

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	1584
Total RAM Bits	18432
Number of I/O	157
Number of Gates	60000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	289-TFBGA, CSBGA
Supplier Device Package	289-CSP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/aglp060v5-cs289

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Calculating Power Dissipation

Quiescent Supply Current

Quiescent supply current (I_{DD}) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power mode usage. Microsemi recommends using the Power Calculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature.

Table 2-8 • Power Supply State per Mode

		Power Supply Configurations											
Modes/Power Supplies	VCC	VCCPLL	VCCI	VJTAG	VPUMP								
Flash*Freeze	On	On	On	On	On/off/floating								
Sleep	Off	Off	On	Off	Off								
Shutdown	Off	Off	Off	Off	Off								
No Flash*Freeze	On	On	On	On	On/off/floating								

Note: Off: Power Supply level = 0 V

Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Flash*Freeze Mode*

	Core Voltage	AGLP030	AGLP060	AGLP125	Units
Typical (25°C)	1.2 V	4	8	13	μA
	1.5 V	6	10	18	μA
		6	10	18	

Note: *IDD includes VCC, VPUMP, VCCI, VJTAG, and VCCPLL currents.

Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Sleep Mode*

ICCI Current	Core Voltage	AGLP030	AGLP060	AGLP125	Units
VCCI = 1.2 V (per bank) Typical (25°C)	1.2 V	1.7	1.7	1.7	μA
VCCI = 1.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.8	1.8	1.8	μA
VCCI = 1.8 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.9	1.9	1.9	μA
VCCI = 2.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.2	2.2	2.2	μA
VCCI = 3.3 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.5	2.5	2.5	μA

Note: *IDD = N_{BANKS} * ICCI

Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Shutdown Mode

	Core Voltage	AGLP030	AGLP060	AGLP125	Units
Typical (25°C)	1.2 V / 1.5 V	0	0	0	μA

IGLOO PLUS DC and Switching Characteristics

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- · The number of combinatorial and sequential cells used in the design
- · The internal clock frequencies
- · The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-19 on page 2-14.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-20 on page 2-14.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-20 on page 2-14. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—PTOTAL

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—PSTAT

P_{STAT} = (PDC1 or PDC2 or PDC3) + N_{BANKS} * PDC5

 N_{BANKS} is the number of I/O banks powered in the design.

Total Dynamic Power Consumption—P_{DYN}

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}

Global Clock Contribution—P_{CLOCK}

 $P_{CLOCK} = (PAC1 + N_{SPINE}*PAC2 + N_{ROW}*PAC3 + N_{S-CELL}*PAC4) * F_{CLK}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *IGLOO PLUS FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *IGLOO PLUS FPGA Fabric User's Guide*.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

PAC1, PAC2, PAC3, and PAC4 are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

 $P_{S-CELL} = N_{S-CELL} * (PAC5 + \alpha_1 / 2 * PAC6) * F_{CLK}$

 $N_{S\mbox{-}CELL}$ is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-14.

F_{CLK} is the global clock signal frequency.

Parameter	Parameter Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{HZ}	Enable to Pad delay through the Output Buffer—High to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to High
t _{LZ}	Enable to Pad delay through the Output Buffer—Low to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to Low
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to High
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to Low

Table 2-24 • I/O AC Parameter Definitions

Applies to 1.2 V DC Core Voltage

Table 2-44 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
100 µA	4 mA	STD	0.98	6.68	0.19	1.32	1.92	0.67	6.68	5.74	3.13	3.47	ns
100 µA	6 mA	STD	0.98	5.51	0.19	1.32	1.92	0.67	5.51	4.94	3.48	4.11	ns
100 µA	8 mA	STD	0.98	5.51	0.19	1.32	1.92	0.67	5.51	4.94	3.48	4.11	ns
100 µA	12 mA	STD	0.98	4.75	0.19	1.32	1.92	0.67	4.75	4.36	3.73	4.52	ns
100 µA	16 mA	STD	0.98	4.75	0.19	1.32	1.92	0.67	4.75	4.36	3.73	4.52	ns

