

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	·
Number of Logic Elements/Cells	1584
Total RAM Bits	18432
Number of I/O	157
Number of Gates	60000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	201-VFBGA, CSBGA
Supplier Device Package	201-CSP (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/aglp060v5-csg201i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

🌜 Microsemi.

IGLOO PLUS Low Power Flash FPGAs

I/Os Per Package¹

IGLOO PLUS Devices	AGLP030	LP030 AGLP060					
Package		Single-Ended I/Os					
CS201	120	157	_				
CS281	-	-	212				
CS289	120	157	212				
VQ128	101	-	_				
VQ176	-	137	_				

Note: When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not used as a regular I/O, the number of singleended user I/Os available is reduced by one.

Table 2 • IGLOO PLUS FPGAs Package Size Dimensions

Package	CS201	CS281	CS289	VQ128	VQ176
Length × Width (mm/mm)	8 × 8	10 × 10	14 × 14	14 × 14	20 × 20
Nominal Area (mm2)	64	100	196	196	400
Pitch (mm)	0.5	0.5	0.8	0.4	0.4
Height (mm)	0.89	1.05	1.20	1.0	1.0

IGLOO PLUS Device Status

IGLOO PLUS Device	Status
AGLP030	Production
AGLP060	Production
AGLP125	Production

The IGLOO PLUS family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the IGLOO PLUS family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/communications, computing, and avionics markets.

Firm-Error Immunity

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of IGLOO PLUS flash-based FPGAs. Once it is programmed, the flash cell configuration element of IGLOO PLUS FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Advanced Flash Technology

The IGLOO PLUS family offers many benefits, including nonvolatility and reprogrammability, through an advanced flash-based, 130 nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

IGLOO PLUS family FPGAs utilize design and process techniques to minimize power consumption in all modes of operation.

Advanced Architecture

The proprietary IGLOO PLUS architecture provides granularity comparable to standard-cell ASICs. The IGLOO PLUS device consists of five distinct and programmable architectural features (Figure 1-1 on page 1-4):

- Flash*Freeze technology
- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory[†]
- Extensive CCCs and PLLs[†]
- Advanced I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the IGLOO PLUS core tile as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC® family of third-generation-architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

[†] The AGLP030 device does not support PLL or SRAM.

IGLOO PLUS Device Family Overview

SRAM and FIFO

IGLOO PLUS devices (except AGLP030 devices) have embedded SRAM blocks along their north side. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in AGLP030 devices).

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

IGLOO PLUS devices provide designers with very flexible clock conditioning circuit (CCC) capabilities. Each member of the IGLOO PLUS family contains six CCCs. One CCC (center west side) has a PLL. The AGLP030 device does not have a PLL or CCCs; it contains only inputs to six globals.

The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC (center west side) has a PLL.

The four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

The CCC block has these key features:

- Wide input frequency range (f_{IN CCC}) = 1.5 MHz up to 250 MHz
- Output frequency range (f_{OUT CCC}) = 0.75 MHz up to 250 MHz
- 2 programmable delay types for clock skew minimization
- Clock frequency synthesis (for PLL only)

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration (for PLL only).
- Output duty cycle = 50% ± 1.5% or better (for PLL only)
- Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used (for PLL only)
- Maximum acquisition time is 300 µs (for PLL only)
- Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns (for PLL only)
- + Four precise phases; maximum misalignment between adjacent phases (for PLL only) is 40 ps × 250 MHz / $f_{OUT\ CCC}$

Global Clocking

IGLOO PLUS devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.

Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

I/Os with Advanced I/O Standards

The IGLOO PLUS family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.0 V wide range, and 3.3 V). IGLOO PLUS FPGAs support many different I/O standards.

The I/Os are organized into four banks. All devices in IGLOO PLUS have four banks. The configuration of these banks determines the I/O standards supported.

IGLOO PLUS DC and Switching Characteristics

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ja} are shown for two air flow rates. The maximum operating junction temperature is 100°C. EQ 2 shows a sample calculation of the maximum operating power dissipation allowed for a 484-pin FBGA package at commercial temperature and in still air.

