

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	1584
Total RAM Bits	18432
Number of I/O	137
Number of Gates	60000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	176-TQFP
Supplier Device Package	176-VQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/aglp060v5-vq176

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The IGLOO PLUS family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the IGLOO PLUS family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/communications, computing, and avionics markets.

Firm-Error Immunity

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of IGLOO PLUS flash-based FPGAs. Once it is programmed, the flash cell configuration element of IGLOO PLUS FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Advanced Flash Technology

The IGLOO PLUS family offers many benefits, including nonvolatility and reprogrammability, through an advanced flash-based, 130 nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

IGLOO PLUS family FPGAs utilize design and process techniques to minimize power consumption in all modes of operation.

Advanced Architecture

The proprietary IGLOO PLUS architecture provides granularity comparable to standard-cell ASICs. The IGLOO PLUS device consists of five distinct and programmable architectural features (Figure 1-1 on page 1-4):

- Flash*Freeze technology
- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory[†]
- Extensive CCCs and PLLs[†]
- Advanced I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the IGLOO PLUS core tile as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC® family of third-generation-architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

[†] The AGLP030 device does not support PLL or SRAM.

IGLOO PLUS DC and Switching Characteristics

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ja} are shown for two air flow rates. The maximum operating junction temperature is 100°C. EQ 2 shows a sample calculation of the maximum operating power dissipation allowed for a 484-pin FBGA package at commercial temperature and in still air.

EQ 2

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{100°C - 70°C}{20.5°C/W} = 1.46 \text{ W}$$

		Pin			θ_{ja}			
Package Type	Device	Count	θ_{jc}	θ_{jb}	Still Air	1 m/s	2.5 m/s	Unit
Chip Scale Package (CSP)	AGLP030	CS201	-	-	46.3	-	-	C/W
	AGLP060	CS201	7.1	19.7	40.5	35.1	32.9	C/W
	AGLP060	CS289	13.9	34.1	48.7	43.5	41.9	C/W
	AGLP125	CS289	10.8	27.9	42.2	37.1	35.5	C/W
	AGLP125	CS281	11.3	17.6	-	-	-	C/W
Thin Quad Flat Package (VQ)	AGLP030	VQ128	18.0	50.0	56.0	49.0	47.0	C/W
	AGLP060	VQ176	21.0	55.0	58.0	52.0	50.0	C/W

Table 2-5 • Package Thermal Resistivities

Temperature and Voltage Derating Factors

Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.425 V)

For IGLOO PLUS V2 or V5 devices, 1.5 V DC Core Supply Voltage

Array Voltage VCC (V)	Junction Temperature (°C)									
	–40°C	O°C	25°C	70°C	85°C	100°C				
1.425	0.934	0.953	0.971	1.000	1.007	1.013				
1.5	0.855	0.874	0.891	0.917	0.924	0.929				
1.575	0.799	0.816	0.832	0.857	0.864	0.868				

Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.14 V)

For IGLOO PLUS V2, 1.2 V DC Core Supply Voltage

Array Voltage VCC (V)		Junction Temperature (°C)									
	–40°C	0°C	25°C	70°C	85°C	100°C					
1.14	0.963	0.975	0.989	1.000	1.007	1.011					
1.2	0.853	0.865	.0877	0.893	0.893	0.897					
1.26	0.781	0.792	0.803	0.813	0.819	0.822					

Calculating Power Dissipation

Quiescent Supply Current

Quiescent supply current (I_{DD}) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power mode usage. Microsemi recommends using the Power Calculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature.

Table 2-8 • Power Supply State per Mode

		Power Supply Configurations								
Modes/Power Supplies	VCC	VCCPLL	VCCI	VJTAG	VPUMP					
Flash*Freeze	On	On	On	On	On/off/floating					
Sleep	Off	Off	On	Off	Off					
Shutdown	Off	Off	Off	Off	Off					
No Flash*Freeze	On	On	On	On	On/off/floating					

Note: Off: Power Supply level = 0 V

Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Flash*Freeze Mode*

	Core Voltage	AGLP030	AGLP060	AGLP125	Units
Typical (25°C)	1.2 V	4	8	13	μA
	1.5 V	6	10	18	μA
		6	10	18	

Note: *IDD includes VCC, VPUMP, VCCI, VJTAG, and VCCPLL currents.

Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Sleep Mode*

ICCI Current	Core Voltage	AGLP030	AGLP060	AGLP125	Units
VCCI = 1.2 V (per bank) Typical (25°C)	1.2 V	1.7	1.7	1.7	μA
VCCI = 1.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.8	1.8	1.8	μA
VCCI = 1.8 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.9	1.9	1.9	μA
VCCI = 2.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.2	2.2	2.2	μA
VCCI = 3.3 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.5	2.5	2.5	μA

Note: *IDD = N_{BANKS} * ICCI

Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Shutdown Mode

	Core Voltage	AGLP030	AGLP060	AGLP125	Units
Typical (25°C)	1.2 V / 1.5 V	0	0	0	μA

Table 2-17 • Different Components Contributing to Dynamic Power Consumption in IGLOO PLUS Devices
For IGLOO PLUS V2 Devices, 1.2 V Core Supply Voltage

		Device-Sp	ecific Dynaı (µW/MHz)	nic Power		
Parameter	Definition	AGLP125	AGLP060	AGLP030		
PAC1	Clock contribution of a Global Rib	2.874	1.727	0.000 ¹		
PAC2	Clock contribution of a Global Spine	1.264	1.244	2.241		
PAC3	Clock contribution of a VersaTile row	0.963	0.975	0.981		
PAC4	Clock contribution of a VersaTile used as a sequential module	0.098	0.096	0.096		
PAC5	First contribution of a VersaTile used as a sequential module	0.018	0.018	0.018		
PAC6	Second contribution of a VersaTile used as a sequential module	0.203	0.203	0.203		
PAC7	Contribution of a VersaTile used as a combinatorial module	0.160	0.170	0.158		
PAC8	Average contribution of a routing net	0.679	0.686	0.748		
PAC9	Contribution of an I/O input pin (standard-dependent)	See Tab	le 2-13 on p	age 2-9		
PAC10	Contribution of an I/O output pin (standard-dependent)	See Tab	See Table 2-14 on page 2-9			
PAC11	Average contribution of a RAM block during a read operation	25.00				
PAC12	Average contribution of a RAM block during a write operation		30.00			
PAC13	Dynamic contribution for PLL		2.10			

Note: 1. There is no Center Global Rib present in AGLP030, and thus it starts directly at the spine resulting in 0μW/MHz.

Table 2-18 • Different Components Contributing to the Static Power Consumption in IGLOO PLUS Devices For IGLOO PLUS V2 Devices, 1.2 V Core Supply Voltage

		Device-Sp	Device-Specific Static Power (mW) AGLP125 AGLP060 AGLP030				
Parameter	Definition	AGLP125	AGLP030				
PDC1	Array static power in Active mode	See Table 2-12 on page 2-8					
PDC2	Array static power in Static (Idle) mode	See Table 2-11 on page 2-7					
PDC3	Array static power in Flash*Freeze mode	See	See Table 2-9 on page 2-7				
PDC4	Static PLL contribution	0.90 ¹					
PDC5	Bank quiescent power (VCCI-dependent)	See Table 2-12 on page 2-8					

Notes:

1. This is the minimum contribution of the PLL when operating at lowest frequency.

2. For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or the SmartPower tool in Libero SoC software.

Microsemi.

IGLOO PLUS DC and Switching Characteristics

1.8 V LVCMOS

Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA	Max., mA ³	Max., mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	2	2	9	11	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	4	4	17	22	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	6	6	35	44	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	8	8	35	44	10	10

Table 2-52 • Minimum and Maximum	DC Input and Output Levels
----------------------------------	----------------------------

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
Datapath
$$\downarrow$$
 5 pF $R = 1 k$
Enable Path \downarrow R to VCCI for $t_{LZ} / t_{ZL} / t_{ZLS}$
 R to GND for $t_{HZ} / t_{ZH} / t_{ZHS}$
 $5 pF$ for $t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$
 $5 pF$ for $t_{HZ} / t_{ZL} / t_{ZLS}$

Figure 2-9 • AC Loading

Table 2-53 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.8	0.9	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

Microsemi.