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-45 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{zL}	t _{zн}	t _{LZ}	t _{HZ}	Units
100 µA	4 mA	STD	0.98	4.16	0.19	1.32	1.92	0.67	4.16	3.32	3.12	3.66	ns
100 µA	6 mA	STD	0.98	3.54	0.19	1.32	1.92	0.67	3.54	2.79	3.48	4.31	ns
100 µA	8 mA	STD	0.98	3.54	0.19	1.32	1.92	0.67	3.54	2.79	3.48	4.31	ns
100 µA	12 mA	STD	0.98	3.21	0.19	1.32	1.92	0.67	3.21	2.52	3.73	4.73	ns
100 µA	16 mA	STD	0.98	3.21	0.19	1.32	1.92	0.67	3.21	2.52	3.73	4.73	ns

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-54 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	5.89	0.18	1.00	1.43	0.66	6.01	5.43	1.78	1.30	ns
4 mA	STD	0.97	4.82	0.18	1.00	1.43	0.66	4.92	4.56	2.08	2.08	ns
6 mA	STD	0.97	4.13	0.18	1.00	1.43	0.66	4.21	3.96	2.30	2.46	ns
8 mA	STD	0.97	4.13	0.18	1.00	1.43	0.66	4.21	3.96	2.30	2.46	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-55 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_{.1} = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	2.82	0.18	1.00	1.43	0.66	2.88	2.78	1.78	1.35	ns
4 mA	STD	0.97	2.30	0.18	1.00	1.43	0.66	2.35	2.11	2.08	2.15	ns
6 mA	STD	0.97	2.00	0.18	1.00	1.43	0.66	2.04	1.76	2.29	2.55	ns
8 mA	STD	0.97	2.00	0.18	1.00	1.43	0.66	2.04	1.76	2.29	2.55	ns

Notes:

1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2. Software default selection highlighted in gray.

Applies to 1.2 V DC Core Voltage

Table 2-56 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.98	6.43	0.19	1.12	1.61	0.67	6.54	5.93	2.19	1.88	ns
4 mA	STD	0.98	5.33	0.19	1.12	1.61	0.67	5.41	5.03	2.50	2.68	ns
6 mA	STD	0.98	4.61	0.19	1.12	1.61	0.67	4.69	4.41	2.72	3.07	ns
8 mA	STD	0.98	4.61	0.19	1.12	1.61	0.67	4.69	4.41	2.72	3.07	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-57 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.98	3.30	0.19	1.12	1.61	0.67	3.34	3.21	2.19	1.93	ns
4 mA	STD	0.98	2.76	0.19	1.12	1.61	0.67	2.79	2.51	2.50	2.76	ns
6 mA	STD	0.98	2.45	0.19	1.12	1.61	0.67	2.48	2.16	2.71	3.16	ns
8 mA	STD	0.98	2.45	0.19	1.12	1.61	0.67	2.48	2.16	2.71	3.16	ns

Notes:

1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO PLUS DC and Switching Characteristics

1.2 V LVCMOS (JESD8-12A)

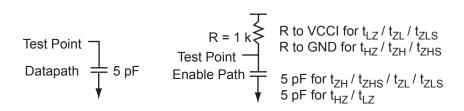
Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose 1.2 V applications. It uses a 1.2 V input buffer and a push-pull output buffer.

Table 2-64 • Minimum and Maximum DC Input and Output Levels

1.2 V LVCMOS ¹		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ⁴	Max. mA ⁴	μA⁵	μA ⁵
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	20	26	10	10

Notes:

1. Applicable to IGLOO nano V2 devices operating at VCCI \geq VCC.


2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

4. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Figure 2-11 • AC Loading

Table 2-65 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.2	0.6	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

Timing Characteristics

Applies to 1.2 V DC Core Voltage

Table 2-66 • 1.2 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.98	8.27	0.19	1.57	2.34	0.67	7.94	6.77	3.00	3.11	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-67 • 1.2 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.98	3.38	0.19	1.57	2.34	0.67	3.26	2.78	2.99	3.24	ns

Notes:

1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

static Microsemi.