EQ 2

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{100°C - 70°C}{20.5°C/W} = 1.46 \text{ W}$$

		Pin			$ heta_{ja}$			
Package Type	Device	Count	θ_{jc}	θ_{jb}	Still Air	1 m/s	2.5 m/s	Unit
Chip Scale Package (CSP)	AGLP030	CS201	-	-	46.3	-	-	C/W
	AGLP060	CS201	7.1	19.7	40.5	35.1	32.9	C/W
	AGLP060	CS289	13.9	34.1	48.7	43.5	41.9	C/W
	AGLP125	CS289	10.8	27.9	42.2	37.1	35.5	C/W
	AGLP125	CS281	11.3	17.6	-	-	-	C/W
Thin Quad Flat Package (VQ)	AGLP030	VQ128	18.0	50.0	56.0	49.0	47.0	C/W
	AGLP060	VQ176	21.0	55.0	58.0	52.0	50.0	C/W

Table 2-5 • Package Thermal Resistivities

Temperature and Voltage Derating Factors

Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.425 V)

For IGLOO PLUS V2 or V5 devices, 1.5 V DC Core Supply Voltage

Array Voltage		Junction Temperature (°C)											
VCC (V)	–40°C	O°C	25°C	70°C	85°C	100°C							
1.425	0.934	0.953	0.971	1.000	1.007	1.013							
1.5	0.855	0.874	0.891	0.917	0.924	0.929							
1.575	0.799	0.816	0.832	0.857	0.864	0.868							

Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.14 V)

For IGLOO PLUS V2, 1.2 V DC Core Supply Voltage

Array Voltage		Junction Temperature (°C)											
VCC (V)	–40°C	0°C	25°C	70°C	85°C	100°C							
1.14	0.963	0.975	0.989	1.000	1.007	1.011							
1.2	0.853	0.865	.0877	0.893	0.893	0.897							
1.26	0.781	0.792	0.803	0.813	0.819	0.822							

Calculating Power Dissipation

Quiescent Supply Current

Quiescent supply current (I_{DD}) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power mode usage. Microsemi recommends using the Power Calculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature.

Table 2-8 • Power Supply State per Mode

		Power Supply Configurations									
Modes/Power Supplies	VCC	VCCPLL	VCCI	VJTAG	VPUMP						
Flash*Freeze	On	On	On	On	On/off/floating						
Sleep	Off	Off	On	Off	Off						
Shutdown	Off	Off	Off	Off	Off						
No Flash*Freeze	On	On	On	On	On/off/floating						

Note: Off: Power Supply level = 0 V

Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Flash*Freeze Mode*

	Core Voltage	AGLP030	AGLP060	AGLP125	Units
Typical (25°C)	1.2 V	4	8	13	μA
	1.5 V	6	10	18	μA
		6	10	18	

Note: *IDD includes VCC, VPUMP, VCCI, VJTAG, and VCCPLL currents.

Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Sleep Mode*

ICCI Current	Core Voltage	AGLP030	AGLP060	AGLP125	Units
VCCI = 1.2 V (per bank) Typical (25°C)	1.2 V	1.7	1.7	1.7	μA
VCCI = 1.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.8	1.8	1.8	μA
VCCI = 1.8 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.9	1.9	1.9	μA
VCCI = 2.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.2	2.2	2.2	μA
VCCI = 3.3 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.5	2.5	2.5	μA

Note: *IDD = N_{BANKS} * ICCI

Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Shutdown Mode

	Core Voltage	AGLP030	AGLP060	AGLP125	Units
Typical (25°C)	1.2 V / 1.5 V	0	0	0	μA

I/O Standard	Drive Strength	Equivalent Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	teouт	top	t _{DIN}	tev)	tpys	teour	tzı	tzH	tız	t _{HZ}	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	5 pF	-	0.98	2.31	0.19	0.99	1.37	0.67	2.34	1.86	2.65	3.38	ns
3.3 V LVCMOS Wide Range ²	100 µA	12 mA	High	5 pF	Ι	0.98	3.21	0.19	1.32	1.92	0.67	3.21	2.52	3.73	4.73	ns
2.5 V LVCMOS	12 mA	12 mA	High	5 pF	-	0.98	2.29	0.19	1.19	1.40	0.67	2.32	1.94	2.65	3.27	ns
1.8 V LVCMOS	8 mA	8 mA	High	5 pF	-	0.98	2.45	0.19	1.12	1.61	0.67	2.48	2.16	2.71	3.16	ns
1.5 V LVCMOS	4 mA	4 mA	High	5 pF	-	0.98	2.71	0.19	1.26	1.80	0.67	2.75	2.39	2.78	3.15	ns
1.2 V LVCMOS	2 mA	2 mA	High	5 pF	-	0.98	3.38	0.19	1.57	2.34	0.67	3.26	2.78	2.99	3.24	ns
1.2 V LVCMOS Wide Range ³	100 µA	2 mA	High	5 pF	-	0.98	3.38	0.19	1.57	2.34	0.67	3.26	2.78	2.99	3.24	ns

Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings, STD Speed GradeCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
 For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer.

