

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detans	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	792
Total RAM Bits	-
Number of I/O	120
Number of Gates	30000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	289-TFBGA, CSBGA
Supplier Device Package	289-CSP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/aglp030v5-cs289

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

🌜 Microsemi.

IGLOO PLUS Low Power Flash FPGAs

I/Os Per Package¹

IGLOO PLUS Devices	AGLP030	AGLP060	AGLP125				
Package		Single-Ended I/Os					
CS201	120	157	_				
CS281	-	-	212				
CS289	120	157	212				
VQ128	101	-	_				
VQ176	-	137	_				

Note: When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not used as a regular I/O, the number of singleended user I/Os available is reduced by one.

Table 2 • IGLOO PLUS FPGAs Package Size Dimensions

Package	CS201	CS281	CS289	VQ128	VQ176
Length × Width (mm/mm)	8 × 8	10 × 10	14 × 14	14 × 14	20 × 20
Nominal Area (mm2)	64	100	196	196	400
Pitch (mm)	0.5	0.5	0.8	0.4	0.4
Height (mm)	0.89	1.05	1.20	1.0	1.0

IGLOO PLUS Device Status

IGLOO PLUS Device	Status
AGLP030	Production
AGLP060	Production
AGLP125	Production

The IGLOO PLUS family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the IGLOO PLUS family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/communications, computing, and avionics markets.

Firm-Error Immunity

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of IGLOO PLUS flash-based FPGAs. Once it is programmed, the flash cell configuration element of IGLOO PLUS FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Advanced Flash Technology

The IGLOO PLUS family offers many benefits, including nonvolatility and reprogrammability, through an advanced flash-based, 130 nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

IGLOO PLUS family FPGAs utilize design and process techniques to minimize power consumption in all modes of operation.

Advanced Architecture

The proprietary IGLOO PLUS architecture provides granularity comparable to standard-cell ASICs. The IGLOO PLUS device consists of five distinct and programmable architectural features (Figure 1-1 on page 1-4):

- Flash*Freeze technology
- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory[†]
- Extensive CCCs and PLLs[†]
- Advanced I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the IGLOO PLUS core tile as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC® family of third-generation-architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

[†] The AGLP030 device does not support PLL or SRAM.

IGLOO PLUS Device Family Overview

om file Save to file	···		🗖 Show BSR I
Port Name	Macro Cell	Pin Number	1/O State (Output Only)
BIST	ADLIB:INBUF	T2	1
BYPASS_IO	ADLIB:INBUF	K1	1
CLK	ADLIB:INBUF	B1	1
ENOUT	ADLIB:INBUF	J16	1
LED	ADLIB:OUTBUF	M3	0
MONITOR[0]	ADLIB:OUTBUF	B5	0
MONITOR[1]	ADLIB:OUTBUF	C7	Z
MONITOR[2]	ADLIB:OUTBUF	D9	Z
MONITOR[3]	ADLIB:OUTBUF	D7	Z
MONITOR[4]	ADLIB:OUTBUF	A11	Z
OEa	ADLIB:INBUF	E4	Z
ОЕЬ	ADLIB:INBUF	F1	Z
OSC_EN	ADLIB:INBUF	К3	Z
PAD[10]	ADLIB:BIBUF_LVCMOS33U	M8	Z
PAD[11]	ADLIB:BIBUF_LVCMOS33D	R7	Z
PAD[12]	ADLIB:BIBUF_LVCMOS33U	D11	Z
PAD[13]	ADLIB:BIBUF_LVCMOS33D	C12	Z
PAD[14]	ADLIB:BIBUF_LVCMOS33U	R6	Z

Figure 1-4 • I/O States During Programming Window

- 6. Click OK to return to the FlashPoint Programming File Generator window.
- Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation.

2 – IGLOO PLUS DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 • A	bsolute Maximum	Ratings
---------------	-----------------	---------

Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	-0.3 to 1.65	V
VJTAG	JTAG DC voltage	-0.3 to 3.75	V
VPUMP	Programming voltage	-0.3 to 3.75	V
VCCPLL	Analog power supply (PLL)	-0.3 to 1.65	V
VCCI	DC I/O buffer supply voltage	-0.3 to 3.75	V
VI ¹	I/O input voltage	–0.3 V to 3.6 V	V
T _{STG} ²	Storage temperature	-65 to +150	°C
T _J ²	Junction temperature	+125	°C

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

2. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2.

