

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	1584
Total RAM Bits	18432
Number of I/O	137
Number of Gates	60000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	176-TQFP
Supplier Device Package	176-VQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/aglp060v2-vq176

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOO PLUS Ordering Information

2. "G" indicates RoHS-compliant packages.

Temperature Grade Offerings

Package	AGLP030	AGLP060	AGLP125
CS201	C, I	C, I	-
CS281	-	-	C, I
CS289	C, I	C, I	C, I
VQ128	C, I	-	-
VQ176	-	C, I	_

Notes:

C = Commercial temperature range: 0°C to 85°C junction temperature.
 I = Industrial temperature range: -40°C to 100°C junction temperature.

Contact your local Microsemi SoC Products Group representative for device availability:

http://www.microsemi.com/soc/company/contact/default.aspx.

1 – IGLOO PLUS Device Family Overview

General Description

The IGLOO PLUS family of flash FPGAs, based on a 130 nm flash process, offers the lowest power FPGA, a single-chip solution, small-footprint packages, reprogrammability, and an abundance of advanced features.

The Flash*Freeze technology used in IGLOO PLUS devices enables entering and exiting an ultra-low power mode that consumes as little as 5 μ W while retaining the design information, SRAM content, registers, and I/O states. Flash*Freeze technology simplifies power management through I/O and clock management with rapid recovery to operation mode.

The Low Power Active capability (static idle) allows for ultra-low power consumption while the IGLOO PLUS device is completely functional in the system. This allows the IGLOO PLUS device to control system power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power.

Nonvolatile flash technology gives IGLOO PLUS devices the advantage of being a secure, low power, single-chip solution that is Instant On. IGLOO PLUS is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost.

These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

IGLOO PLUS devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). IGLOO PLUS devices have up to 125 k system gates, supported with up to 36 kbits of true dual-port SRAM and up to 212 user I/Os. The AGLP030 devices have no PLL or RAM support.

Flash*Freeze Technology

The IGLOO PLUS device offers unique Flash*Freeze technology, allowing the device to enter and exit ultra-low power Flash*Freeze mode. IGLOO PLUS devices do not need additional components to turn off I/Os or clocks while retaining the design information, SRAM content, registers, and I/O states. Flash*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of IGLOO PLUS V2 devices to support a wide range of core and I/O voltages (1.2 V to 1.5 V) allows further reduction in power consumption, thus achieving the lowest total system power.

During Flash*Freeze mode, each I/O can be set to the following configurations: hold previous state, tristate, or set as HIGH or LOW.

The availability of low power modes, combined with reprogrammability, a single-chip and single-voltage solution, and availability of small-footprint, high-pin-count packages, make IGLOO PLUS devices the best fit for portable electronics.

Flash Advantages

Low Power

IGLOO PLUS devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. IGLOO PLUS devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

IGLOO PLUS devices also have low dynamic power consumption to further maximize power savings; power is even further reduced by the use of a 1.2 V core voltage.

Low dynamic power consumption, combined with low static power consumption and Flash*Freeze technology, gives the IGLOO PLUS device the lowest total system power offered by any FPGA.

Note: *Not supported by AGLP030 devices

Figure 1-1 • IGLOO PLUS Device Architecture Overview with Four I/O Banks (AGLP030, AGLP060, and AGLP125)

Flash*Freeze Technology

The IGLOO PLUS device has an ultra-low power static mode, called Flash*Freeze mode, which retains all SRAM and register information and can still quickly return to normal operation. Flash*Freeze technology enables the user to quickly (within 1 μ s) enter and exit Flash*Freeze mode by activating the Flash*Freeze pin while all power supplies are kept at their original values. In addition, I/Os and global I/Os can still be driven and can be toggling without impact on power consumption, clocks can still be driven or can be toggling without impact on power consumption, and the device retains all core registers, SRAM information, and I/O states. I/Os can be individually configured to either hold their previous state or be tristated during Flash*Freeze mode. Alternatively, they can be set to a certain state using weak pull-up or pull-down I/O attribute configuration. No power is consumed by the I/O banks, clocks, JTAG pins, or PLL, and the device consumes as little as 5 μ W in this mode.