IGLOO PLUS DC and Switching Characteristics

Timing Characteristics

Applies to 1.2 V DC Core Voltage

Table 2-70 • 1.2 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	STD	0.98	8.27	0.19	1.57	2.34	0.67	7.94	6.77	3.00	3.11	ns

Notes:

 The minimum drive strength for any LVCMOS 1.2 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-71 • 1.2 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	STD	0.98	3.38	0.19	1.57	2.34	0.67	3.26	2.78	2.99	3.24	ns

Notes:

1. The minimum drive strength for any LVCMOS 1.2 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Global Resource Characteristics

AGLP125 Clock Tree Topology

Clock delays are device-specific. Figure 2-21 is an example of a global tree used for clock routing. The global tree presented in Figure 2-21 is driven by a CCC located on the west side of the AGLP125 device. It is used to drive all D-flip-flops in the device.

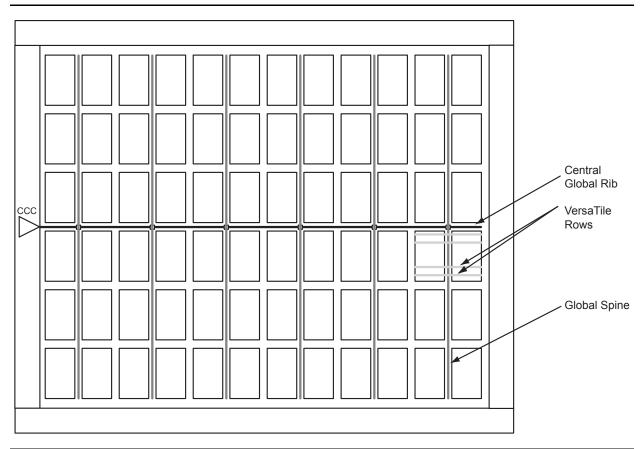


Figure 2-21 • Example of Global Tree Use in an AGLP125 Device for Clock Routing

Table 2-86 • AGLP125 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.36	1.71	ns
t _{RCKH}	Input High Delay for Global Clock	1.39	1.82	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.43	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-87 • AGLP030 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		:	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.80	2.09	ns
t _{RCKH}	Input High Delay for Global Clock	1.88	2.27	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.39	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

static Microsemi.

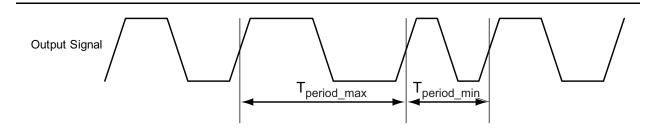
IGLOO PLUS DC and Switching Characteristics

Table 2-91 • IGLOO PLUS CCC/PLL Specification For IGLOO PLUS V2 Devices, 1.2 V DC Core Supply Voltage

Parameter	Min.	Тур.	Max.	Units
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		160	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		160	MHz
Delay Increments in Programmable Delay Blocks ^{1, 2}		580 ³		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Serial Clock (SCLK) for Dynamic PLL ^{4,5}			60	MHz
Input Cycle-to-Cycle Jitter (peak magnitude)			.25	ns
Acquisition Time				
LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁶				
LockControl = 0			4	ns
LockControl = 1			3	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1, 2}	2.3		20.86	ns
Delay Range in Block: Programmable Delay 2 ^{1, 2}	0.863		20.86	ns
Delay Range in Block: Fixed Delay ^{1, 2}		5.7		ns
VCO Output Peak-to-Peak Period Jitter F _{CCC_OUT} ⁷	Maximu	ım Peak-to-F	Peak Period	Jitter ^{7,8,9}
	$SSO \leq 2$	$SSO \leq 4$	$SSO \leq 8$	$SSO \leq 16$
0.75 MHz to 50 MHz	0.50%	1.20%	2.00%	3.00%
50 MHz to 160 MHz	2.50%	5.00%	7.00%	15.00%

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-6 for deratings.