3.3 V LVTTL / 3.3 V LVCMOS	v	IL	v	н	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	103	109	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	103	109	10	10

Table 2-34 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
$$rac{1}{1}$$
 $rac{1}{1}$ $rac{1$

Figure 2-7 • AC Loading

Table 2-35 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	1.4	5

Note: **Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.*

🌜 Microsemi.

IGLOO PLUS DC and Switching Characteristics

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	v	1L	v	н	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	3.6	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	3.6	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	32	37	10	10
12 mA	-0.3	0.7	1.7	3.6	0.7	1.7	12	12	65	74	10	10

Table 2-46 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
$$rac{1}{4}$$
 $rac{1}{4}$ $rac{1$

Figure 2-8 • AC Loading

Table 2-47 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	2.5	1.2	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

static Microsemi.

IGLOO PLUS DC and Switching Characteristics

Timing Characteristics

Applies to 1.2 V DC Core Voltage

Table 2-70 • 1.2 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V

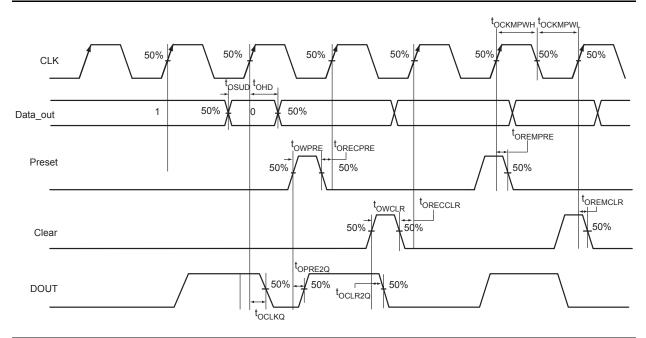
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	STD	0.98	8.27	0.19	1.57	2.34	0.67	7.94	6.77	3.00	3.11	ns

Notes:

 The minimum drive strength for any LVCMOS 1.2 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-71 • 1.2 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V


Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	STD	0.98	3.38	0.19	1.57	2.34	0.67	3.26	2.78	2.99	3.24	ns

Notes:

1. The minimum drive strength for any LVCMOS 1.2 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3. Software default selection highlighted in gray.

Output Register

Figure 2-15 • Output Register Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-76 • Output Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{oclkq}	Clock-to-Q of the Output Data Register	0.66	ns
tosud	Data Setup Time for the Output Data Register	0.33	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	0.82	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	0.88	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.24	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.24	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.19	ns
t _{оскмрwн}	Clock Minimum Pulse Width High for the Output Data Register	0.31	ns
t _{OCKMPWL}	Clock Minimum Pulse Width Low for the Output Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

🌜 Microsemi.

IGLOO PLUS DC and Switching Characteristics

Embedded SRAM and FIFO Characteristics

RAM4K9 **RAM512X18** RADDR8 **RD17** ADDRA11 DOUTA8 RADDR7 RD16 DOUTA7 ADDRA10 -٠ . . ٠ DOUTAO ADDRA0 RADDR0 RD0 DINA8 DINA7 . RW1 RW0 DINA0 WIDTHA1 WIDTHA0 PIPE PIPEA WMODEA BLKA d REN WENA O RCLK CLKA ADDRB11 DOUTB8 WADDR8 ADDRB10 DOUTB7 WADDR7 ٠ ٠ ADDRB0 DOUTBO WADDR0 WD17 WD16 DINB8 DINB7 • WD0 . DINB0 WW1 ŴŴŎ WIDTHB1 WIDTHB0 PIPEB WMODEB BLKB -d WEN WENB d **DWCLK CLKB** RESET RESET