Flash*Freeze technology allows the user to switch to Active mode on demand, thus simplifying the power management of the device.

The Flash*Freeze pin (active low) can be routed internally to the core to allow the user's logic to decide when it is safe to transition to this mode. Refer to Figure 1-2 for an illustration of entering/exiting Flash*Freeze mode. It is also possible to use the Flash*Freeze pin as a regular I/O if Flash*Freeze mode usage is not planned.

Figure 1-2 • IGLOO PLUS Flash*Freeze Mode

2 – IGLOO PLUS DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 • A	bsolute Maximum	Ratings
---------------	-----------------	---------

Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	-0.3 to 1.65	V
VJTAG	JTAG DC voltage	-0.3 to 3.75	V
VPUMP	Programming voltage -0.3 to 3.75		V
VCCPLL	Analog power supply (PLL)	-0.3 to 1.65	V
VCCI	DC I/O buffer supply voltage	-0.3 to 3.75	V
VI ¹	I/O input voltage	–0.3 V to 3.6 V	V
T _{STG} ²	Storage temperature	-65 to +150	°C
T _J ²	Junction temperature	+125	°C

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

2. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2.

IGLOO PLUS DC and Switching Characteristics

Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example)

Microsemi.

IGLOO PLUS DC and Switching Characteristics

	Comr	nercial ¹	Indu	strial ²
	IIL ³	IIH ⁴	IIL ³	IIH ⁴
DC I/O Standards	μA	μA	μΑ	μΑ
3.3 V LVTTL / 3.3 V LVCMOS	10	10	15	15
3.3 V LVCMOS Wide Range	10	10	15	15
2.5 V LVCMOS	10	10	15	15
1.8 V LVCMOS	10	10	15	15
1.5 V LVCMOS	10	10	15	15
1.2 V LVCMOS ⁵	10	10	15	15
1.2 V LVCMOS Wide Range ⁵	10	10	15	15

Table 2-22 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions

Notes:

1. Commercial range ($0^{\circ}C < T_A < 70^{\circ}C$)

2. Industrial range ($-40^{\circ}C < T_A < 85^{\circ}C$)

3. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

5. Applicable to IGLOO PLUS V2 devices operating at VCCI ³ VCC.

Summary of I/O Timing Characteristics – Default I/O Software Settings

Table 2-23 • Summary of AC Measuring Points

Standard	Measuring Trip Point (Vtrip)
3.3 V LVTTL / 3.3 V LVCMOS	1.4 V
3.3 V LVCMOS Wide Range	1.4 V
2.5 V LVCMOS	1.2 V
1.8 V LVCMOS	0.90 V
1.5 V LVCMOS	0.75 V
1.2 V LVCMOS	0.60 V
1.2 V LVCMOS Wide Range	0.60 V

static Microsemi.

IGLOO PLUS DC and Switching Characteristics

Detailed I/O DC Characteristics

Table 2-27 • Input Capacitance

Symbol	Definition	Conditions	Min.	Max.	Units
C _{IN}	Input capacitance	VIN = 0, f = 1.0 MHz		8	pF
CINCLK	Input capacitance on the clock pin	VIN = 0, f = 1.0 MHz		8	pF

Table 2-28 • I/O Output Buffer Maximum Resistances ¹

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³	
3.3 V LVTTL / 3.3V LVCMOS	2 mA	100	300	
	4 mA	100	300	
	6 mA	50	150	
	8 mA	50	150	
	12 mA	25	75	
	16 mA	25	75	
3.3 V LVCMOS Wide Range	100 µA	Same as equivalen	t software default drive	
2.5 V LVCMOS	2 mA 100 20			
	4 mA	100	200	
	6 mA	50	100	
	8 mA	50	100	
	12 mA	25	50	
1.8 V LVCMOS	2 mA	200	225	
	4 mA	100	112	
	6 mA	50	56	
	8 mA	50	56	
1.5 V LVCMOS	2 mA	200	224	
	4 mA	100	112	
1.2 V LVCMOS	2 mA	157.5	163.8	
1.2 V LVCMOS Wide Range ⁴	100 µA	157.5	163.8	

Notes:

 These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCC₁, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS model on the Microsemi SoC Products Group website at http://www.microsemi.com/soc/download/ibis/default.aspx.