IGLOO PLUS DC and Switching Characteristics

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- · The number of combinatorial and sequential cells used in the design
- · The internal clock frequencies
- · The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-19 on page 2-14.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-20 on page 2-14.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-20 on page 2-14. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—PTOTAL

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—PSTAT

P_{STAT} = (PDC1 or PDC2 or PDC3) + N_{BANKS} * PDC5

 N_{BANKS} is the number of I/O banks powered in the design.

Total Dynamic Power Consumption—P_{DYN}

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}

Global Clock Contribution—P_{CLOCK}

 $P_{CLOCK} = (PAC1 + N_{SPINE}*PAC2 + N_{ROW}*PAC3 + N_{S-CELL}*PAC4) * F_{CLK}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *IGLOO PLUS FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *IGLOO PLUS FPGA Fabric User's Guide*.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

PAC1, PAC2, PAC3, and PAC4 are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

 $P_{S-CELL} = N_{S-CELL} * (PAC5 + \alpha_1 / 2 * PAC6) * F_{CLK}$

 $N_{S\mbox{-}CELL}$ is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-14.

F_{CLK} is the global clock signal frequency.

Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R _{(WEAK F} (<u>(</u>		${\sf R}_{({\sf WEAK PULL-DOWN})}^2$ (Ω)		
VCCI	Min.	Max.	Min.	Max.	
3.3 V	10 K	45 K	10 K	45 K	
3.3 V (wide range I/Os)	10 K	45 K	10 K	45 K	
2.5 V	11 K	55 K	12 K	74 K	
1.8 V	18 K	70 K	17 K	110 K	
1.5 V	19 K	90 K	19 K	140 K	
1.2 V	25 K	110 K	25 K	150 K	
1.2 V (wide range I/Os)	19 K	110 K	19 K	150 K	

Notes:

R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_(WEAK PULL-UP-MIN)
 R_(WEAK PULLDOWN-MAX) = (VOLspec) / I_(WEAK PULLDOWN-MIN)

Table 2-30 • I/O Short Currents IOSH/IOSL

	Drive Strength	IOSL (mA)*	IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25
	4 mA	27	25
	6 mA	54	51
	8 mA	54	51
	12 mA	109	103
	16 mA	109	103
3.3 V LVCMOS Wide Range	100 µA	Same as equivalent	software default drive
2.5 V LVCMOS	2 mA	18	16
	4 mA	18	16
Γ	6 mA	37	32
	8 mA	37	32
	12 mA	74	65
1.8 V LVCMOS	2 mA	11	9
	4 mA	22	17
	6 mA	44	35
	8 mA	44	35
1.5 V LVCMOS	2 mA	16	13
F	4 mA	33	25
1.2 V LVCMOS	2 mA	26	20
1.2 V LVCMOS Wide Range	100 µA	26	20

Note: $^{*}T_{J} = 100^{\circ}C$

1.2 V LVCMOS Wide Range

1.2 V LVCMOS Range ¹	Wide		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ³	IIH ⁴
Drive Strength	Equivalent Software Default Drive Strength Option ²	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ⁵	Max mA ⁵	μA ⁶	μA ⁶
100 µA	2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	20	26	10	10

Table 2-68 • Minimum and Maximum DC Input and Output Levels

Notes:

1. Applicable to V2 devices only.

2. The minimum drive strength for any LVCMOS 1.2 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

3. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

5. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

6. Currents are measured at 85°C junction temperature.

7. Software default selection highlighted in gray.

Table 2-69 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.2	0.6	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

Figure 2-13 • Timing Model of the Registered I/O Buffers with Asynchronous Clear

🔨 Microsemi

IGLOO PLUS DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-75 • Input Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.66	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.43	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.86	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.86	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.24	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.24	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.19	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.19	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.31	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The IGLOO PLUS library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *Fusion, IGLOO/e, and ProASIC3/ E Macro Library Guide*.

Figure 2-17 • Sample of Combinatorial Cells

Microsemi.

IGLOO PLUS DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-83 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	1.61	ns
t _{SUD}	Data Setup Time for the Core Register	1.17	ns
t _{HD}	Data Hold Time for the Core Register	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	1.29	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.87	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.89	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.24	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.24	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.46	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.46	ns
t _{CKMPWH}	Clock Minimum Pulse Width High for the Core Register	0.95	ns
t _{CKMPWL}	Clock Minimum Pulse Width Low for the Core Register	0.95	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Global Resource Characteristics

AGLP125 Clock Tree Topology

Clock delays are device-specific. Figure 2-21 is an example of a global tree used for clock routing. The global tree presented in Figure 2-21 is driven by a CCC located on the west side of the AGLP125 device. It is used to drive all D-flip-flops in the device.

