

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	1584
Total RAM Bits	18432
Number of I/O	157
Number of Gates	60000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	289-TFBGA, CSBGA
Supplier Device Package	289-CSP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/aglp060v5-csg289

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note: *Not supported by AGLP030 devices

Figure 1-1 • IGLOO PLUS Device Architecture Overview with Four I/O Banks (AGLP030, AGLP060, and AGLP125)

Flash*Freeze Technology

The IGLOO PLUS device has an ultra-low power static mode, called Flash*Freeze mode, which retains all SRAM and register information and can still quickly return to normal operation. Flash*Freeze technology enables the user to quickly (within 1 μ s) enter and exit Flash*Freeze mode by activating the Flash*Freeze pin while all power supplies are kept at their original values. In addition, I/Os and global I/Os can still be driven and can be toggling without impact on power consumption, clocks can still be driven or can be toggling without impact on power consumption, and the device retains all core registers, SRAM information, and I/O states. I/Os can be individually configured to either hold their previous state or be tristated during Flash*Freeze mode. Alternatively, they can be set to a certain state using weak pull-up or pull-down I/O attribute configuration. No power is consumed by the I/O banks, clocks, JTAG pins, or PLL, and the device consumes as little as 5 μ W in this mode.

Flash*Freeze technology allows the user to switch to Active mode on demand, thus simplifying the power management of the device.

The Flash*Freeze pin (active low) can be routed internally to the core to allow the user's logic to decide when it is safe to transition to this mode. Refer to Figure 1-2 for an illustration of entering/exiting Flash*Freeze mode. It is also possible to use the Flash*Freeze pin as a regular I/O if Flash*Freeze mode usage is not planned.

Figure 1-2 • IGLOO PLUS Flash*Freeze Mode

Each I/O module contains several input, output, and output enable registers.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered-up system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Wide Range I/O Support

IGLOO PLUS devices support JEDEC-defined wide range I/O operation. IGLOO PLUS devices support both the JESD8-B specification, covering 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to 1.575 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-4 on page 1-8).
 - Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
 - 1 I/O is set to drive out logic High
 - 0 I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming Z -Tri-State: I/O is tristated

Microsemi.

IGLOO PLUS DC and Switching Characteristics

Symbol	Pa	rameter	Commercial	Industrial	Units
TJ	Junction temperature ²		0 to + 85	-40 to +100	°C
VCC ³	1.5 V DC core supply voltage	4	1.425 to 1.575	1.425 to 1.575	V
	1.2 V–1.5 V wide range core	voltage ^{5,6}	1.14 to 1.575	1.14 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP ⁷	Programming voltage	Programming mode	3.15 to 3.45	3.15 to 3.45	V
		Operation	0 to 3.6	0 to 3.6	V
VCCPLL ⁸	Analog power supply (PLL)	1.5 V DC core supply voltage ⁴	1.425 to 1.575	1.425 to 1.575	V
		1.2 V-1.5 V wide range core voltage ⁵	1.14 to 1.575	1.14 to 1.575	V
VCCI	1.2 V DC supply voltage ⁵		1.14 to 1.26	1.14 to 1.26	V
	1.2 V DC wide range supply	voltage ⁵	1.14 to 1.575	1.14 to 1.575	V
	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.3 V wide range DC supply	voltage ⁹	2.7 to 3.6	2.7 to 3.6	V
	3.3 V DC supply voltage		3.0 to 3.6	3.0 to 3.6	V

Table 2-2 • Recommended Operating Conditions^{1,2}

Notes:

- 1. All parameters representing voltages are measured with respect to GND unless otherwise specified.
- 2. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi's timing and power simulation tools.
- 3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-21 on page 2-19. VCCI should be at the same voltage within a given I/O bank.
- 4. For IGLOO[®] PLUS V5 devices
- 5. For IGLOO PLUS V2 devices only, operating at VCCI \geq VCC.
- 6. All IGLOO PLUS devices (V5 and V2) must be programmed with the VCC core voltage at 1.5 V. Applications using V2 devices powered by a 1.2 V supply must switch the core supply to 1.5 V for in-system programming.
- 7. VPUMP can be left floating during operation (not programming mode).
- 8. VCCPLL pins should be tied to VCC pins. See the Pin Descriptions chapter of the IGLOO PLUS FPGA Fabric User's Guide for further information.
- 9. 3.3 V wide range is compliant to the JDEC8b specification and supports 3.0 V VCCI operation.
- 10. VMV pins must be connected to the corresponding VCCI pins. See the "Pin Descriptions" chapter of the IGLOO FPGA Fabric User's Guide for further information.
- 11. Software Default Junction Temperature Range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information regarding custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help.