2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

4. Applicable to IGLOO PLUS V2 devices operating at VCCI ≥ VCC.

Input Register

Figure 2-14 • Input Register Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-74 • Input Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.41	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.32	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.57	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.57	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.24	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.24	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.19	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.19	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.31	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Output Register

Figure 2-15 • Output Register Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-76 • Output Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{oclkq}	Clock-to-Q of the Output Data Register	0.66	ns
tosud	Data Setup Time for the Output Data Register	0.33	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	0.82	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	0.88	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.24	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.24	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.19	ns
t _{оскмрwн}	Clock Minimum Pulse Width High for the Output Data Register	0.31	ns
t _{OCKMPWL}	Clock Minimum Pulse Width Low for the Output Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO PLUS DC and Switching Characteristics

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-61. Table 2-84 to Table 2-89 on page 2-60 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-84 • AGLP030 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

			St	td.	
Parameter	Description	Γ	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock		1.21	1.42	ns
t _{RCKH}	Input High Delay for Global Clock		1.23	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock		1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock		1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock			0.27	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-85 • AGLP060 Global Resource Commercial-Case Conditions: T₁ = 70°C, VCC = 1.425 V

		St	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.32	1.62	ns
t _{RCKH}	Input High Delay for Global Clock	1.34	1.72	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.38	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-90 • IGLOO PLUS CCC/PLL Specification

For IGLOO PLUS V2 or V5 devices, 1.5 V DC Core Supply Voltage

Parameter	Min.	Тур.	Max.	Units
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		250	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		250	MHz
Delay Increments in Programmable Delay Blocks ^{1, 2}		360 ³		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Serial Clock (SCLK) for Dynamic PLL ^{4,5}			100	MHz
Input Cycle-to-Cycle Jitter (peak magnitude)			1	ns
Acquisition Time				
LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁶				
LockControl = 0			2.5	ns
LockControl = 1			1.5	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1, 2}	1.25		15.65	ns
Delay Range in Block: Programmable Delay 2 ^{1, 2}	0.469		15.65	ns
Delay Range in Block: Fixed Delay ^{1, 2}		3.5		ns
VCO Output Peak-to-Peak Period Jitter F _{CCC_OUT} ⁷	Maximum Peak-to-Peak Period Jitter ^{7,8,9}			
_	$SSO \leq 2$	$SSO \leq 4$	$SSO \le 8$	$SSO \leq 16$
0.75 MHz to 50 MHz	0.50%	0.60%	0.80%	1.20%
50 MHz to 250 MHz	2.50%	4.00%	6.00%	12.00%

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-6 for deratings.

2. $T_J = 25^{\circ}C$, VCC = 1.5 V

- 3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.
- 4. Maximum value obtained for a STD speed grade device in Worst Case Commercial Conditions. For specific junction temperature and voltage supply, refer to Table 2-6 on page 2-6 and Table 2-7 on page 2-6 for derating values.
- 5. The AGLP030 device does not support a PLL.
- 6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.
- 7. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the per cent jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, regardless of the output divider settings.
- 8. Measurements done with LVTTL 3.3 V 8 mA I/O drive strength and high slew rate, VCC/VCCPLL = 1.425 V, VCCI = 3.3 V, VQ/PQ/TQ type of packages, 20 pF load.
- 9. SSO are outputs that are synchronous to a single clock domain and have clock-to-out times that are within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO PLUS FPGA Fabric User's Guide.

static Microsemi.