2. $T_J = 25^{\circ}C$, VCC = 1.2 V

- 3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the online help associated with the core for more information.
- 4. Maximum value obtained for a STD speed grade device in Worst Case Commercial Conditions.For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 and Table 2-7 on page 2-6 for derating values.

5. The AGLP030 device does not support PLL.

- 6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.
- 7. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the per cent jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, regardless of the output divider settings.
- 8. Measurements are done with LVTTL 3.3 V, 8 mA, I/O drive strength and high slew rate. VCC/VCCPLL = 1.14 V, VCCI = 3.3 V, VQ/PQ/TQ type of packages, 20 pF load.
- 9. SSO are outputs that are synchronous to a single clock domain, and have their clock-to-out times within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO PLUS FPGA Fabric User's Guide

Note: Peak-to-peak jitter measurements are defined by $T_{peak-to-peak} = T_{period_max} - T_{period_min}$. *Figure 2-22* • Peak-to-Peak Jitter Definition

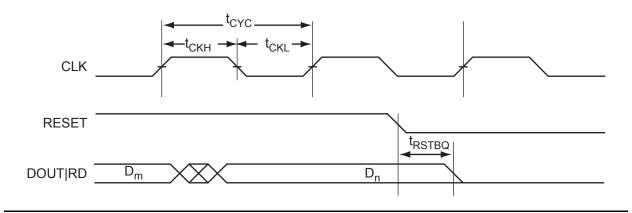
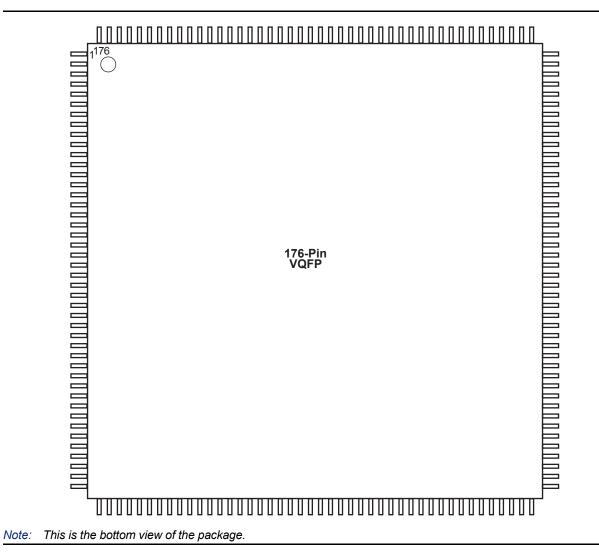
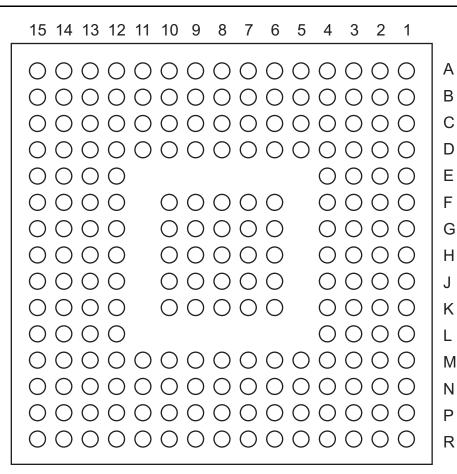



Figure 2-28 • RAM Reset

VQ176

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.