Power per I/O Pin

Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings

	VCCI (V)	Dynamic Power PAC9 (μW/MHz) ¹
Single-Ended		
3.3 V LVTTL / 3.3 V LVCMOS	3.3	16.26
3.3 V LVTTL / 3.3 V LVCMOS – Schmitt Trigger	3.3	18.95
3.3 V LVCMOS Wide Range ²	3.3	16.26
3.3 V LVCMOS Wide Range ² – Schmitt Trigger	3.3	18.95
2.5 V LVCMOS	2.5	4.59
2.5 V LVCMOS – Schmitt Trigger	2.5	6.01
1.8 V LVCMOS	1.8	1.61
1.8 V LVCMOS – Schmitt Trigger	1.8	1.70
1.5 V LVCMOS (JESD8-11)	1.5	0.96
1.5 V LVCMOS (JESD8-11) – Schmitt Trigger	1.5	0.90
1.2 V LVCMOS ³	1.2	0.55
1.2 V LVCMOS ³ – Schmitt Trigger	1.2	0.47
1.2 V LVCMOS Wide Range ³	1.2	0.55
1.2 V LVCMOS Wide Range ³ – Schmitt Trigger	1.2	0.47

Notes:

1. PAC9 is the total dynamic power measured on VCCI.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

3. Applicable for IGLOO PLUS V2 devices only, operating at VCCI \geq VCC.

Table 2-14 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹

	C _{LOAD} (pF)	C _{LOAD} (pF) VCCI (V) PAC			
Single-Ended					
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	127.11		
3.3 V LVCMOS Wide Range ³	5	3.3	127.11		
2.5 V LVCMOS	5	2.5	70.71		
1.8 V LVCMOS	5	1.8	35.57		
1.5 V LVCMOS (JESD8-11)	5	1.5	24.30		
1.2 V LVCMOS ⁴	5	1.2	15.22		
1.2 V LVCMOS Wide Range ⁴	5	1.2	15.22		

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PAC10 is the total dynamic power measured on VCCI.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

4. Applicable for IGLOO PLUS V2 devices only, operating at VCCI \geq VCC.

IGLOO PLUS DC and Switching Characteristics

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- · The number of combinatorial and sequential cells used in the design
- · The internal clock frequencies
- · The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-19 on page 2-14.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-20 on page 2-14.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-20 on page 2-14. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—PTOTAL

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—PSTAT

P_{STAT} = (PDC1 or PDC2 or PDC3) + N_{BANKS} * PDC5

 N_{BANKS} is the number of I/O banks powered in the design.

Total Dynamic Power Consumption—P_{DYN}

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}

Global Clock Contribution—P_{CLOCK}

 $P_{CLOCK} = (PAC1 + N_{SPINE}*PAC2 + N_{ROW}*PAC3 + N_{S-CELL}*PAC4) * F_{CLK}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *IGLOO PLUS FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *IGLOO PLUS FPGA Fabric User's Guide*.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

PAC1, PAC2, PAC3, and PAC4 are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

 $P_{S-CELL} = N_{S-CELL} * (PAC5 + \alpha_1 / 2 * PAC6) * F_{CLK}$

 $N_{S\mbox{-}CELL}$ is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-14.

F_{CLK} is the global clock signal frequency.

IGLOO PLUS DC and Switching Characteristics

- Bit 0 (LSB) = 100%
- Bit 1 = 50%
- Bit 2 = 25%
- ...
- Bit 7 (MSB) = 0.78125%
- Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%.

Component	Definition	Guideline
α_1	Toggle rate of VersaTile outputs	10%
α ₂	I/O buffer toggle rate	10%

Table 2-20 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
β ₁	I/O output buffer enable rate	100%
β ₂	RAM enable rate for read operations	12.5%
β ₃	RAM enable rate for write operations	12.5%

User I/O Characteristics

Timing Model

Figure 2-3 • Timing Model

Operating Conditions: STD Speed, Commercial Temperature Range (T_J = 70°C), Worst-Case VCC = 1.425 V, for DC 1.5 V Core Voltage, Applicable to V2 and V5 Devices

IGLOO PLUS Low Power Flash FPGAs

Figure 2-5 • Output Buffer Model and Delays (example)

static Microsemi.