IGLOO PLUS DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-94 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{AS}	Address setup time	1.28	ns
t _{AH}	Address hold time	0.25	ns
t _{ENS}	REN, WEN setup time	1.25	ns
t _{ENH}	REN, WEN hold time	0.25	ns
t _{BKS}	BLK setup time	2.54	ns
t _{BKH}	BLK hold time	0.25	ns
t _{DS}	Input data (DIN) setup time	1.10	ns
t _{DH}	Input data (DIN) hold time	0.55	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	5.51	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	4.77	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	2.82	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address – applicable to closing edge	0.30	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address – applicable to opening edge	0.32	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address – applicable to opening edge	0.44	ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	3.21	ns
	RESET Low to data out Low on DOUT (pipelined)	3.21	ns
t _{REMRSTB}	RESET removal	0.93	ns
t _{RECRSTB}	RESET recovery	4.94	ns
t _{MPWRSTB}	RESET minimum pulse width	1.18	ns
t _{CYC}	Clock cycle time	10.90	ns
F _{MAX}	Maximum frequency	92	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-97 • FIFO

Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	3.44	ns
t _{ENH}	REN, WEN Hold Time	0.26	ns
t _{BKS}	BLK Setup Time	0.30	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (WD) Setup Time	1.30	ns
t _{DH}	Input Data (WD) Hold Time	0.41	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	5.67	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	3.02	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	6.02	ns
t _{WCKFF}	WCLK High to Full Flag Valid	5.71	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	22.17	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	5.93	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	21.94	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	3.41	ns
	RESET Low to Data Out Low on RD (pipelined)	3.41	ns
t _{REMRSTB}	RESET Removal	1.02	ns
t _{RECRSTB}	RESET Recovery	5.48	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	1.18	ns
t _{CYC}	Clock Cycle Time	10.90	ns
F _{MAX}	Maximum Frequency for FIFO	92	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Package Pin Assignments

١	/Q128	V	Q128	VQ128	
Pin Number	AGLP030 Function	Pin Number	AGLP030 Function	Pin Number	AGLP030 Function
1	IO119RSB3	36	IO88RSB2	71	IO57RSB1
2	IO118RSB3	37	IO86RSB2	72	VCCIB1
3	IO117RSB3	38	IO84RSB2	73	GND
4	IO115RSB3	39	IO83RSB2	74	IO55RSB1
5	IO116RSB3	40	GND	75	IO54RSB1
6	IO113RSB3	41	VCCIB2	76	IO53RSB1
7	IO114RSB3	42	IO82RSB2	77	IO52RSB1
8	GND	43	IO81RSB2	78	IO51RSB1
9	VCCIB3	44	IO79RSB2	79	IO50RSB1
10	IO112RSB3	45	IO78RSB2	80	IO49RSB1
11	IO111RSB3	46	IO77RSB2	81	VCC
12	IO110RSB3	47	IO75RSB2	82	GDB0/IO48RSB1
13	IO109RSB3	48	IO74RSB2	83	GDA0/IO47RSB1
14	GEC0/IO108RSB3	49	VCC	84	GDC0/IO46RSB1
15	GEA0/IO107RSB3	50	IO73RSB2	85	IO45RSB1
16	GEB0/IO106RSB3	51	IO72RSB2	86	IO44RSB1
17	VCC	52	IO70RSB2	87	IO43RSB1
18	IO104RSB3	53	IO69RSB2	88	IO42RSB1
19	IO103RSB3	54	IO68RSB2	89	VCCIB1
20	IO102RSB3	55	IO66RSB2	90	GND
21	IO101RSB3	56	IO65RSB2	91	IO40RSB1
22	IO100RSB3	57	GND	92	IO41RSB1
23	IO99RSB3	58	VCCIB2	93	IO39RSB1
24	GND	59	IO63RSB2	94	IO38RSB1
25	VCCIB3	60	IO61RSB2	95	IO37RSB1
26	IO97RSB3	61	IO59RSB2	96	IO36RSB1
27	IO98RSB3	62	ТСК	97	IO35RSB0
28	IO95RSB3	63	TDI	98	IO34RSB0
29	IO96RSB3	64	TMS	99	IO33RSB0
30	IO94RSB3	65	VPUMP	100	IO32RSB0
31	IO93RSB3	66	TDO	101	IO30RSB0
32	IO92RSB3	67	TRST	102	IO28RSB0
33	IO91RSB2	68	IO58RSB1	103	IO27RSB0
34	FF/IO90RSB2	69	VJTAG	104	VCCIB0
35	IO89RSB2	70	IO56RSB1	105	GND

