

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	1584
Total RAM Bits	18432
Number of I/O	157
Number of Gates	60000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	289-TFBGA, CSBGA
Supplier Device Package	289-CSP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/aglp060v2-cs289

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

IGLOO PLUS Device Family Overview	
IGLOO PLUS DC and Switching Characteristics	2-1
General Specifications	
Calculating Power Dissipation	
User I/O Characteristics	
VersaTile Characteristics	
Global Resource Characteristics	2-58
Clock Conditioning Circuits	2-62
Embedded SRAM and FIFO Characteristics	2-65
Embedded FlashROM Characteristics	2-79
JTAG 1532 Characteristics	2-80
Pin Descriptions and Packaging	3-1
Supply Pins	
User Pins	
Special Function Pins	
Packaging	
Related Documents	
Package Pin Assignments	
VQ128	
VQ176	
CS201	
CS281	
	4-10
Datasheet Information	5-1
List of Changes	. 5-1
Datasheet Categories	
Safety Critical, Life Support, and High-Reliability Applications Policy	. 5-8

VersaTiles

The IGLOO PLUS core consists of VersaTiles, which have been enhanced beyond the ProASIC $\underline{^{PLUS}}^{e}$ core tiles. The IGLOO PLUS VersaTile supports the following:

- All 3-input logic functions—LUT-3 equivalent
- · Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set

Refer to Figure 1-3 for VersaTile configurations.

Figure 1-3 • VersaTile Configurations

User Nonvolatile FlashROM

IGLOO PLUS devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- · Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- · Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard IGLOO PLUS IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in AGLP030 devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The IGLOO PLUS development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

2 – IGLOO PLUS DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	-0.3 to 1.65	V
VJTAG	JTAG DC voltage	-0.3 to 3.75	V
VPUMP	Programming voltage	-0.3 to 3.75	V
VCCPLL	Analog power supply (PLL)	-0.3 to 1.65	V
VCCI	DC I/O buffer supply voltage	-0.3 to 3.75	V
VI ¹	I/O input voltage	–0.3 V to 3.6 V	V
T _{STG} ²	Storage temperature	-65 to +150	°C
T _J ²	Junction temperature	+125	°C

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

2. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2.

IGLOO PLUS DC and Switching Characteristics

Ramping up (V2 devices): 0.65 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.55 V < trip_point_down < 0.95 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels (see Figure 2-1 and Figure 2-2 on page 2-5 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels ($0.75 V \pm 0.25 V$ for V5 devices, and $0.75 V \pm 0.2 V$ for V2 devices), the PLL output lock signal goes Low and/or the output clock is lost. Refer to the "Brownout Voltage" section in the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *IGLOO PLUS Device Family User's Guide* for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers
- 3. Output buffers, after 200 ns delay from input buffer activation

To make sure the transition from input buffers to output buffers is clean, ensure that there is no path longer than 100 ns from input buffer to output buffer in your design.

Figure 2-1 • V5 Devices – I/O State as a Function of VCCI and VCC Voltage Levels

Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R _{(WEAK F} (<u>(</u>		R _(WEAK PULL-DOWN) ² (Ω)			
VCCI	Min.	Max.	Min.	Max.		
3.3 V	10 K	45 K	10 K	45 K		
3.3 V (wide range I/Os)	10 K	45 K	10 K	45 K		
2.5 V	11 K	55 K	12 K	74 K		
1.8 V	18 K	70 K	17 K	110 K		
1.5 V	19 K	90 K	19 K	140 K		
1.2 V	25 K	110 K	25 K	150 K		
1.2 V (wide range I/Os)	19 K	110 K	19 K	150 K		

Notes:

R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_(WEAK PULL-UP-MIN)
R_(WEAK PULLDOWN-MAX) = (VOLspec) / I_(WEAK PULLDOWN-MIN)

Table 2-30 • I/O Short Currents IOSH/IOSL

	Drive Strength	IOSL (mA)*	IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25
Γ	4 mA	27	25
	6 mA	54	51
	8 mA	54	51
	12 mA	109	103
	16 mA	109	103
3.3 V LVCMOS Wide Range	100 µA	Same as equivalent	software default drive
2.5 V LVCMOS	2 mA	18	16
	4 mA	18	16
	6 mA	37	32
	8 mA	37	32
	12 mA	74	65
1.8 V LVCMOS	2 mA	11	9
	4 mA	22	17
	6 mA	44	35
	8 mA	44	35
1.5 V LVCMOS	2 mA	16	13
F F	4 mA	33	25
1.2 V LVCMOS	2 mA	26	20
1.2 V LVCMOS Wide Range	100 µA	26	20

Note: $^{*}T_{J} = 100^{\circ}C$

IGLOO PLUS DC and Switching Characteristics

1.2 V LVCMOS (JESD8-12A)

Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose 1.2 V applications. It uses a 1.2 V input buffer and a push-pull output buffer.