Figure 2-21 • Example of Global Tree Use in an AGLP125 Device for Clock Routing

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-90 • IGLOO PLUS CCC/PLL Specification

For IGLOO PLUS V2 or V5 devices, 1.5 V DC Core Supply Voltage

Parameter	Min.	Тур.	Max.	Units	
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		250	MHz	
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		250	MHz	
Delay Increments in Programmable Delay Blocks ^{1, 2}		360 ³		ps	
Number of Programmable Values in Each Programmable Delay Block			32		
Serial Clock (SCLK) for Dynamic PLL ^{4,5}			100	MHz	
Input Cycle-to-Cycle Jitter (peak magnitude)			1	ns	
Acquisition Time					
LockControl = 0			300	μs	
LockControl = 1			6.0	ms	
Tracking Jitter ⁶					
LockControl = 0			2.5	ns	
LockControl = 1			1.5	ns	
Output Duty Cycle	48.5		51.5	%	
Delay Range in Block: Programmable Delay 1 ^{1, 2}	1.25		15.65	ns	
Delay Range in Block: Programmable Delay 2 ^{1, 2}	0.469		15.65	ns	
Delay Range in Block: Fixed Delay ^{1, 2}		3.5		ns	
VCO Output Peak-to-Peak Period Jitter F _{CCC OUT} ⁷		Maximum Peak-to-Peak Period Jitter ^{7,8,9}			
_	$SSO \leq 2$	$SSO \leq 4$	$SSO \leq 8$	$SSO \leq 16$	
0.75 MHz to 50 MHz	0.50%	0.60%	0.80%	1.20%	
50 MHz to 250 MHz	2.50%	4.00%	6.00%	12.00%	

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-6 for deratings.

2. $T_J = 25^{\circ}C$, VCC = 1.5 V

- 3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.
- 4. Maximum value obtained for a STD speed grade device in Worst Case Commercial Conditions. For specific junction temperature and voltage supply, refer to Table 2-6 on page 2-6 and Table 2-7 on page 2-6 for derating values.
- 5. The AGLP030 device does not support a PLL.
- 6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.
- 7. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the per cent jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, regardless of the output divider settings.
- 8. Measurements done with LVTTL 3.3 V 8 mA I/O drive strength and high slew rate, VCC/VCCPLL = 1.425 V, VCCI = 3.3 V, VQ/PQ/TQ type of packages, 20 pF load.
- 9. SSO are outputs that are synchronous to a single clock domain and have clock-to-out times that are within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO PLUS FPGA Fabric User's Guide.

static Microsemi.

IGLOO PLUS DC and Switching Characteristics

Table 2-91 • IGLOO PLUS CCC/PLL Specification For IGLOO PLUS V2 Devices, 1.2 V DC Core Supply Voltage

Parameter	Min.	Тур.	Max.	Units
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		160	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		160	MHz
Delay Increments in Programmable Delay Blocks ^{1, 2}		580 ³		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Serial Clock (SCLK) for Dynamic PLL ^{4,5}			60	MHz
Input Cycle-to-Cycle Jitter (peak magnitude)			.25	ns
Acquisition Time				
LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁶				
LockControl = 0			4	ns
LockControl = 1			3	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1, 2}	2.3		20.86	ns
Delay Range in Block: Programmable Delay 2 ^{1, 2}	0.863		20.86	ns
Delay Range in Block: Fixed Delay ^{1, 2}		5.7		ns
VCO Output Peak-to-Peak Period Jitter F _{CCC_OUT} ⁷	Maximum Peak-to-Peak Period Jitter ^{7,8,9}			
	$SSO \leq 2$	$\text{SSO} \leq 4$	$\text{SSO} \leq 8$	$\text{SSO} \leq 16$
0.75 MHz to 50 MHz	0.50%	1.20%	2.00%	3.00%
50 MHz to 160 MHz	2.50%	5.00%	7.00%	15.00%

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-6 for deratings.

2. $T_J = 25^{\circ}C$, VCC = 1.2 V

- 3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the online help associated with the core for more information.
- 4. Maximum value obtained for a STD speed grade device in Worst Case Commercial Conditions.For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 and Table 2-7 on page 2-6 for derating values.