SRAM

Figure 2-23 • RAM Models

IGLOO PLUS DC and Switching Characteristics

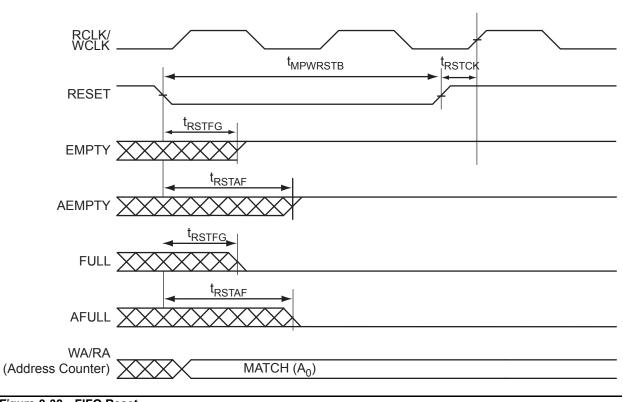
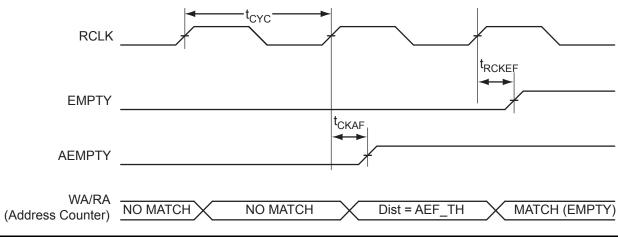
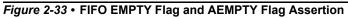




Figure 2-32 • FIFO Reset

Pin Descriptions and Packaging

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on IGLOO PLUS devices.

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

IGLOO PLUS devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

GL

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO PLUS FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the I/O Structure chapter of the IGLOO PLUS FPGA Fabric User's Guide for an explanation of the naming of global pins.

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC

Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Packaging

Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility.

Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems.

Related Documents

IGLOO PLUS Device Family User's Guide

http://www.microsemi.com/soc/documents/IGLOOPLUS_UG.pdf

The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf

This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials are available at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

IGLOO PLUS Low Power Flash FPGAs

V	/Q176	\ \	/Q176	V	/Q176
Pin Number	AGLP060 Function	Pin Number	AGLP060 Function	Pin Number	AGLP060 Function
1	GAA2/IO156RSB3	36	IO119RSB3	70	IO89RSB2
2	IO155RSB3	37	GND	71	IO88RSB2
3	GAB2/IO154RSB3	38	VCCIB3	72	IO87RSB2
4	IO153RSB3	39	GEC1/IO116RSB3	73	IO86RSB2
5	GAC2/IO152RSB3	40	GEB1/IO114RSB3	74	IO85RSB2
6	GND	41	GEC0/IO115RSB3	75	IO84RSB2
7	VCCIB3	42	GEB0/IO113RSB3	76	GND
8	IO149RSB3	43	GEA1/IO112RSB3	77	VCCIB2
9	IO147RSB3	44	GEA0/IO111RSB3	78	IO83RSB2
10	IO145RSB3	45	GEA2/IO110RSB2	79	IO82RSB2
11	IO144RSB3	46	NC	80	GDC2/IO80RSB2
12	IO143RSB3	47	FF/GEB2/IO109R	81	IO81RSB2
13	VCC		SB2	82	GDA2/IO78RSB2
14	IO141RSB3	48	GEC2/IO108RSB2	83	GDB2/IO79RSB2
15	GFC1/IO140RSB3	49	IO106RSB2	84	NC
16	GFB1/IO138RSB3	50	IO107RSB2	85	NC
17	GFB0/IO137RSB3	51	IO104RSB2	86	тск
18	VCOMPLF	52	IO105RSB2	87	TDI
19	GFA1/IO136RSB3	53	IO102RSB2	88	TMS
20	VCCPLF	54	IO103RSB2	89	VPUMP
21	GFA0/IO135RSB3	55	GND	90	TDO
22	GND	56	VCCIB2	91	TRST
23	VCCIB3	57	IO101RSB2	92	VJTAG
24	GFA2/IO134RSB3	58	IO100RSB2	93	GDA1/IO76RSB1
25	GFB2/IO133RSB3	59	IO99RSB2	94	GDC0/IO73RSB1
26	GFC2/IO132RSB3	60	IO98RSB2	95	GDB1/IO74RSB1
27	IO131RSB3	61	IO97RSB2	96	GDC1/IO72RSB1
28	IO130RSB3	62	IO96RSB2	97	VCCIB1
29	IO129RSB3	63	IO95RSB2	98	GND
30	IO127RSB3	64	IO94RSB2	99	IO70RSB1
31	IO126RSB3	65	IO93RSB2	100	IO69RSB1
32	IO125RSB3	66	VCC	101	IO67RSB1
33	IO123RSB3	67	IO92RSB2	102	IO66RSB1
34	IO122RSB3	68	IO91RSB2	103	IO65RSB1
35	IO121RSB3	69	IO90RSB2	104	IO63RSB1