IGLOO PLUS Low Power Flash FPGAs

(CS201	C	S201	CS201	
Pin Number	AGLP030 Function	Pin Number	AGLP030 Function	Pin Number	AGLP030 Function
H14	IO45RSB1	L15	IO58RSB1	P5	IO87RSB2
H15	IO43RSB1	M1	IO93RSB3	P6	IO86RSB2
J1	GEA0/IO107RSB3	M2	IO92RSB3	P7	IO84RSB2
J2	IO105RSB3	M3	IO97RSB3	P8	IO80RSB2
J3	IO104RSB3	M4	GND	P9	IO74RSB2
J4	IO102RSB3	M5	NC	P10	IO73RSB2
J6	VCCIB3	M6	IO79RSB2	P11	IO76RSB2
J7	GND	M7	IO77RSB2	P12	IO67RSB2
J8	VCC	M8	IO72RSB2	P13	IO64RSB2
J9	GND	M9	IO70RSB2	P14	VPUMP
J10	VCCIB1	M10	IO61RSB2	P15	TRST
J12	NC	M11	IO59RSB2	R1	NC
J13	NC	M12	GND	R2	NC
J14	IO52RSB1	M13	NC	R3	IO91RSB2
J15	IO50RSB1	M14	IO55RSB1	R4	FF/IO90RSB2
K1	IO103RSB3	M15	IO56RSB1	R5	IO89RSB2
K2	IO101RSB3	N1	NC	R6	IO83RSB2
K3	IO99RSB3	N2	NC	R7	IO82RSB2
K4	IO100RSB3	N3	GND	R8	IO85RSB2
K6	GND	N4	NC	R9	IO78RSB2
K7	VCCIB2	N5	IO88RSB2	R10	IO69RSB2
K8	VCCIB2	N6	IO81RSB2	R11	IO62RSB2
K9	VCCIB2	N7	IO75RSB2	R12	IO60RSB2
K10	VCCIB1	N8	IO68RSB2	R13	TMS
K12	NC	N9	IO66RSB2	R14	TDI
K13	IO57RSB1	N10	IO65RSB2	R15	ТСК
K14	IO49RSB1	N11	IO71RSB2		
K15	IO53RSB1	N12	IO63RSB2		
L1	IO96RSB3	N13	GND		
L2	IO98RSB3	N14	TDO		
L3	IO95RSB3	N15	VJTAG	1	
L4	IO94RSB3	P1	NC	1	
L12	NC	P2	NC	1	
L13	NC	P3	NC	1	
L14	IO51RSB1	P4	NC	1	