Table 2-64 • Minimum and Maximum DC Input and Output Levels

1.2 V LVCMOS ¹		VIL	VIH		VIH VOL VOH I		IOL	юн	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ⁴	Max. mA ⁴	μA ⁵	μA ⁵
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	20	26	10	10

Notes:

1. Applicable to IGLOO nano V2 devices operating at VCCI \geq VCC.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

4. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Figure 2-11 • AC Loading

Table 2-65 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.2	0.6	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

Timing Characteristics

Applies to 1.2 V DC Core Voltage

Table 2-66 • 1.2 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.98	8.27	0.19	1.57	2.34	0.67	7.94	6.77	3.00	3.11	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-67 • 1.2 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.98	3.38	0.19	1.57	2.34	0.67	3.26	2.78	2.99	3.24	ns

Notes:

1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2. Software default selection highlighted in gray.

Fully Registered I/O Buffers with Asynchronous Clear

Figure 2-13 • Timing Model of the Registered I/O Buffers with Asynchronous Clear

Figure 2-28 • RAM Reset

Timing Waveforms

Figure 2-32 • FIFO Reset

Figure 2-33 • FIFO EMPTY Flag and AEMPTY Flag Assertion

Figure 2-35 • FIFO EMPTY Flag and AEMPTY Flag Deassertion

IGLOO PLUS DC and Switching Characteristics

Embedded FlashROM Characteristics

Figure 2-37 • Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-98 • Embedded FlashROM Access Time Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.57	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{CK2Q}	Clock to Out	17.58	ns
F _{MAX}	Maximum Clock Frequency	15	MHz

1.2 V DC Core Voltage

Table 2-99 • Embedded FlashROM Access Time Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.59	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{CK2Q}	Clock to Out	30.94	ns
F _{MAX}	Maximum Clock Frequency	10	MHz

JTAG 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-15 for more details.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-100 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DISU}	Test Data Input Setup Time	1.00	ns
t _{DIHD}	Test Data Input Hold Time	2.00	ns
t _{TMSSU}	Test Mode Select Setup Time	1.00	ns
t _{TMDHD}	Test Mode Select Hold Time	2.00	ns
t _{TCK2Q}	Clock to Q (data out)	8.00	ns
t _{RSTB2Q}	Reset to Q (data out)	25.00	ns
F _{TCKMAX}	TCK Maximum Frequency	15	MHz
t _{TRSTREM}	ResetB Removal Time	0.58	ns
t _{TRSTREC}	ResetB Recovery Time	0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-101 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DISU}	Test Data Input Setup Time	1.50	ns
t _{DIHD}	Test Data Input Hold Time	3.00	ns
t _{TMSSU}	Test Mode Select Setup Time	1.50	ns
t _{TMDHD}	Test Mode Select Hold Time	3.00	ns
t _{TCK2Q}	Clock to Q (data out)	11.00	ns
t _{RSTB2Q}	Reset to Q (data out)	30.00	ns
F _{TCKMAX}	TCK Maximum Frequency	9.00	MHz
t _{TRSTREM}	ResetB Removal Time	1.18	ns
t _{TRSTREC}	ResetB Recovery Time	0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Package Pin Assignments

V	Q176) v	
Pin Number	AGLP060 Function		Pin Number
105	IO62RSB1		140
106	IO61RSB1		141
107	GCC2/IO60RSB1		142
108	GCB2/IO59RSB1		143
109	GCA2/IO58RSB1		144
110	GCA0/IO57RSB1		145
111	GCA1/IO56RSB1		146
112	VCCIB1		147
113	GND		148
114	GCB0/IO55RSB1	149	
115	GCB1/IO54RSB1	150	
116	GCC0/IO53RSB1	151	
117	GCC1/IO52RSB1	152	
118	IO51RSB1	153	
119	IO50RSB1	154	
120	VCC	155	
121	IO48RSB1	156	
122	IO47RSB1	157	
123	IO45RSB1	158	
124	IO44RSB1	159	
125	IO43RSB1	160	
126	VCCIB1	161	
127	GND	162	
128	GBC2/IO40RSB1	163	
129	IO39RSB1	164	
130	GBB2/IO38RSB1	165	
131	IO37RSB1	166	
132	GBA2/IO36RSB1	167	
133	GBA1/IO35RSB0	168	
134	NC	169	
135	GBA0/IO34RSB0	170	
136	NC	171	
137	GBB1/IO33RSB0	172	
138	NC	173	
139	GBC1/IO31RSB0	174	

