

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	
Number of Logic Elements/Cells	792
Total RAM Bits	-
Number of I/O	120
Number of Gates	30000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	289-TFBGA, CSBGA
Supplier Device Package	289-CSP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/aglp030v5-csg289i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

🌜 Microsemi.

IGLOO PLUS Low Power Flash FPGAs

I/Os Per Package¹

IGLOO PLUS Devices	AGLP030	AGLP060	AGLP125							
Package		Single-Ended I/Os								
CS201	120	157	_							
CS281	-	-	212							
CS289	120	157	212							
VQ128	101	-	_							
VQ176	-	137	_							

Note: When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not used as a regular I/O, the number of singleended user I/Os available is reduced by one.

Table 2 • IGLOO PLUS FPGAs Package Size Dimensions

Package	CS201	CS281	CS289	VQ128	VQ176
Length × Width (mm/mm)	8 × 8	10 × 10	14 × 14	14 × 14	20 × 20
Nominal Area (mm2)	64	100	196	196	400
Pitch (mm)	0.5	0.5	0.8	0.4	0.4
Height (mm)	0.89	1.05	1.20	1.0	1.0

IGLOO PLUS Device Status

IGLOO PLUS Device	Status
AGLP030	Production
AGLP060	Production
AGLP125	Production

Note: *Not supported by AGLP030 devices

Figure 1-1 • IGLOO PLUS Device Architecture Overview with Four I/O Banks (AGLP030, AGLP060, and AGLP125)

Flash*Freeze Technology

The IGLOO PLUS device has an ultra-low power static mode, called Flash*Freeze mode, which retains all SRAM and register information and can still quickly return to normal operation. Flash*Freeze technology enables the user to quickly (within 1 μ s) enter and exit Flash*Freeze mode by activating the Flash*Freeze pin while all power supplies are kept at their original values. In addition, I/Os and global I/Os can still be driven and can be toggling without impact on power consumption, clocks can still be driven or can be toggling without impact on power consumption, and the device retains all core registers, SRAM information, and I/O states. I/Os can be individually configured to either hold their previous state or be tristated during Flash*Freeze mode. Alternatively, they can be set to a certain state using weak pull-up or pull-down I/O attribute configuration. No power is consumed by the I/O banks, clocks, JTAG pins, or PLL, and the device consumes as little as 5 μ W in this mode.

Flash*Freeze technology allows the user to switch to Active mode on demand, thus simplifying the power management of the device.

The Flash*Freeze pin (active low) can be routed internally to the core to allow the user's logic to decide when it is safe to transition to this mode. Refer to Figure 1-2 for an illustration of entering/exiting Flash*Freeze mode. It is also possible to use the Flash*Freeze pin as a regular I/O if Flash*Freeze mode usage is not planned.

Figure 1-2 • IGLOO PLUS Flash*Freeze Mode

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C) ²	Maximum Operating Junction Temperature T _J (°C) ²
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature ¹

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating conditions and absolute limits.

Table 2-4 • Overshoot and Undershoot Limits

vcci	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

Notes:

1. Based on reliability requirements at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every IGLOO PLUS device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4.

There are five regions to consider during power-up.

IGLOO PLUS I/Os are activated only if ALL of the following three conditions are met:

- 1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 and Figure 2-2 on page 2-5).
- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up (V5 devices): 0.6 V < trip_point_up < 1.2 V Ramping down (V5 devices): 0.5 V < trip_point_down < 1.1 V Ramping up (V2 devices): 0.75 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.65 V < trip_point_down < 0.95 V

VCC Trip Point:

Ramping up (V5 devices): 0.6 V < trip_point_up < 1.1 V Ramping down (V5 devices): 0.5 V < trip_point_down < 1.0 V

IGLOO PLUS DC and Switching Characteristics

Ramping up (V2 devices): 0.65 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.55 V < trip_point_down < 0.95 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels (see Figure 2-1 and Figure 2-2 on page 2-5 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels ($0.75 V \pm 0.25 V$ for V5 devices, and $0.75 V \pm 0.2 V$ for V2 devices), the PLL output lock signal goes Low and/or the output clock is lost. Refer to the "Brownout Voltage" section in the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *IGLOO PLUS Device Family User's Guide* for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers
- 3. Output buffers, after 200 ns delay from input buffer activation

To make sure the transition from input buffers to output buffers is clean, ensure that there is no path longer than 100 ns from input buffer to output buffer in your design.