IGLOO PLUS DC and Switching Characteristics

Detailed I/O DC Characteristics

Table 2-27 • Input Capacitance

Symbol	Definition	Conditions	Min.	Max.	Units
C _{IN}	Input capacitance	VIN = 0, f = 1.0 MHz		8	pF
CINCLK	Input capacitance on the clock pin	VIN = 0, f = 1.0 MHz		8	pF

Table 2-28 • I/O Output Buffer Maximum Resistances ¹

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	25	75
3.3 V LVCMOS Wide Range	100 µA	Same as equivalen	t software default drive
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
1.2 V LVCMOS	2 mA	157.5	163.8
1.2 V LVCMOS Wide Range ⁴	100 µA	157.5	163.8

Notes:

 These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCC₁, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS model on the Microsemi SoC Products Group website at http://www.microsemi.com/soc/download/ibis/default.aspx.

2. R_(PULL-DOWN-MAX) = (VOLspec) / IOLspec

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec

4. Applicable to IGLOO PLUS V2 devices operating at VCCI ≥ VCC.

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer.

3.3 V LVTTL / 3.3 V LVCMOS			VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	103	109	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	103	109	10	10

Table 2-34 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
$$rac{1}{1}$$
 $rac{1}{1}$ $rac{1$

Figure 2-7 • AC Loading

Table 2-35 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)		
0	3.3	1.4	5		

Note: **Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.*

static Microsemi.

IGLOO PLUS DC and Switching Characteristics

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-42 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 µA	4 mA	STD	0.97	5.85	0.18	1.18	1.64	0.66	5.86	5.05	2.57	2.57	ns
100 µA	6 mA	STD	0.97	4.70	0.18	1.18	1.64	0.66	4.72	4.27	2.92	3.19	ns
100 µA	8 mA	STD	0.97	4.70	0.18	1.18	1.64	0.66	4.72	4.27	2.92	3.19	ns
100 µA	12 mA	STD	0.97	3.96	0.18	1.18	1.64	0.66	3.98	3.70	3.16	3.59	ns
100 µA	16 mA	STD	0.97	3.96	0.18	1.18	1.64	0.66	3.98	3.70	3.16	3.59	ns

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-43 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
100 µA	4 mA	STD	0.97	3.39	0.18	1.18	1.64	0.66	3.41	2.69	2.57	2.73	ns
100 µA	6 mA	STD	0.97	2.79	0.18	1.18	1.64	0.66	2.80	2.17	2.92	3.36	ns
100 µA	8 mA	STD	0.97	2.79	0.18	1.18	1.64	0.66	2.80	2.17	2.92	3.36	ns
100 µA	12 mA	STD	0.97	2.47	0.18	1.18	1.64	0.66	2.48	1.91	3.16	3.76	ns
100 µA	16 mA	STD	0.97	2.47	0.18	1.18	1.64	0.66	2.48	1.91	3.16	3.76	ns

Notes:

 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3. Software default selection highlighted in gray.

Figure 2-13 • Timing Model of the Registered I/O Buffers with Asynchronous Clear

🔨 Microsemi

IGLOO PLUS DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-75 • Input Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.66	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.43	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.86	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.86	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.24	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.24	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.19	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.19	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.31	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-93 • RAM512X18

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V

Parameter	Description				
t _{AS}	Address setup time	0.69	ns		
t _{AH}	Address hold time 0				
t _{ENS}	REN, WEN setup time 0				
t _{ENH}	REN, WEN hold time	0.07	ns		
t _{DS}	Input data (WD) setup time	0.59	ns		
t _{DH}	Input data (WD) hold time	0.30	ns		
t _{CKQ1}	Clock High to new data valid on RD (output retained)				
t _{CKQ2}	Clock High to new data valid on RD (pipelined)				
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address – applicable to opening edge				
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address – applicable to opening edge		ns		
t _{RSTBQ}	RESET Low to data out Low on RD (flow-through)	1.72	ns		
	RESET Low to data out Low on RD (pipelined)		ns		
t _{REMRSTB}	RESET removal		ns		
t _{RECRSTB}	RESET recovery				
t _{MPWRSTB}	RESET minimum pulse width		ns		
t _{CYC}	Clock cycle time				
F _{MAX}	Maximum frequency				

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3 – Pin Descriptions and Packaging

Supply Pins

GND

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V for IGLOO PLUS V5 devices, and 1.2 V or 1.5 V for IGLOO PLUS V2 devices. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

For IGLOO PLUS V2 devices, VCC can be switched dynamically from 1.2 V to 1.5 V or vice versa. This allows in-system programming (ISP) when VCC is at 1.5 V and the benefit of low power operation when VCC is at 1.2 V.