VQ176			
Pin Number	AGLP060 Function		
175	GAA1/IO01RSB0		
176	GAA0/IO00RSB0		

CS201		CS201		CS201	
Pin Number	AGLP030 Function	Pin Number	AGLP030 Function	Pin Number	AGLP030 Function
H14	IO45RSB1	L15	IO58RSB1	P5	IO87RSB2
H15	IO43RSB1	M1	IO93RSB3	P6	IO86RSB2
J1	GEA0/IO107RSB3	M2	IO92RSB3	P7	IO84RSB2
J2	IO105RSB3	M3	IO97RSB3	P8	IO80RSB2
J3	IO104RSB3	M4	GND	P9	IO74RSB2
J4	IO102RSB3	M5	NC	P10	IO73RSB2
J6	VCCIB3	M6	IO79RSB2	P11	IO76RSB2
J7	GND	M7	IO77RSB2	P12	IO67RSB2
J8	VCC	M8	IO72RSB2	P13	IO64RSB2
J9	GND	M9	IO70RSB2	P14	VPUMP
J10	VCCIB1	M10	IO61RSB2	P15	TRST
J12	NC	M11	IO59RSB2	R1	NC
J13	NC	M12	GND	R2	NC
J14	IO52RSB1	M13	NC	R3	IO91RSB2
J15	IO50RSB1	M14	IO55RSB1	R4	FF/IO90RSB2
K1	IO103RSB3	M15	IO56RSB1	R5	IO89RSB2
K2	IO101RSB3	N1	NC	R6	IO83RSB2
K3	IO99RSB3	N2	NC	R7	IO82RSB2
K4	IO100RSB3	N3	GND	R8	IO85RSB2
K6	GND	N4	NC	R9	IO78RSB2
K7	VCCIB2	N5	IO88RSB2	R10	IO69RSB2
K8	VCCIB2	N6	IO81RSB2	R11	IO62RSB2
K9	VCCIB2	N7	IO75RSB2	R12	IO60RSB2
K10	VCCIB1	N8	IO68RSB2	R13	TMS
K12	NC	N9	IO66RSB2	R14	TDI
K13	IO57RSB1	N10	IO65RSB2	R15	ТСК
K14	IO49RSB1	N11	IO71RSB2		
K15	IO53RSB1	N12	IO63RSB2		
L1	IO96RSB3	N13	GND		
L2	IO98RSB3	N14	TDO		
L3	IO95RSB3	N15	VJTAG	1	
L4	IO94RSB3	P1	NC	1	
L12	NC	P2	NC	1	
L13	NC	P3	NC	1	
L14	IO51RSB1	P4	NC	1	

CS281

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Package Pin Assignments

CS281		CS281		CS281	
Pin Number	AGLP125 Function	Pin Number	AGLP125 Function	Pin Number	AGLP125 Function
H8	VCC	K15	IO89RSB1	N4	IO182RSB3
H9	VCCIB0	K16	GND	N5	IO161RSB2
H10	VCC	K18	IO88RSB1	N7	GEA2/IO164RSB2
H11	VCCIB0	K19	VCCIB1	N8	VCCIB2
H12	VCC	L1	GFB2/IO187RSB3	N9	IO137RSB2
H13	VCCIB1	L2	IO185RSB3	N10	IO135RSB2
H15	IO77RSB1	L4	GFC2/IO186RSB3	N11	IO131RSB2
H16	GCB0/IO82RSB1	L5	IO184RSB3	N12	VCCIB2
H18	GCA1/IO83RSB1	L7	IO199RSB3	N13	VPUMP
H19	GCA2/IO85RSB1	L8	VCCIB3	N15	IO117RSB2
J1	VCOMPLF	L9	GND	N16	IO96RSB1
J2	GFA0/IO189RSB3	L10	GND	N18	IO98RSB1
J4	VCCPLF	L11	GND	N19	IO94RSB1
J5	GFC0/IO193RSB3	L12	VCCIB1	P1	IO174RSB3
J7	GFA2/IO188RSB3	L13	IO95RSB1	P2	GND
J8	VCCIB3	L15	IO91RSB1	P3	IO176RSB3
J9	GND	L16	NC	P4	IO177RSB3
J10	GND	L18	IO90RSB1	P5	GEA0/IO165RSB3
J11	GND	L19	NC	P15	IO111RSB2
J12	VCCIB1	M1	IO180RSB3	P16	IO108RSB2
J13	GCC1/IO79RSB1	M2	IO179RSB3	P17	GDC1/IO99RSB1
J15	GCA0/IO84RSB1	M4	IO181RSB3	P18	GND
J16	GCB2/IO86RSB1	M5	IO183RSB3	P19	IO97RSB1
J18	IO76RSB1	M7	VCCIB3	R1	IO173RSB3
J19	IO78RSB1	M8	VCC	R2	IO172RSB3
K1	VCCIB3	M9	VCCIB2	R4	GEC1/IO170RSB3
K2	GFA1/IO190RSB3	M10	VCC	R5	GEB1/IO168RSB3
K4	GND	M11	VCCIB2	R6	IO154RSB2
K5	IO19RSB0	M12	VCC	R7	IO149RSB2
K7	IO197RSB3	M13	VCCIB1	R8	IO146RSB2
K8	VCC	M15	IO122RSB2	R9	IO138RSB2
K9	GND	M16	IO93RSB1	R10	IO134RSB2
K10	GND	M18	IO92RSB1	R11	IO132RSB2
K11	GND	M19	NC	R12	IO130RSB2
K12	VCC	N1	IO178RSB3	R13	IO118RSB2
K13	GCC2/IO87RSB1	N2	IO175RSB3	R14	IO112RSB2