IGLOO PLUS Low Power Flash FPGAs

	CS281		CS281		CS281
Pin Number	AGLP125 Function	Pin Number	AGLP125 Function	Pin Number	AGLP125 Function
A1	GND	B18	VCCIB1	E13	IO48RSB0
A2	GAB0/IO02RSB0	B19	IO64RSB1	E14	GBB1/IO60RSB0
A3	GAC1/IO05RSB0	C1	GAB2/IO209RSB3	E15	IO53RSB0
A4	IO09RSB0	C2	IO210RSB3	E16	IO69RSB1
A5	IO13RSB0	C6	IO12RSB0	E18	IO68RSB1
A6	IO15RSB0	C14	IO47RSB0	E19	IO71RSB1
A7	IO18RSB0	C18	IO54RSB0	F1	IO198RSB3
A8	IO23RSB0	C19	GBB2/IO65RSB1	F2	GND
A9	IO25RSB0	D1	IO206RSB3	F3	IO201RSB3
A10	VCCIB0	D2	IO208RSB3	F4	IO204RSB3
A11	IO33RSB0	D4	GAA0/IO00RSB0	F5	IO16RSB0
A12	IO41RSB0	D5	GAA1/IO01RSB0	F15	IO50RSB0
A13	IO43RSB0	D6	IO10RSB0	F16	IO74RSB1
A14	IO46RSB0	D7	IO17RSB0	F17	IO72RSB1
A15	IO55RSB0	D8	IO24RSB0	F18	GND
A16	IO56RSB0	D9	IO27RSB0	F19	IO73RSB1
A17	GBC1/IO58RSB0	D10	GND	G1	IO195RSB3
A18	GBA0/IO61RSB0	D11	IO31RSB0	G2	IO200RSB3
A19	GND	D12	IO40RSB0	G4	IO202RSB3
B1	GAA2/IO211RSB3	D13	IO49RSB0	G5	IO08RSB0
B2	VCCIB0	D14	IO45RSB0	G7	GAC2/IO207RSB3
B3	GAB1/IO03RSB0	D15	GBB0/IO59RSB0	G8	VCCIB0
B4	GAC0/IO04RSB0	D16	GBA2/IO63RSB1	G9	IO26RSB0
B5	IO11RSB0	D18	GBC2/IO67RSB1	G10	IO35RSB0
B6	GND	D19	IO66RSB1	G11	IO44RSB0
B7	IO21RSB0	E1	IO203RSB3	G12	VCCIB0
B8	IO22RSB0	E2	IO205RSB3	G13	IO51RSB0
B9	IO28RSB0	E4	IO07RSB0	G15	IO70RSB1
B10	IO32RSB0	E5	IO06RSB0	G16	IO75RSB1
B11	IO36RSB0	E6	IO14RSB0	G18	GCC0/IO80RSB1
B12	IO39RSB0	E7	IO20RSB0	G19	GCB1/IO81RSB1
B13	IO42RSB0	E8	IO29RSB0	H1	GFB0/IO191RSB3
B14	GND	E9	IO34RSB0	H2	IO196RSB3
B15	IO52RSB0	E10	IO30RSB0	H4	GFC1/IO194RSB3
B16	GBC0/IO57RSB0	E11	IO37RSB0	H5	GFB1/IO192RSB3
B17	GBA1/IO62RSB0	E12	IO38RSB0	H7	VCCIB3