Figure 2-1 • V5 Devices – I/O State as a Function of VCCI and VCC Voltage Levels

Microsemi

IGLOO PLUS DC and Switching Characteristics

Figure 2-4 • Input Buffer Timing Model and Delays (example)

IGLOO PLUS DC and Switching Characteristics

Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example)

IGLOO PLUS DC and Switching Characteristics

The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-31 • Duration of Short Circuit Event before Failure

Temperature	Time before Failure
-40°C	> 20 years
0°C	> 20 years
25°C	> 20 years
70°C	5 years
85°C	2 years
100°C	6 months

Table 2-32 • Schmitt Trigger Input Hysteresis Hysteresis Voltage Value (Typ.) for Schmitt Mode Input Buffers

Input Buffer Configuration	Hysteresis Value (typ.)
3.3 V LVTTL/LVCMOS (Schmitt trigger mode)	240 mV
2.5 V LVCMOS (Schmitt trigger mode)	140 mV
1.8 V LVCMOS (Schmitt trigger mode)	80 mV
1.5 V LVCMOS (Schmitt trigger mode)	60 mV
1.2 V LVCMOS (Schmitt trigger mode)	40 mV

Table 2-33 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer			Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)	Reliability
LVTTL/LVCMOS disabled)	(Schmitt	trigger	No requirement	10 ns *	20 years (100°C)
LVTTL/LVCMOS enabled)	(Schmitt	trigger	No requirement	No requirement, but input noise voltage cannot exceed Schmitt hysteresis.	20 years (100°C)

Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

			5					•				
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.98	2.92	0.19	0.99	1.37	0.67	2.97	2.38	2.25	2.70	ns
4 mA	STD	0.98	2.92	0.19	0.99	1.37	0.67	2.97	2.38	2.25	2.70	ns
6 mA	STD	0.98	2.52	0.19	0.99	1.37	0.67	2.56	2.03	2.49	3.11	ns
8 mA	STD	0.98	2.52	0.19	0.99	1.37	0.67	2.56	2.03	2.49	3.11	ns
12 mA	STD	0.98	2.31	0.19	0.99	1.37	0.67	2.34	1.86	2.65	3.38	ns
16 mA	STD	0.98	2.31	0.19	0.99	1.37	0.67	2.34	1.86	2.65	3.38	ns

Notes:

1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2. Software default selection highlighted in gray

3.3 V LVCMOS Wide Range

Table 2-40 • Minimum and Maximum DC Input and Output Levels

3.3 V LVCMOS Wide Range	Equivalent Software Default Drive Strength Option ¹		11	v	IH	VOL	VОН	IOL	юн	IOSL	IOSH	IIL ²	IIH ³
Drive Strength		Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μA	μA	Max. μA ⁴	Max. μA ⁴	μA ⁵	μA ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.4	VDD - 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.4	VDD - 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.4	VDD - 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.4	VDD - 0.2	100	100	103	109	10	10
100 µA	16 mA	-0.3	0.8	2	3.6	0.4	VDD – 0.2	100	100	103	109	10	10

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < V CCI. Input current is larger when operating outside recommended ranges.

4. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Table 2-41 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	1.4	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

1.2 V LVCMOS Wide Range

1.2 V LVCMOS Range ¹	Wide		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ³	IIH ⁴
Drive Strength	Equivalent Software Default Drive Strength Option ²	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ⁵	Max mA ⁵	μA ⁶	μA ⁶
100 µA	2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	20	26	10	10

Table 2-68 • Minimum and Maximum DC Input and Output Levels

Notes:

1. Applicable to V2 devices only.

2. The minimum drive strength for any LVCMOS 1.2 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

3. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

5. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

6. Currents are measured at 85°C junction temperature.

7. Software default selection highlighted in gray.

Table 2-69 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.2	0.6	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

Microsemi.