Package Pin Assignments

CS289			CS289		CS289
Pin Number	AGLP060 Function	Pin Number	AGLP060 Function	Pin Number	AGLP060 Function
A1	GAB1/IO03RSB0	C5	VCCIB0	E9	IO22RSB0
A2	NC	C6	IO09RSB0	E10	IO26RSB0
A3	NC	C7	IO13RSB0	E11	VCCIB0
A4	GND	C8	IO15RSB0	E12	NC
A5	IO10RSB0	C9	IO21RSB0	E13	GBB1/IO33RSB0
A6	IO14RSB0	C10	GND	E14	GBA2/IO36RSB1
A7	IO16RSB0	C11	IO29RSB0	E15	GBB2/IO38RSB1
A8	IO18RSB0	C12	NC	E16	VCCIB1
A9	GND	C13	NC	E17	IO44RSB1
A10	IO23RSB0	C14	NC	F1	GFC1/IO140RSB3
A11	IO27RSB0	C15	GND	F2	IO142RSB3
A12	NC	C16	GBA0/IO34RSB0	F3	IO149RSB3
A13	NC	C17	IO39RSB1	F4	VCCIB3
A14	GND	D1	IO150RSB3	F5	GAB2/IO154RSB3
A15	NC	D2	IO151RSB3	F6	IO153RSB3
A16	NC	D3	GND	F7	NC
A17	GBC0/IO30RSB0	D4	GAB0/IO02RSB0	F8	IO08RSB0
B1	GAA1/IO01RSB0	D5	NC	F9	IO12RSB0
B2	GND	D6	NC	F10	NC
B3	NC	D7	NC	F11	NC
B4	NC	D8	GND	F12	NC
B5	IO07RSB0	D9	IO20RSB0	F13	GBC2/IO40RSB1
B6	NC	D10	IO25RSB0	F14	GND
B7	VCCIB0	D11	NC	F15	IO43RSB1
B8	IO17RSB0	D12	NC	F16	IO46RSB1
B9	IO19RSB0	D13	GND	F17	IO45RSB1
B10	IO24RSB0	D14	GBB0/IO32RSB0	G1	GFC0/IO139RSB3
B11	IO28RSB0	D15	GBA1/IO35RSB0	G2	GND
B12	VCCIB0	D16	IO37RSB1	G3	IO144RSB3
B13	NC	D17	IO42RSB1	G4	IO145RSB3
B14	NC	E1	VCCIB3	G5	IO146RSB3
B15	NC	E2	IO147RSB3	G6	IO148RSB3
B16	GBC1/IO31RSB0	E3	GAC2/IO152RSB3	G7	GND
B17	GND	E4	GAA2/IO156RSB3	G8	GND
C1	IO155RSB3	E5	GAC1/IO05RSB0	G9	VCC
C2	GAA0/IO00RSB0	E6	NC	G10	GND
C3	GAC0/IO04RSB0	E7	IO06RSB0	G11	GND
C4	NC	E8	IO11RSB0	G12	IO48RSB1

Revision	Changes	Page
Revision 13 (June 2012)	Figure 2-30 • FIFO Read and Figure 2-31 • FIFO Write have been added (SAR 34843).	2-73
	Updated the terminology used in Timing Characteristics in the following tables: Table 2-96 • FIFO and Table 2-97 • FIFO (SAR 38236).	2-76
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions and Packaging" section: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38320). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1
Revision 12 (March 2012)	The in-dystern ringramming (ior) and decume section and decume section	
	The Y security option and Licensed DPA Logo were added to the "IGLOO PLUS Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 34724).	III
	The "Specifying I/O States During Programming" section is new (SAR 34695).	1-7
	The following sentence was removed from the "Advanced Architecture" section:	1-3
	"In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of IGLOO PLUS devices via an IEEE 1532 JTAG interface" (SAR 34684).	

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at **www.microsemi.com**.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.