VCCIBx

I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are four I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V or 1.2 V, depending on the device.

- 1.5 V for IGLOO PLUS V5 devices
- 1.2 V or 1.5 V for IGLOO PLUS V2 devices

When the PLLs are not used, the Microsemi Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed signal FPGAs " chapter of the *IGLOO PLUS FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There is one VCCPLF pin on IGLOO PLUS devices.

VQ176

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

IGLOO PLUS Low Power Flash FPGAs

(CS201	(CS201	CS201		
AGLP060 Pin Number Function		Pin Number	AGLP060 Function	Pin Number	AGLP060 Function	
H14	IO64RSB1	L15	GDC0/IO73RSB1	P5	IO106RSB2	
H15	IO62RSB1	M1	IO122RSB3	P6	IO105RSB2	
J1	GFA2/IO134RSB3	M2	IO124RSB3	P7	IO103RSB2	
J2	GFA0/IO135RSB3	M3	IO119RSB3	P8	IO99RSB2	
J3	GFB2/IO133RSB3	M4	GND	P9	IO93RSB2	
J4	IO131RSB3	M5	IO125RSB3	P10	IO92RSB2	
J6	VCCIB3	M6	IO98RSB2	P11	IO95RSB2	
J7	GND	M7	IO96RSB2	P12	IO86RSB2	
J8	VCC	M8	IO91RSB2	P13	IO83RSB2	
J9	GND	M9	IO89RSB2	P14	VPUMP	
J10	VCCIB1	M10	IO82RSB2	P15	TRST	
J12	IO61RSB1	M11	GDA2/IO78RSB2	R1	IO118RSB3	
J13	IO63RSB1	M12	GND	R2	GEB0/IO113RSB3	
J14	IO68RSB1	M13	GDA1/IO76RSB1	R3	GEA2/IO110RSB2	
J15	IO66RSB1	M14	GDA0/IO77RSB1	R4	FF/GEB2/IO109RS	
K1	IO130RSB3	M15	GDB0/IO75RSB1		B2	
K2	GFC2/IO132RSB3	N1	IO117RSB3	R5	GEC2/IO108RSB2	
K3	IO127RSB3	N2	IO120RSB3	R6	IO102RSB2	
K4	IO129RSB3	N3	GND	R7	IO101RSB2	
K6	GND	N4	GEB1/IO114RSB3	R8	IO104RSB2	
K7	VCCIB2	N5	IO107RSB2	R9	IO97RSB2	
K8	VCCIB2	N6	IO100RSB2	R10	IO88RSB2	
K9	VCCIB2	N7	IO94RSB2	R11	IO81RSB2	
K10	VCCIB1	N8	IO87RSB2	R12	GDB2/IO79RSB2	
K12	IO65RSB1	N9	IO85RSB2	R13	TMS	
K13	IO67RSB1	N10	GDC2/IO80RSB2	R14	TDI	
K14	IO69RSB1	N11	IO90RSB2	R15	TCK	
K15	IO70RSB1	N12	IO84RSB2			
L1	IO126RSB3	N13	GND			
L2	IO128RSB3	N14	TDO			
L3	IO121RSB3	N15	VJTAG			
L4	IO123RSB3	P1	GEC0/IO115RSB3			
L12	GDB1/IO74RSB1	P2	GEC1/IO116RSB3			
L13	GDC1/IO72RSB1	P3	GEA0/IO111RSB3			
L14	IO71RSB1	P4	GEA1/IO112RSB3			

CS289

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx .

🌜 Microsemi.