Package Pin Assignments

١	/Q176	V	/Q176	
Pin Number	AGLP060 Function	Pin Number	AGLP060 Function	
105	IO62RSB1	140	GBB0/IO32RSB	
106	IO61RSB1	141	GBC0/IO30RSB	
107	GCC2/IO60RSB1	142	IO29RSB0	
108	GCB2/IO59RSB1	143	IO28RSB0	
109	GCA2/IO58RSB1	144	IO27RSB0	
110	GCA0/IO57RSB1	145	VCCIB0	
111	GCA1/IO56RSB1	146	GND	
112	VCCIB1	147	IO26RSB0	
113	GND	148	IO25RSB0	
114	GCB0/IO55RSB1	149	IO24RSB0	
115	GCB1/IO54RSB1	150	IO23RSB0	
116	GCC0/IO53RSB1	151	IO22RSB0	
117	GCC1/IO52RSB1	152	IO21RSB0	
118	IO51RSB1	153	IO20RSB0	
119	IO50RSB1	154	IO19RSB0	
120	VCC	155	IO18RSB0	
121	IO48RSB1	156	VCC	
122	IO47RSB1	157	IO17RSB0	
123	IO45RSB1	158	IO16RSB0	
124	IO44RSB1	159	IO15RSB0	
125	IO43RSB1	160	IO14RSB0	
126	VCCIB1	161	IO13RSB0	
127	GND	162	IO12RSB0	
128	GBC2/IO40RSB1	163	IO11RSB0	
129	IO39RSB1	164	IO10RSB0	
130	GBB2/IO38RSB1	165	IO09RSB0	
131	IO37RSB1	166	VCCIB0	
132	GBA2/IO36RSB1	167	GND	
133	GBA1/IO35RSB0	168	IO07RSB0	
134	NC	169	IO08RSB0	
135	GBA0/IO34RSB0	170	GAC1/IO05RSE	
136	NC	171	IO06RSB0	
137	GBB1/IO33RSB0	172	GAB1/IO03RSE	
138	NC	173	GAC0/IO04RSE	
139	GBC1/IO31RSB0	174	GAB0/IO02RSE	

VQ176							
Pin Number	AGLP060 Function						
175	GAA1/IO01RSB0						
176	GAA0/IO00RSB0						

CS201

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

IGLOO PLUS Low Power Flash FPGAs

	CS281		CS281		CS281
Pin Number	AGLP125 Function	Pin Number	AGLP125 Function	Pin Number	AGLP125 Function
A1	GND	B18	VCCIB1	E13	IO48RSB0
A2	GAB0/IO02RSB0	B19	IO64RSB1	E14	GBB1/IO60RSB0
A3	GAC1/IO05RSB0	C1	GAB2/IO209RSB3	E15	IO53RSB0
A4	IO09RSB0	C2	IO210RSB3	E16	IO69RSB1
A5	IO13RSB0	C6	IO12RSB0	E18	IO68RSB1
A6	IO15RSB0	C14	IO47RSB0	E19	IO71RSB1
A7	IO18RSB0	C18	IO54RSB0	F1	IO198RSB3
A8	IO23RSB0	C19	GBB2/IO65RSB1	F2	GND
A9	IO25RSB0	D1	IO206RSB3	F3	IO201RSB3
A10	VCCIB0	D2	IO208RSB3	F4	IO204RSB3
A11	IO33RSB0	D4	GAA0/IO00RSB0	F5	IO16RSB0
A12	IO41RSB0	D5	GAA1/IO01RSB0	F15	IO50RSB0
A13	IO43RSB0	D6	IO10RSB0	F16	IO74RSB1
A14	IO46RSB0	D7	IO17RSB0	F17	IO72RSB1
A15	IO55RSB0	D8	IO24RSB0	F18	GND
A16	IO56RSB0	D9	IO27RSB0	F19	IO73RSB1
A17	GBC1/IO58RSB0	D10	GND	G1	IO195RSB3
A18	GBA0/IO61RSB0	D11	IO31RSB0	G2	IO200RSB3
A19	GND	D12	IO40RSB0	G4	IO202RSB3
B1	GAA2/IO211RSB3	D13	IO49RSB0	G5	IO08RSB0
B2	VCCIB0	D14	IO45RSB0	G7	GAC2/IO207RSB3
B3	GAB1/IO03RSB0	D15	GBB0/IO59RSB0	G8	VCCIB0
B4	GAC0/IO04RSB0	D16	GBA2/IO63RSB1	G9	IO26RSB0
B5	IO11RSB0	D18	GBC2/IO67RSB1	G10	IO35RSB0
B6	GND	D19	IO66RSB1	G11	IO44RSB0
B7	IO21RSB0	E1	IO203RSB3	G12	VCCIB0
B8	IO22RSB0	E2	IO205RSB3	G13	IO51RSB0
B9	IO28RSB0	E4	IO07RSB0	G15	IO70RSB1
B10	IO32RSB0	E5	IO06RSB0	G16	IO75RSB1
B11	IO36RSB0	E6	IO14RSB0	G18	GCC0/IO80RSB1
B12	IO39RSB0	E7	IO20RSB0	G19	GCB1/IO81RSB1
B13	IO42RSB0	E8	IO29RSB0	H1	GFB0/IO191RSB3
B14	GND	E9	IO34RSB0	H2	IO196RSB3
B15	IO52RSB0	E10	IO30RSB0	H4	GFC1/IO194RSB3
B16	GBC0/IO57RSB0	E11	IO37RSB0	H5	GFB1/IO192RSB3
B17	GBA1/IO62RSB0	E12	IO38RSB0	H7	VCCIB3