IGLOO PLUS DC and Switching Characteristics

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	H, DOUT
tosud	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}		
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	H, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Table 2-72 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-12 on page 2-41 for more information.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-80 • Combinatorial Cell Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	0.72	ns
AND2	$Y = A \cdot B$	t _{PD}	0.86	ns
NAND2	Y = !(A · B)	t _{PD}	1.00	ns
OR2	Y = A + B	t _{PD}	1.26	ns
NOR2	Y = !(A + B)	t _{PD}	1.16	ns
XOR2	Y = A 🕀 B	t _{PD}	1.46	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	1.47	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	2.12	ns
MUX2	Y = A !S + B S	t _{PD}	1.24	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	1.40	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-81 • Combinatorial Cell Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	1.26	ns
AND2	$Y = A \cdot B$	t _{PD}	1.46	ns
NAND2	Y = !(A ⋅ B)	t _{PD}	1.78	ns
OR2	Y = A + B	t _{PD}	2.47	ns
NOR2	Y = !(A + B)	t _{PD}	2.17	ns
XOR2	Y = A 🕀 B	t _{PD}	2.62	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	2.66	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	3.77	ns
MUX2	Y = A !S + B S	t _{PD}	2.20	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	2.49	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Global Resource Characteristics

AGLP125 Clock Tree Topology

Clock delays are device-specific. Figure 2-21 is an example of a global tree used for clock routing. The global tree presented in Figure 2-21 is driven by a CCC located on the west side of the AGLP125 device. It is used to drive all D-flip-flops in the device.

Figure 2-21 • Example of Global Tree Use in an AGLP125 Device for Clock Routing

IGLOO PLUS DC and Switching Characteristics

Table 2-88 • AGLP060 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		St	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.02	2.43	ns
t _{RCKH}	Input High Delay for Global Clock	2.09	2.65	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.56	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-89 • AGLP125 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		Si	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.08	2.54	ns
t _{RCKH}	Input High Delay for Global Clock	2.15	2.77	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.62	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

🌜 Microsemi.

IGLOO PLUS DC and Switching Characteristics

Embedded SRAM and FIFO Characteristics

RAM4K9 **RAM512X18** RADDR8 **RD17** ADDRA11 DOUTA8 RADDR7 RD16 DOUTA7 ADDRA10 -٠ . . ٠ DOUTAO ADDRA0 RADDR0 RD0 DINA8 DINA7 . RW1 RW0 DINA0 WIDTHA1 WIDTHA0 PIPE PIPEA WMODEA BLKA d REN WENA O RCLK CLKA ADDRB11 DOUTB8 WADDR8 ADDRB10 DOUTB7 WADDR7 ٠ ٠ ADDRB0 DOUTBO WADDR0 WD17 WD16 DINB8 DINB7 • WD0 . DINB0 WW1 ŴŴŎ WIDTHB1 WIDTHB0 PIPEB WMODEB BLKB -d WEN WENB d **DWCLK CLKB** RESET RESET

SRAM

Figure 2-23 • RAM Models

Pin Descriptions and Packaging

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on IGLOO PLUS devices.

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

IGLOO PLUS devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

GL

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO PLUS FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the I/O Structure chapter of the IGLOO PLUS FPGA Fabric User's Guide for an explanation of the naming of global pins.

Flash*Freeze Mode Activation Pin

The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

Table 3-1 shows the Flash*Freeze pin location on the available packages for IGLOO and ProASIC3L devices. The Flash*Freeze pin location is independent of device (except for a PQ208 package), allowing migration to larger or smaller IGLOO devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology and Low Power Modes" chapter of the *IGLOO PLUS Device Family User's Guide* for more information on I/O states during Flash*Freeze mode.