stati Microsemi.
IGLOO PLUS Low Power Flash FPGAs

	CS281		CS281
Pin Number	AGLP125 Function	Pin Number	AGLP125 Function
R15	IO109RSB2	V10	IO133RSB2
R16	GDA1/IO103RSB1	V11	IO127RSB2
R18	GDB0/IO102RSB1	V12	IO123RSB2
R19	GDC0/IO100RSB1	V13	IO120RSB2
T1	IO171RSB3	V14	GND
T2	GEC0/IO169RSB3	V15	IO113RSB2
T4	GEB0/IO167RSB3	V16	GDA2/IO105RSB2
T5	IO157RSB2	V17	TDI
Т6	IO158RSB2	V18	VCCIB2
Τ7	IO148RSB2	V19	TDO
Т8	IO145RSB2	W1	GND
Т9	IO143RSB2	W2	FF/GEB2/IO163RSE 2
T10	GND	W3	IO155RSB2
T11	IO129RSB2	W4	IO152RSB2
T12	IO126RSB2	W5	IO150RSB2
T13	IO125RSB2	W6	IO147RSB2
T14	IO116RSB2	W7	IO142RSB2
T15	GDC2/IO107RSB2	W8	IO139RSB2
T16	TMS	W9	IO136RSB2
T18	VJTAG	W10	VCCIB2
T19	GDB1/IO101RSB1	W11	IO128RSB2
U1	IO160RSB2	W12	IO124RSB2
U2	GEA1/IO166RSB3	W13	IO119RSB2
U6	IO151RSB2	W14	IO115RSB2
U14	IO121RSB2	W15	IO114RSB2
U18	TRST	W16	IO110RSB2
U19	GDA0/IO104RSB1	W17	GDB2/IO106RSB2
V1	IO159RSB2	W18	ТСК
V2	VCCIB3	W19	GND
V3	GEC2/IO162RSB2		
V4	IO156RSB2		
V5	IO153RSB2		
V6	GND		
V7	IO144RSB2		
V8	IO141RSB2		

V9

IO140RSB2

Package Pin Assignments

	CS289		CS289	C	S289
Pin Number	AGLP030 Function	Pin Number	AGLP030 Function	Pin Number	AGLP030 Function
G10	GND	J13	IO43RSB1	L16	NC
G11	GND	J14	IO51RSB1	L17	NC
G12	IO40RSB1	J15	IO52RSB1	M1	NC
G13	NC	J16	GDC0/IO46RSB1	M2	VCCIB3
G14	IO39RSB1	J17	GDA0/IO47RSB1	M3	IO100RSB3
G15	IO44RSB1	K1	GND	M4	IO98RSB3
G16	NC	K2	GEB0/IO106RSB3	M5	IO93RSB3
G17	GND	K3	IO102RSB3	M6	IO97RSB3
H1	NC	K4	IO104RSB3	M7	NC
H2	GEC0/IO108RSB3	K5	IO99RSB3	M8	NC
H3	NC	K6	NC	M9	IO71RSB2
H4	IO112RSB3	K7	GND	M10	NC
H5	NC	K8	GND	M11	IO63RSB2
H6	IO109RSB3	К9	GND	M12	NC
H7	GND	K10	GND	M13	IO57RSB1
H8	GND	K11	GND	M14	NC
H9	GND	K12	NC	M15	NC
H10	GND	K13	NC	M16	NC
H11	GND	K14	NC	M17	VCCIB1
H12	NC	K15	IO53RSB1	N1	NC
H13	NC	K16	GND	N2	NC
H14	IO45RSB1	K17	IO49RSB1	N3	IO95RSB3
H15	VCCIB1	L1	IO103RSB3	N4	IO96RSB3
H16	GDB0/IO48RSB1	L2	IO101RSB3	N5	GND
H17	IO42RSB1	L3	NC	N6	NC
J1	NC	L4	GND	N7	IO85RSB2
J2	GEA0/IO107RSB3	L5	NC	N8	IO79RSB2
J3	VCCIB3	L6	NC	N9	IO77RSB2
J4	IO105RSB3	L7	GND	N10	VCCIB2
J5	NC	L8	GND	N11	NC
J6	NC	L9	VCC	N12	NC
J7	VCC	L10	GND	N13	IO59RSB2
J8	GND	L11	GND	N14	NC
J9	GND	L12	IO58RSB1	N15	GND
J10	GND	L13	IO54RSB1	N16	IO56RSB1
J11	VCC	L14	VCCIB1	N17	IO55RSB1
J12	IO50RSB1	L15	NC	P1	IO94RSB3