IGLOO PLUS Low Power Flash FPGAs

CS289		CS289		C	CS289	
Pin Number	AGLP030 Function	Pin Number	AGLP030 Function	Pin Number	AGLP030 Function	
A1	IO03RSB0	C4	NC	E7	IO06RSB0	
A2	NC	C5	VCCIB0	E8	IO11RSB0	
A3	NC	C6	IO09RSB0	E9	IO22RSB0	
A4	GND	C7	IO13RSB0	E10	IO26RSB0	
A5	IO10RSB0	C8	IO15RSB0	E11	VCCIB0	
A6	IO14RSB0	C9	IO21RSB0	E12	NC	
A7	IO16RSB0	C10	GND	E13	IO33RSB0	
A8	IO18RSB0	C11	IO29RSB0	E14	IO36RSB1	
A9	GND	C12	NC	E15	IO38RSB1	
A10	IO23RSB0	C13	NC	E16	VCCIB1	
A11	IO27RSB0	C14	NC	E17	NC	
A12	NC	C15	GND	F1	IO111RSB3	
A13	NC	C16	IO34RSB0	F2	NC	
A14	GND	C17	NC	F3	IO116RSB3	
A15	NC	D1	NC	F4	VCCIB3	
A16	NC	D2	IO119RSB3	F5	IO117RSB3	
A17	IO30RSB0	D3	GND	F6	NC	
B1	IO01RSB0	D4	IO02RSB0	F7	NC	
B2	GND	D5	NC	F8	IO08RSB0	
B3	NC	D6	NC	F9	IO12RSB0	
B4	NC	D7	NC	F10	NC	
B5	IO07RSB0	D8	GND	F11	NC	
B6	NC	D9	IO20RSB0	F12	NC	
B7	VCCIB0	D10	IO25RSB0	F13	NC	
B8	IO17RSB0	D11	NC	F14	GND	
B9	IO19RSB0	D12	NC	F15	NC	
B10	IO24RSB0	D13	GND	F16	IO37RSB1	
B11	IO28RSB0	D14	IO32RSB0	F17	IO41RSB1	
B12	VCCIB0	D15	IO35RSB0	G1	IO110RSB3	
B13	NC	D16	NC	G2	GND	
B14	NC	D17	NC	G3	IO113RSB3	
B15	NC	E1	VCCIB3	G4	NC	
B16	IO31RSB0	E2	IO114RSB3	G5	NC	
B17	GND	E3	IO115RSB3	G6	NC	
C1	NC	E4	IO118RSB3	G7	GND	
C2	IO00RSB0	E5	IO05RSB0	G8	GND	
C3	IO04RSB0	E6	NC	G9	VCC	