5. The AGLP030 device does not support PLL.

- 6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.
- 7. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the per cent jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, regardless of the output divider settings.
- 8. Measurements are done with LVTTL 3.3 V, 8 mA, I/O drive strength and high slew rate. VCC/VCCPLL = 1.14 V, VCCI = 3.3 V, VQ/PQ/TQ type of packages, 20 pF load.
- 9. SSO are outputs that are synchronous to a single clock domain, and have their clock-to-out times within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO PLUS FPGA Fabric User's Guide

🌜 Microsemi.

IGLOO PLUS DC and Switching Characteristics

Embedded SRAM and FIFO Characteristics

RAM4K9 **RAM512X18** RADDR8 **RD17** ADDRA11 DOUTA8 RADDR7 RD16 DOUTA7 ADDRA10 -٠ . . ٠ DOUTAO ADDRA0 RADDR0 RD0 DINA8 DINA7 . RW1 RW0 DINA0 WIDTHA1 WIDTHA0 PIPE PIPEA WMODEA BLKA d REN WENA O RCLK CLKA ADDRB11 DOUTB8 WADDR8 ADDRB10 DOUTB7 WADDR7 ٠ ٠ ADDRB0 DOUTBO WADDR0 WD17 WD16 DINB8 DINB7 • WD0 . DINB0 WW1 ŴŴŎ WIDTHB1 WIDTHB0 PIPEB WMODEB BLKB -d WEN WENB d **DWCLK CLKB** RESET RESET

SRAM

Figure 2-23 • RAM Models

IGLOO PLUS DC and Switching Characteristics

Timing Characteristics 1.5 V DC Core Voltage

Table 2-96 • FIFO

Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.66	ns
t _{ENH}	REN, WEN Hold Time	0.13	ns
t _{BKS}	BLK Setup Time	0.30	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.63	ns
t _{DH}	Input Data (WD) Hold Time	0.20	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	2.77	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	1.50	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	2.94	ns
t _{WCKFF}	WCLK High to Full Flag Valid	2.79	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	10.71	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	2.90	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	10.60	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	1.68	ns
	RESET Low to Data Out Low on RD (pipelined)	1.68	ns
t _{REMRSTB}	RESET Removal	0.51	ns
t _{RECRSTB}	RESET Recovery	2.68	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.68	ns
t _{CYC}	Clock Cycle Time	6.24	ns
F _{MAX}	Maximum Frequency for FIFO	160	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

CS281

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

IGLOO PLUS Low Power Flash FPGAs

CS289		CS289		CS289		
Pin Number	AGLP030 Function	Pin Number	AGLP030 Function	Pin Number	AGLP030 Function	
A1	IO03RSB0	C4	NC	E7	IO06RSB0	
A2	NC	C5	VCCIB0	E8	IO11RSB0	
A3	NC	C6	IO09RSB0	E9	IO22RSB0	
A4	GND	C7	IO13RSB0	E10	IO26RSB0	
A5	IO10RSB0	C8	IO15RSB0	E11	VCCIB0	
A6	IO14RSB0	C9	IO21RSB0	E12	NC	
A7	IO16RSB0	C10	GND	E13	IO33RSB0	
A8	IO18RSB0	C11	IO29RSB0	E14	IO36RSB1	
A9	GND	C12	NC	E15	IO38RSB1	
A10	IO23RSB0	C13	NC	E16	VCCIB1	
A11	IO27RSB0	C14	NC	E17	NC	
A12	NC	C15	GND	F1	IO111RSB3	
A13	NC	C16	IO34RSB0	F2	NC	
A14	GND	C17	NC	F3	IO116RSB3	
A15	NC	D1	NC	F4	VCCIB3	
A16	NC	D2	IO119RSB3	F5	IO117RSB3	
A17	IO30RSB0	D3	GND	F6	NC	
B1	IO01RSB0	D4	IO02RSB0	F7	NC	
B2	GND	D5	NC	F8	IO08RSB0	
B3	NC	D6	NC	F9	IO12RSB0	
B4	NC	D7	NC	F10	NC	
B5	IO07RSB0	D8	GND	F11	NC	
B6	NC	D9	IO20RSB0	F12	NC	
B7	VCCIB0	D10	IO25RSB0	F13	NC	
B8	IO17RSB0	D11	NC	F14	GND	
B9	IO19RSB0	D12	NC	F15	NC	
B10	IO24RSB0	D13	GND	F16	IO37RSB1	
B11	IO28RSB0	D14	IO32RSB0	F17	IO41RSB1	
B12	VCCIB0	D15	IO35RSB0	G1	IO110RSB3	
B13	NC	D16	NC	G2	GND	
B14	NC	D17	NC	G3	IO113RSB3	
B15	NC	E1	VCCIB3	G4	NC	
B16	IO31RSB0	E2	IO114RSB3	G5	NC	
B17	GND	E3	IO115RSB3	G6	NC	
C1	NC	E4	IO118RSB3	G7	GND	
C2	IO00RSB0	E5	IO05RSB0	G8	GND	
C3	IO04RSB0	E6	NC	G9	VCC	