Package Pin Assignments

	CS289	CS289				
Pin Number	AGLP060 Function	Pin Number	AGLP060 Function			
P8	GND	T12	IO82RSB2			
P9	IO91RSB2	T13	NC			
P10	IO86RSB2	T14	GND			
P11	IO81RSB2	T15	NC			
P12	NC	T16	TDI			
P13	VCCIB2	T17	TDO			
P14	NC	U1	FF/GEB2/IO109RS			
P15	GDA2/IO78RSB2		B2			
P16	GDC2/IO80RSB2	U2	GND			
P17	VJTAG	U3	NC			
R1	GND	U4	IO107RSB2			
R2	GEA2/IO110RSB2	U5	IO105RSB2			
R3	NC	U6	IO101RSB2			
R4	NC	U7	GND			
R5	NC	U8	IO94RSB2			
R6	VCCIB2	U9	IO92RSB2			
R7	IO102RSB2	U10	IO87RSB2			
R8	IO97RSB2	U11	IO85RSB2			
R9	IO93RSB2	U12	GND			
R10	IO89RSB2	U13	NC			
R11	GND	U14	NC			
R12	NC	U15	NC			
R13	NC	U16	ТСК			
R14	NC	U17	VPUMP			
R15	NC					
R16	TMS					
R17	TRST					
T1	GEA1/IO112RSB3					
T2	GEC2/IO108RSB2					
Т3	NC					
T4	GND					
T5	NC					
T6	IO103RSB2					
T7	IO100RSB2					
T8	IO95RSB2					
Т9	VCCIB2					
T10	IO88RSB2					
T11	IO84RSB2					

Package Pin Assignments

	CS289		CS289	CS289		
Pin Number AGLP125 Function		Pin Number AGLP125 Function		Pin Number	AGLP125 Function	
G13	IO64RSB1	J17	GCA1/IO83RSB1	M4	IO172RSB3	
G14	IO69RSB1	K1	GND	M5	GEB0/IO167RSB3	
G15	IO78RSB1	K2	GFA0/IO189RSB3	M6	GEB1/IO168RSB3	
G16	IO76RSB1	K3	GFB2/IO187RSB3	M7	IO159RSB2	
G17	GND	K4	IO179RSB3	M8	IO161RSB2	
H1	VCOMPLF	K5	IO175RSB3	M9	IO135RSB2	
H2	GFB0/IO191RSB3	K6	IO177RSB3	M10	IO128RSB2	
H3	IO195RSB3	K7	GND	M11	IO121RSB2	
H4	IO197RSB3	K8	GND	M12	IO113RSB2	
H5	IO199RSB3	K9	GND	M13	GDA1/IO103RSB1	
H6	GFB1/IO192RSB3	K10	GND	M14	GDA0/IO104RSB1	
H7	GND	K11	GND	M15	IO97RSB1	
H8	GND	K12	IO88RSB1	M16	IO96RSB1	
H9	GND	K13	IO94RSB1	M17	VCCIB1	
H10	GND	K14	IO95RSB1	N1	IO180RSB3	
H11	GND	K15	IO93RSB1	N2	IO178RSB3	
H12	GCC1/IO79RSB1	K16	GND	N3	GEC0/IO169RSB3	
H13	IO74RSB1	K17	GCC2/IO87RSB1	N4	GEA0/IO165RSB3	
H14	GCA0/IO84RSB1	L1	GFA2/IO188RSB3	N5	GND	
H15	VCCIB1	L2	GFC2/IO186RSB3	N6	IO156RSB2	
H16	GCA2/IO85RSB1	L3	IO182RSB3	N7	IO148RSB2	
H17	GCC0/IO80RSB1	L4	GND	N8	IO144RSB2	
J1	VCCPLF	L5	IO173RSB3	N9	IO137RSB2	
J2	GFA1/IO190RSB3	L6	GEC1/IO170RSB3	N10	VCCIB2	
J3	VCCIB3	L7	GND	N11	IO119RSB2	
J4	IO185RSB3	L8	GND	N12	IO111RSB2	
J5	IO183RSB3	L9	VCC	N13	GDB2/IO106RSB2	
J6	IO181RSB3	L10	GND	N14	IO109RSB2	
J7	VCC	L11	GND	N15	GND	
J8	GND	L12	GDC1/IO99RSB1	N16	GDB0/IO102RSB1	
J9	GND	L13	GDB1/IO101RSB1	N17	GDC0/IO100RSB1	
J10	GND	L14	VCCIB1	P1	IO174RSB3	
J11	VCC	L15	IO98RSB1	P2	IO171RSB3	
J12	GCB2/IO86RSB1	L16	IO92RSB1	P3	GND	
J13	GCB1/IO81RSB1	L17	IO91RSB1	P4	IO160RSB2	
J14	IO90RSB1	M1	IO184RSB3	P5	IO157RSB2	
J15	IO89RSB1	M2	VCCIB3	P6	IO154RSB2	
J16	GCB0/IO82RSB1	M3	IO176RSB3	P7	IO152RSB2	