Package Pin Assignments

CS289		CS289		CS289	
Pin Number	AGLP030 Function	Pin Number	AGLP030 Function	Pin Number	AGLP030 Function
G10	GND	J13	IO43RSB1	L16	NC
G11	GND	J14	IO51RSB1	L17	NC
G12	IO40RSB1	J15	IO52RSB1	M1	NC
G13	NC	J16	GDC0/IO46RSB1	M2	VCCIB3
G14	IO39RSB1	J17	GDA0/IO47RSB1	M3	IO100RSB3
G15	IO44RSB1	K1	GND	M4	IO98RSB3
G16	NC	K2	GEB0/IO106RSB3	M5	IO93RSB3
G17	GND	K3	IO102RSB3	M6	IO97RSB3
H1	NC	K4	IO104RSB3	M7	NC
H2	GEC0/IO108RSB3	K5	IO99RSB3	M8	NC
H3	NC	K6	NC	M9	IO71RSB2
H4	IO112RSB3	K7	GND	M10	NC
H5	NC	K8	GND	M11	IO63RSB2
H6	IO109RSB3	К9	GND	M12	NC
H7	GND	K10	GND	M13	IO57RSB1
H8	GND	K11	GND	M14	NC
H9	GND	K12	NC	M15	NC
H10	GND	K13	NC	M16	NC
H11	GND	K14	NC	M17	VCCIB1
H12	NC	K15	IO53RSB1	N1	NC
H13	NC	K16	GND	N2	NC
H14	IO45RSB1	K17	IO49RSB1	N3	IO95RSB3
H15	VCCIB1	L1	IO103RSB3	N4	IO96RSB3
H16	GDB0/IO48RSB1	L2	IO101RSB3	N5	GND
H17	IO42RSB1	L3	NC	N6	NC
J1	NC	L4	GND	N7	IO85RSB2
J2	GEA0/IO107RSB3	L5	NC	N8	IO79RSB2
J3	VCCIB3	L6	NC	N9	IO77RSB2
J4	IO105RSB3	L7	GND	N10	VCCIB2
J5	NC	L8	GND	N11	NC
J6	NC	L9	VCC	N12	NC
J7	VCC	L10	GND	N13	IO59RSB2
J8	GND	L11	GND	N14	NC
J9	GND	L12	IO58RSB1	N15	GND
J10	GND	L13	IO54RSB1	N16	IO56RSB1
J11	VCC	L14	VCCIB1	N17	IO55RSB1
J12	IO50RSB1	L15	NC	P1	IO94RSB3

IGLOO PLUS Low Power Flash FPGAs

Revision	Changes	Page
Revision 11 (continued)	The tables in the "Single-Ended I/O Characteristics" section were updated. Notes clarifying IIL and IIH were added.	
	Tables for 3.3 V LVCMOS and 1.2 V LVCMOS wide range were added (SAR 79370, SAR 79353, and SAR 79366).	
	Notes in the wide range tables state that the minimum drive strength for any LVCMOS 3.3 V (or LVCMOS 1.2 V) software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 25700).	
	The following sentence was deleted from the "2.5 V LVCMOS" section: It uses a 5 V-tolerant input buffer and push-pull output buffer (SAR 24916).	2-32
	The tables in the "Input Register" section, "Output Register" section, and "Output Enable Register" section were updated. The tables in the "VersaTile Characteristics" section were updated.	
	The following tables were updated in the "Global Tree Timing Characteristics" section:	2-58
	Table 2-85 • AGLP060 Global Resource (1.5 V)	
	Table 2-86 • AGLP125 Global Resource (1.5 V)	
	Table 2-88 • AGLP060 Global Resource (1.2 V)	
	Table 2-90 • IGLOO PLUS CCC/PLL Specification and Table 2-91 • IGLOO PLUS CCC/PLL Specification were revised (SAR 79388). VCO output jitter and maximum peak-to-peak jitter data were changed. Three notes were added to the table in connection with these changes.	2-61
	Figure 2-28 • Write Access after Write onto Same Address and Figure 2-29 • Write Access after Read onto Same Address were deleted.	N/A
	The tables in the "SRAM", "FIFO" and "Embedded FlashROM Characteristics" sections were updated.	2-68, 2-78

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "IGLOO PLUS Device" table on page II, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Production

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The products described in this advance status document may not have completed the Microsemi qualification process. Products may be amended or enhanced during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for additional reliability information.