stati Microsemi.
IGLOO PLUS Low Power Flash FPGAs

(CS289	CS289		
Pin Number	AGLP030 Function	Pin Number	AGLP030 Function	
P2	NC	T5	NC	
P3	GND	Т6	IO84RSB2	
P4	NC	T7	IO81RSB2	
P5	NC	Т8	IO76RSB2	
P6	IO87RSB2	Т9	VCCIB2	
P7	IO80RSB2	T10	IO69RSB2	
P8	GND	T11	IO65RSB2	
P9	IO72RSB2	T12	IO64RSB2	
P10	IO67RSB2	T13	NC	
P11	IO61RSB2	T14	GND	
P12	NC	T15	NC	
P13	VCCIB2	T16	TDI	
P14	NC	T17	TDO	
P15	IO60RSB2	U1	FF/IO90RSB2	
P16	IO62RSB2	U2	GND	
P17	VJTAG	U3	NC	
R1	GND	U4	IO88RSB2	
R2	IO91RSB2	U5	IO86RSB2	
R3	NC	U6	IO82RSB2	
R4	NC	U7	GND	
R5	NC	U8	IO75RSB2	
R6	VCCIB2	U9	IO73RSB2	
R7	IO83RSB2	U10	IO68RSB2	
R8	IO78RSB2	U11	IO66RSB2	
R9	IO74RSB2	U12	GND	
R10	IO70RSB2	U13	NC	
R11	GND	U14	NC	
R12	NC	U15	NC	
R13	NC	U16	ТСК	
R14	NC	U17	VPUMP	
R15	NC	· ۱		
R16	TMS	1		
R17	TRST	1		
T1	IO92RSB3	1		
T2	IO89RSB2	1		
T3	NC	1		
		4		

T4

GND

IGLOO PLUS Low Power Flash FPGAs

Revision	Changes	Page
Revision 12 (continued)	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—P _{CLOCK} " section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>IGLOO PLUS FPGA Fabric User's Guide</i> (SAR 34733).	2-12
	t_{DOUT} was corrected to t_{DIN} in Figure 2-4 \bullet Input Buffer Timing Model and Delays (example) (SAR 37107).	2-16
	The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34887).	2-27
	Minimum pulse width High and Low values were added to the tables in the "Global Tree Timing Characteristics" section. The maximum frequency for global clock parameter was removed from these tables because a frequency on the global is only an indication of what the global network can do. There are other limiters such as the SRAM, I/Os, and PLL. SmartTime software should be used to determine the design frequency (SAR 36963).	2-58
	Table 2-90 • IGLOO PLUS CCC/PLL Specification and Table 2-91 • IGLOO PLUS CCC/PLL Specification were updated. A note was added to both tables indicating that when the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available (SAR 34820).	2-61, 2-62
	The value for serial clock was missing from these tables and has been restored. The value and units for input cycle-to-cycle jitter were incorrect and have been restored. The note to Table 2-90 • IGLOO PLUS CCC/PLL Specification giving specifications for which measurements done was corrected from VCC/VCCPLL = 1.14 V to VCC/VCCPLL = 1.425 V. The Delay Range in Block: Programmable Delay 2 value in Table 2-91 • IGLOO PLUS CCC/PLL Specification was corrected from 0.025 to 0.863 (SAR 37058).	
	Figure 2-28 • Write Access after Read onto Same Address was deleted. Reference was made to a new application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 34868).	2-65,
	The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" tables, Figure 2-32 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SAR 35748).	2-68, 2-74, 2-76
	The "Pin Descriptions and Packaging" chapter has been added (SAR 34769).	3-1
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 34769).	4-1
Revision 11 (July 2010)	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "IGLOO PLUS Device Status" table indicates the status for each device in the family.	N/A
	The "Reprogrammable Flash Technology" section was revised to add "250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System Performance."	I
	The "I/Os with Advanced I/O Standards" section was revised to add definitions for hot-swap and cold-sparing.	1-6
	Conditional statements regarding hot insertion were removed from the description of VI in Table 2-1 • Absolute Maximum Ratings, since all IGLOO PLUS devices are hot insertion enabled.	2-1