IGLOO PLUS Low Power Flash FPGAs

	CS289		CS289	CS289	
Pin Number	AGLP125 Function	Pin Number	AGLP125 Function	Pin Number	AGLP125 Function
A1	GAB1/IO03RSB0	C5	VCCIB0	E9	IO32RSB0
A2	IO11RSB0	C6	IO17RSB0	E10	IO36RSB0
A3	IO08RSB0	C7	IO23RSB0	E11	VCCIB0
A4	GND	C8	IO27RSB0	E12	IO56RSB0
A5	IO19RSB0	C9	IO33RSB0	E13	GBB1/IO60RSB0
A6	IO24RSB0	C10	GND	E14	GBA2/IO63RSB1
A7	IO26RSB0	C11	IO43RSB0	E15	GBB2/IO65RSB1
A8	IO30RSB0	C12	IO45RSB0	E16	VCCIB1
A9	GND	C13	IO50RSB0	E17	IO73RSB1
A10	IO35RSB0	C14	IO52RSB0	F1	GFC1/IO194RSB3
A11	IO38RSB0	C15	GND	F2	IO196RSB3
A12	IO40RSB0	C16	GBA0/IO61RSB0	F3	IO202RSB3
A13	IO42RSB0	C17	IO68RSB1	F4	VCCIB3
A14	GND	D1	IO204RSB3	F5	GAB2/IO209RSB3
A15	IO48RSB0	D2	IO205RSB3	F6	IO208RSB3
A16	IO54RSB0	D3	GND	F7	IO14RSB0
A17	GBC0/IO57RSB0	D4	GAB0/IO02RSB0	F8	IO20RSB0
B1	GAA1/IO01RSB0	D5	IO07RSB0	F9	IO25RSB0
B2	GND	D6	IO10RSB0	F10	IO29RSB0
B3	IO06RSB0	D7	IO18RSB0	F11	IO51RSB0
B4	IO13RSB0	D8	GND	F12	IO53RSB0
B5	IO15RSB0	D9	IO34RSB0	F13	GBC2/IO67RSB1
B6	IO21RSB0	D10	IO41RSB0	F14	GND
B7	VCCIB0	D11	IO47RSB0	F15	IO75RSB1
B8	IO28RSB0	D12	IO55RSB0	F16	IO71RSB1
B9	IO31RSB0	D13	GND	F17	IO77RSB1
B10	IO37RSB0	D14	GBB0/IO59RSB0	G1	GFC0/IO193RSB3
B11	IO39RSB0	D15	GBA1/IO62RSB0	G2	GND
B12	VCCIB0	D16	IO66RSB1	G3	IO198RSB3
B13	IO44RSB0	D17	IO70RSB1	G4	IO203RSB3
B14	IO46RSB0	E1	VCCIB3	G5	IO201RSB3
B15	IO49RSB0	E2	IO200RSB3	G6	IO206RSB3
B16	GBC1/IO58RSB0	E3	GAC2/IO207RSB3	G7	GND
B17	GND	E4	GAA2/IO211RSB3	G8	GND
C1	IO210RSB3	E5	GAC1/IO05RSB0	G9	VCC
C2	GAA0/IO00RSB0	E6	IO12RSB0	G10	GND
C3	GAC0/IO04RSB0	E7	IO16RSB0	G11	GND
C4	IO09RSB0	E8	IO22RSB0	G12	IO72RSB1

Package Pin Assignments

	CS289		CS289	CS289	
Pin Number	AGLP125 Function	Pin Number	AGLP125 Function	Pin Number	AGLP125 Function
G13	IO64RSB1	J17	GCA1/IO83RSB1	M4	IO172RSB3
G14	IO69RSB1	K1	GND	M5	GEB0/IO167RSB3
G15	IO78RSB1	K2	GFA0/IO189RSB3	M6	GEB1/IO168RSB3
G16	IO76RSB1	K3	GFB2/IO187RSB3	M7	IO159RSB2
G17	GND	K4	IO179RSB3	M8	IO161RSB2
H1	VCOMPLF	K5	IO175RSB3	M9	IO135RSB2
H2	GFB0/IO191RSB3	K6	IO177RSB3	M10	IO128RSB2
H3	IO195RSB3	K7	GND	M11	IO121RSB2
H4	IO197RSB3	K8	GND	M12	IO113RSB2
H5	IO199RSB3	K9	GND	M13	GDA1/IO103RSB1
H6	GFB1/IO192RSB3	K10	GND	M14	GDA0/IO104RSB1
H7	GND	K11	GND	M15	IO97RSB1
H8	GND	K12	IO88RSB1	M16	IO96RSB1
H9	GND	K13	IO94RSB1	M17	VCCIB1
H10	GND	K14	IO95RSB1	N1	IO180RSB3
H11	GND	K15	IO93RSB1	N2	IO178RSB3
H12	GCC1/IO79RSB1	K16	GND	N3	GEC0/IO169RSB3
H13	IO74RSB1	K17	GCC2/IO87RSB1	N4	GEA0/IO165RSB3
H14	GCA0/IO84RSB1	L1	GFA2/IO188RSB3	N5	GND
H15	VCCIB1	L2	GFC2/IO186RSB3	N6	IO156RSB2
H16	GCA2/IO85RSB1	L3	IO182RSB3	N7	IO148RSB2
H17	GCC0/IO80RSB1	L4	GND	N8	IO144RSB2
J1	VCCPLF	L5	IO173RSB3	N9	IO137RSB2
J2	GFA1/IO190RSB3	L6	GEC1/IO170RSB3	N10	VCCIB2
J3	VCCIB3	L7	GND	N11	IO119RSB2
J4	IO185RSB3	L8	GND	N12	IO111RSB2
J5	IO183RSB3	L9	VCC	N13	GDB2/IO106RSB2
J6	IO181RSB3	L10	GND	N14	IO109RSB2
J7	VCC	L11	GND	N15	GND
J8	GND	L12	GDC1/IO99RSB1	N16	GDB0/IO102RSB1
J9	GND	L13	GDB1/IO101RSB1	N17	GDC0/IO100RSB1
J10	GND	L14	VCCIB1	P1	IO174RSB3
J11	VCC	L15	IO98RSB1	P2	IO171RSB3
J12	GCB2/IO86RSB1	L16	IO92RSB1	P3	GND
J13	GCB1/IO81RSB1	L17	IO91RSB1	P4	IO160RSB2
J14	IO90RSB1	M1	IO184RSB3	P5	IO157RSB2
J15	IO89RSB1	M2	VCCIB3	P6	IO154RSB2
J16	GCB0/IO82RSB1	M3	IO176RSB3	P7	IO152RSB2