Table 3-1 • Flash*Freeze Pin Location in IGLOO PLUS Devices

FF

Package	Flash*Freeze Pin
CS281	W2
CS201	R4
CS289	U1
VQ128	34
VQ176	47

IGLOO PLUS Low Power Flash FPGAs

V	VQ176		/Q176	V	/Q176
Pin Number	AGLP060 Function	Pin Number	AGLP060 Function	Pin Number	AGLP060 Function
1	GAA2/IO156RSB3	36	IO119RSB3	70	IO89RSB2
2	IO155RSB3	37	GND	71	IO88RSB2
3	GAB2/IO154RSB3	38	VCCIB3	72	IO87RSB2
4	IO153RSB3	39	GEC1/IO116RSB3	73	IO86RSB2
5	GAC2/IO152RSB3	40	GEB1/IO114RSB3	74	IO85RSB2
6	GND	41	GEC0/IO115RSB3	75	IO84RSB2
7	VCCIB3	42	GEB0/IO113RSB3	76	GND
8	IO149RSB3	43	GEA1/IO112RSB3	77	VCCIB2
9	IO147RSB3	44	GEA0/IO111RSB3	78	IO83RSB2
10	IO145RSB3	45	GEA2/IO110RSB2	79	IO82RSB2
11	IO144RSB3	46	NC	80	GDC2/IO80RSB2
12	IO143RSB3	47	FF/GEB2/IO109R	81	IO81RSB2
13	VCC		SB2	82	GDA2/IO78RSB2
14	IO141RSB3	48	GEC2/IO108RSB2	83	GDB2/IO79RSB2
15	GFC1/IO140RSB3	49	IO106RSB2	84	NC
16	GFB1/IO138RSB3	50	IO107RSB2	85	NC
17	GFB0/IO137RSB3	51	IO104RSB2	86	тск
18	VCOMPLF	52	IO105RSB2	87	TDI
19	GFA1/IO136RSB3	53	IO102RSB2	88	TMS
20	VCCPLF	54	IO103RSB2	89	VPUMP
21	GFA0/IO135RSB3	55	GND	90	TDO
22	GND	56	VCCIB2	91	TRST
23	VCCIB3	57	IO101RSB2	92	VJTAG
24	GFA2/IO134RSB3	58	IO100RSB2	93	GDA1/IO76RSB1
25	GFB2/IO133RSB3	59	IO99RSB2	94	GDC0/IO73RSB1
26	GFC2/IO132RSB3	60	IO98RSB2	95	GDB1/IO74RSB1
27	IO131RSB3	61	IO97RSB2	96	GDC1/IO72RSB1
28	IO130RSB3	62	IO96RSB2	97	VCCIB1
29	IO129RSB3	63	IO95RSB2	98	GND
30	IO127RSB3	64	IO94RSB2	99	IO70RSB1
31	IO126RSB3	65	IO93RSB2	100	IO69RSB1
32	IO125RSB3	66	VCC	101	IO67RSB1
33	IO123RSB3	67	IO92RSB2	102	IO66RSB1
34	IO122RSB3	68	IO91RSB2	103	IO65RSB1
35	IO121RSB3	69	IO90RSB2	104	IO63RSB1

IGLOO PLUS Low Power Flash FPGAs

	CS281		CS281		CS281
Pin Number	AGLP125 Function	Pin Number	AGLP125 Function	Pin Number	AGLP125 Function
A1	GND	B18	VCCIB1	E13	IO48RSB0
A2	GAB0/IO02RSB0	B19	IO64RSB1	E14	GBB1/IO60RSB0
A3	GAC1/IO05RSB0	C1	GAB2/IO209RSB3	E15	IO53RSB0
A4	IO09RSB0	C2	IO210RSB3	E16	IO69RSB1
A5	IO13RSB0	C6	IO12RSB0	E18	IO68RSB1
A6	IO15RSB0	C14	IO47RSB0	E19	IO71RSB1
A7	IO18RSB0	C18	IO54RSB0	F1	IO198RSB3
A8	IO23RSB0	C19	GBB2/IO65RSB1	F2	GND
A9	IO25RSB0	D1	IO206RSB3	F3	IO201RSB3
A10	VCCIB0	D2	IO208RSB3	F4	IO204RSB3
A11	IO33RSB0	D4	GAA0/IO00RSB0	F5	IO16RSB0
A12	IO41RSB0	D5	GAA1/IO01RSB0	F15	IO50RSB0
A13	IO43RSB0	D6	IO10RSB0	F16	IO74RSB1
A14	IO46RSB0	D7	IO17RSB0	F17	IO72RSB1
A15	IO55RSB0	D8	IO24RSB0	F18	GND
A16	IO56RSB0	D9	IO27RSB0	F19	IO73RSB1
A17	GBC1/IO58RSB0	D10	GND	G1	IO195RSB3
A18	GBA0/IO61RSB0	D11	IO31RSB0	G2	IO200RSB3
A19	GND	D12	IO40RSB0	G4	IO202RSB3
B1	GAA2/IO211RSB3	D13	IO49RSB0	G5	IO08RSB0
B2	VCCIB0	D14	IO45RSB0	G7	GAC2/IO207RSB3
B3	GAB1/IO03RSB0	D15	GBB0/IO59RSB0	G8	VCCIB0
B4	GAC0/IO04RSB0	D16	GBA2/IO63RSB1	G9	IO26RSB0
B5	IO11RSB0	D18	GBC2/IO67RSB1	G10	IO35RSB0
B6	GND	D19	IO66RSB1	G11	IO44RSB0
B7	IO21RSB0	E1	IO203RSB3	G12	VCCIB0
B8	IO22RSB0	E2	IO205RSB3	G13	IO51RSB0
B9	IO28RSB0	E4	IO07RSB0	G15	IO70RSB1
B10	IO32RSB0	E5	IO06RSB0	G16	IO75RSB1
B11	IO36RSB0	E6	IO14RSB0	G18	GCC0/IO80RSB1
B12	IO39RSB0	E7	IO20RSB0	G19	GCB1/IO81RSB1
B13	IO42RSB0	E8	IO29RSB0	H1	GFB0/IO191RSB3
B14	GND	E9	IO34RSB0	H2	IO196RSB3
B15	IO52RSB0	E10	IO30RSB0	H4	GFC1/IO194RSB3
B16	GBC0/IO57RSB0	E11	IO37RSB0	H5	GFB1/IO192RSB3
B17	GBA1/IO62RSB0	E12	IO38RSB0	H7	VCCIB3