stati Microsemi.
IGLOO PLUS Low Power Flash FPGAs

(CS289) C	CS289		
Pin Number	AGLP030 Function	Pin Number	AGLP030 Function		
P2	NC	T5	NC		
P3	GND	Т6	IO84RSB2		
P4	NC	T7	IO81RSB2		
P5	NC	Т8	IO76RSB2		
P6	IO87RSB2	Т9	VCCIB2		
P7	IO80RSB2	T10	IO69RSB2		
P8	GND	T11	IO65RSB2		
P9	IO72RSB2	T12	IO64RSB2		
P10	IO67RSB2	T13	NC		
P11	IO61RSB2	T14	GND		
P12	NC	T15	NC		
P13	VCCIB2	T16	TDI		
P14	NC	T17	TDO		
P15	IO60RSB2	U1	FF/IO90RSB2		
P16	IO62RSB2	U2	GND		
P17	VJTAG	U3	NC		
R1	GND	U4	IO88RSB2		
R2	IO91RSB2	U5	IO86RSB2		
R3	NC	U6	IO82RSB2		
R4	NC	U7	GND		
R5	NC	U8	IO75RSB2		
R6	VCCIB2	U9	IO73RSB2		
R7	IO83RSB2	U10	IO68RSB2		
R8	IO78RSB2	U11	IO66RSB2		
R9	IO74RSB2	U12	GND		
R10	IO70RSB2	U13	NC		
R11	GND	U14	NC		
R12	NC	U15	NC		
R13	NC	U16	ТСК		
R14	NC	U17	VPUMP		
R15	NC	<u> </u>			
R16	TMS	1			
R17	TRST	1			
T1	IO92RSB3	1			
T2	IO89RSB2	1			
T3	NC	1			
		4			

T4

GND

Package Pin Assignments

CS289		CS289		CS289	
Pin Number	AGLP060 Function	Pin Number	AGLP060 Function	Pin Number	AGLP060 Function
A1	GAB1/IO03RSB0	C5	VCCIB0	E9	IO22RSB0
A2	NC	C6	IO09RSB0	E10	IO26RSB0
A3	NC	C7	IO13RSB0	E11	VCCIB0
A4	GND	C8	IO15RSB0	E12	NC
A5	IO10RSB0	C9	IO21RSB0	E13	GBB1/IO33RSB0
A6	IO14RSB0	C10	GND	E14	GBA2/IO36RSB1
A7	IO16RSB0	C11	IO29RSB0	E15	GBB2/IO38RSB1
A8	IO18RSB0	C12	NC	E16	VCCIB1
A9	GND	C13	NC	E17	IO44RSB1
A10	IO23RSB0	C14	NC	F1	GFC1/IO140RSB3
A11	IO27RSB0	C15	GND	F2	IO142RSB3
A12	NC	C16	GBA0/IO34RSB0	F3	IO149RSB3
A13	NC	C17	IO39RSB1	F4	VCCIB3
A14	GND	D1	IO150RSB3	F5	GAB2/IO154RSB3
A15	NC	D2	IO151RSB3	F6	IO153RSB3
A16	NC	D3	GND	F7	NC
A17	GBC0/IO30RSB0	D4	GAB0/IO02RSB0	F8	IO08RSB0
B1	GAA1/IO01RSB0	D5	NC	F9	IO12RSB0
B2	GND	D6	NC	F10	NC
B3	NC	D7	NC	F11	NC
B4	NC	D8	GND	F12	NC
B5	IO07RSB0	D9	IO20RSB0	F13	GBC2/IO40RSB1
B6	NC	D10	IO25RSB0	F14	GND
B7	VCCIB0	D11	NC	F15	IO43RSB1
B8	IO17RSB0	D12	NC	F16	IO46RSB1
B9	IO19RSB0	D13	GND	F17	IO45RSB1
B10	IO24RSB0	D14	GBB0/IO32RSB0	G1	GFC0/IO139RSB3
B11	IO28RSB0	D15	GBA1/IO35RSB0	G2	GND
B12	VCCIB0	D16	IO37RSB1	G3	IO144RSB3
B13	NC	D17	IO42RSB1	G4	IO145RSB3
B14	NC	E1	VCCIB3	G5	IO146RSB3
B15	NC	E2	IO147RSB3	G6	IO148RSB3
B16	GBC1/IO31RSB0	E3	GAC2/IO152RSB3	G7	GND
B17	GND	E4	GAA2/IO156RSB3	G8	GND
C1	IO155RSB3	E5	GAC1/IO05RSB0	G9	VCC
C2	GAA0/IO00RSB0	E6	NC	G10	GND
C3	GAC0/IO04RSB0	E7	IO06RSB0	G11	GND
C4	NC	E8	IO11RSB0	G12	IO48RSB1