Datasheet Information

Revision	Changes	Page
Revision 13 (June 2012)	Figure 2-30 • FIFO Read and Figure 2-31 • FIFO Write have been added (SAR 34843).	2-73
	Updated the terminology used in Timing Characteristics in the following tables: Table 2-96 • FIFO and Table 2-97 • FIFO (SAR 38236).	2-76
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions and Packaging" section: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38320). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1
Revision 12 (March 2012)	The "In-System Programming (ISP) and Security" section and "Security" section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 34664).	l, 1-2
	The Y security option and Licensed DPA Logo were added to the "IGLOO PLUS Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 34724).	III
	The "Specifying I/O States During Programming" section is new (SAR 34695).	1-7
	The following sentence was removed from the "Advanced Architecture" section: "In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of IGLOO PLUS devices via an IEEE 1532 JTAG interface" (SAR 34684).	1-3

IGLOO PLUS Low Power Flash FPGAs

Revision	Changes	Page
Revision 11 (continued)	The tables in the "Single-Ended I/O Characteristics" section were updated. Notes clarifying IIL and IIH were added.	2-27
	Tables for 3.3 V LVCMOS and 1.2 V LVCMOS wide range were added (SAR 79370, SAR 79353, and SAR 79366).	
	Notes in the wide range tables state that the minimum drive strength for any LVCMOS 3.3 V (or LVCMOS 1.2 V) software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 25700).	
	The following sentence was deleted from the "2.5 V LVCMOS" section: It uses a 5 V-tolerant input buffer and push-pull output buffer (SAR 24916).	2-32
	The tables in the "Input Register" section, "Output Register" section, and "Output Enable Register" section were updated. The tables in the "VersaTile Characteristics" section were updated.	2-45 through 2-56
	The following tables were updated in the "Global Tree Timing Characteristics" section:	2-58
	Table 2-85 • AGLP060 Global Resource (1.5 V)	
	Table 2-86 • AGLP125 Global Resource (1.5 V)	
	Table 2-88 • AGLP060 Global Resource (1.2 V)	
	Table 2-90 • IGLOO PLUS CCC/PLL Specification and Table 2-91 • IGLOO PLUS CCC/PLL Specification were revised (SAR 79388). VCO output jitter and maximum peak-to-peak jitter data were changed. Three notes were added to the table in connection with these changes.	2-61
	Figure 2-28 • Write Access after Write onto Same Address and Figure 2-29 • Write Access after Read onto Same Address were deleted.	N/A
	The tables in the "SRAM", "FIFO" and "Embedded FlashROM Characteristics" sections were updated.	2-68, 2-78