IGLOO PLUS Low Power Flash FPGAs

	CS289		CS289		CS289		
Pin Number	AGLP125 Function	Pin Number	AGLP125 Function	Pin Number	AGLP125 Function		
A1	GAB1/IO03RSB0	C5	VCCIB0	E9	IO32RSB0		
A2	IO11RSB0	C6	IO17RSB0	E10	IO36RSB0		
A3	IO08RSB0	C7	IO23RSB0	E11	VCCIB0		
A4	GND	C8	IO27RSB0	E12	IO56RSB0		
A5	IO19RSB0	C9	IO33RSB0	E13	GBB1/IO60RSB0		
A6	IO24RSB0	C10	GND	E14	GBA2/IO63RSB1		
A7	IO26RSB0	C11	IO43RSB0	E15	GBB2/IO65RSB1		
A8	IO30RSB0	C12	IO45RSB0	E16	VCCIB1		
A9	GND	C13	IO50RSB0	E17	IO73RSB1		
A10	IO35RSB0	C14	IO52RSB0	F1	GFC1/IO194RSB3		
A11	IO38RSB0	C15	GND	F2	IO196RSB3		
A12	IO40RSB0	C16	GBA0/IO61RSB0	F3	IO202RSB3		
A13	IO42RSB0	C17	IO68RSB1	F4	VCCIB3		
A14	GND	D1	IO204RSB3	F5	GAB2/IO209RSB3		
A15	IO48RSB0	D2	IO205RSB3	F6	IO208RSB3		
A16	IO54RSB0	D3	GND	F7	IO14RSB0		
A17	GBC0/IO57RSB0	D4	GAB0/IO02RSB0	F8	IO20RSB0		
B1	GAA1/IO01RSB0	D5	IO07RSB0	F9	IO25RSB0		
B2	GND	D6	IO10RSB0	F10	IO29RSB0		
B3	IO06RSB0	D7	IO18RSB0	F11	IO51RSB0		
B4	IO13RSB0	D8	GND	F12	IO53RSB0		
B5	IO15RSB0	D9	IO34RSB0	F13	GBC2/IO67RSB1		
B6	IO21RSB0	D10	IO41RSB0	F14	GND		
B7	VCCIB0	D11	IO47RSB0	F15	IO75RSB1		
B8	IO28RSB0	D12	IO55RSB0	F16	IO71RSB1		
B9	IO31RSB0	D13	GND	F17	IO77RSB1		
B10	IO37RSB0	D14	GBB0/IO59RSB0	G1	GFC0/IO193RSB3		
B11	IO39RSB0	D15	GBA1/IO62RSB0	G2	GND		
B12	VCCIB0	D16	IO66RSB1	G3	IO198RSB3		
B13	IO44RSB0	D17	IO70RSB1	G4	IO203RSB3		
B14	IO46RSB0	E1	VCCIB3	G5	IO201RSB3		
B15	IO49RSB0	E2	IO200RSB3	G6	IO206RSB3		
B16	GBC1/IO58RSB0	E3	GAC2/IO207RSB3	G7	GND		
B17	GND	E4	GAA2/IO211RSB3	G8	GND		
C1	IO210RSB3	E5	GAC1/IO05RSB0	G9	VCC		
C2	GAA0/IO00RSB0	E6	IO12RSB0	G10	GND		
C3	GAC0/IO04RSB0	E7	IO16RSB0	G11	GND		
C4	IO09RSB0	E8	IO22RSB0	G12	IO72RSB1		

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at **www.microsemi.com**.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.