 2-2 • Recommended Operating Conditions ^{1,2} (SAR 73547).	2-2
	Table notes are added to Table 2-2 • Recommended Operating Conditions ^{1,2} stating that:	2-2
	 VMV pins must be connected to the corresponding VCCI pins. 	
	 Software default junction temperature range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. 	
	Updated Table 2-5 • Package Thermal Resistivities (SAR 60078).	2-6
	Added 2 mA drive strength information in the following tables (SAR 57182):	2-28.
	 Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage 	2-28, 2-28,
	 Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage 	2-29
	 Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage 	
	 Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage 	
	Fixed typo for "VQ128" section in "Package Pin Assignments" section	4-1
Revision 16 (December 2012)	The "IGLOO PLUS Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43175).	III
	The note in Table 2-90 • IGLOO PLUS CCC/PLL Specification and Table 2-91 • IGLOO PLUS CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42566).	2-61, 2-62
	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 15 (October 2012)	Values updated for IGLOO PLUS V2 or V5 Devices, 1.5 V Core Supply Voltage in Table 2-15 • Different Components Contributing to Dynamic Power Consumption in IGLOO PLUS Devices and for IGLOO PLUS V2 Devices, 1.2 V Core Supply Voltage in Table 2-17 • Different Components Contributing to Dynamic Power Consumption in IGLOO PLUS Devices (SAR 31988). Also added a new Note to the two tables.	2-10, 2-11
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 40277).	N/A
Revision 14 (September 2012)	The "Security" section was modified to clarify that Microsemi does not support read- back of programmed data.	1-2

Datasheet Information

Revision	Changes	Page
Revision 10 (Apr 2009) Product Brief v1.5 DC and Switching Characteristics Advance v0.5	The –F speed grade is no longer offered for IGLOO PLUS devices. References to it have been removed from the document. The speed grade column and note regarding –F speed grade were removed from "IGLOO PLUS Ordering Information". The "Speed Grade and Temperature Grade Matrix" section was removed.	III, IV
Revision 9 (Feb 2009) Product Brief v1.4	The "Advanced I/O" section was revised to add two bullets regarding support of wide range power supply voltage.	I
	The "I/Os with Advanced I/O Standards" section was revised to add 3.0 V wide range to the list of supported voltages. The "Wide Range I/O Support" section is new.	1-7
Revision 8 (Jan 2009) Packaging v1.5	The "CS201" pin table was revised to add a note regarding pins G1 and H1.	4-8
Revision 7 (Dec 2008) Product Brief v1.3	A note was added to IGLOO PLUS Devices: "AGLP060 in CS201 does not support the PLL."	I
	Table 2 • IGLOO PLUS FPGAs Package Size Dimensions was updated tochange the nominal size of VQ176 from 100 to 400 mm².	II
Revision 6 (Oct 2008) DC and Switching Characteristics Advance v0.4	Data was revised significantly in the following tables: Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings, STD Speed Grade, Commercial-Case Conditions: T _J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V	2-22, 2-33
	Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings, STD Speed Grade Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Table 2-50 • 2.5 LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Table 2-51 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage	
Revision 5 (Aug 2008) Product Brief v1.2	The VQ128 and VQ176 packages were added to Table 1 • IGLOO PLUS Product Family, the "I/Os Per Package ¹ " table, Table 2 • IGLOO PLUS FPGAs Package Size Dimensions, "IGLOO PLUS Ordering Information", and the "Temperature Grade Offerings" table.	I to IV
Packaging v1.4	The "VQ128" package drawing and pin table are new.	4-2
	The "VQ176" package drawing and pin table are new.	4-5
Revision 4 (Jul 2008) Product Brief v1.1 DC and Switching Characteristics Advance v0.3	As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core voltage support. The document was updated to change $1.2 \text{ V} / 1.5 \text{ V}$ to 1.2 V to 1.5 V .	N/A
Revision 3 (Jun 2008) DC and Switching Characteristics Advance v0.2	Tables have been updated to reflect default values in the software. The default I/O capacitance is 5 pF. Tables have been updated to include the LVCMOS 1.2 V I/O set.	N/A
	Table note 3 was updated in Table 2-2 • Recommended Operating Conditions ^{1,2} to add the sentence, "VCCI should be at the same voltage within a given I/O bank." References to table notes 5, 6, 7, and 8 were added. Reference to table note 3 was removed from VPUMP Operation and placed next to VCC.	2-2
	Table 2-4 Overshoot and Undershoot Limits ¹ was revised to remove "as measured on quiet I/Os" from the title. Table note 2 was revised to remove "estimated SSO density over cycles." Table note 3 was deleted.	2-3