IGLOO PLUS DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-79 • Output Enable Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	1.06	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	0.52	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	1.25	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	1.36	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.24	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.24	ns
tOEWCLR	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OECKMPWH}	Clock Minimum Pulse Width High for the Output Enable Register	0.31	ns
t _{OECKMPWL}	Clock Minimum Pulse Width Low for the Output Enable Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Global Resource Characteristics

AGLP125 Clock Tree Topology

Clock delays are device-specific. Figure 2-21 is an example of a global tree used for clock routing. The global tree presented in Figure 2-21 is driven by a CCC located on the west side of the AGLP125 device. It is used to drive all D-flip-flops in the device.

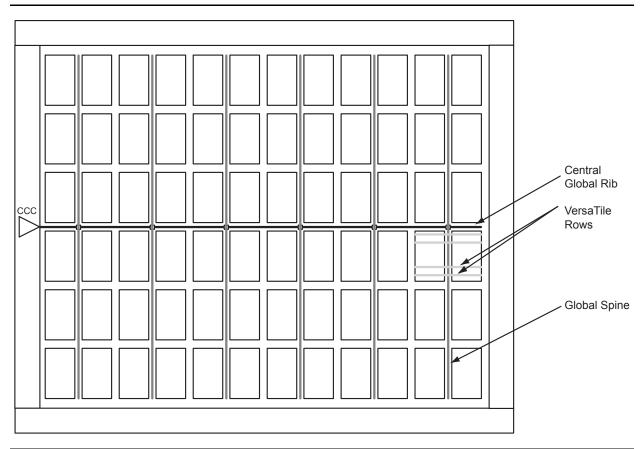


Figure 2-21 • Example of Global Tree Use in an AGLP125 Device for Clock Routing

IGLOO PLUS DC and Switching Characteristics

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-61. Table 2-84 to Table 2-89 on page 2-60 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-84 • AGLP030 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Std.			
Parameter	Description	Γ	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock		1.21	1.42	ns
t _{RCKH}	Input High Delay for Global Clock		1.23	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock		1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock		1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock			0.27	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-85 • AGLP060 Global Resource Commercial-Case Conditions: T₁ = 70°C, VCC = 1.425 V

			Std.			
Parameter	Description		Min. ¹	Max. ²	Units	
t _{RCKL}	Input Low Delay for Global Clock		1.32	1.62	ns	
t _{RCKH}	Input High Delay for Global Clock		1.34	1.72	ns	
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock		1.18		ns	
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock		1.15		ns	
t _{RCKSW}	Maximum Skew for Global Clock			0.38	ns	

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

static Microsemi.

IGLOO PLUS DC and Switching Characteristics

Table 2-91 • IGLOO PLUS CCC/PLL Specification For IGLOO PLUS V2 Devices, 1.2 V DC Core Supply Voltage

Parameter	Min.	Тур.	Max.	Units
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		160	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		160	MHz
Delay Increments in Programmable Delay Blocks ^{1, 2}		580 ³		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Serial Clock (SCLK) for Dynamic PLL ^{4,5}			60	MHz
Input Cycle-to-Cycle Jitter (peak magnitude)			.25	ns
Acquisition Time				
LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁶				
LockControl = 0			4	ns
LockControl = 1			3	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1, 2}	2.3		20.86	ns
Delay Range in Block: Programmable Delay 2 ^{1, 2}	0.863		20.86	ns
Delay Range in Block: Fixed Delay ^{1, 2}		5.7		ns
VCO Output Peak-to-Peak Period Jitter F _{CCC_OUT} ⁷	Maximum Peak-to-Peak Period Jitter ^{7,8,9}			
	$SSO \leq 2$	$SSO \leq 4$	$SSO \leq 8$	$SSO \leq 16$
0.75 MHz to 50 MHz	0.50%	1.20%	2.00%	3.00%
50 MHz to 160 MHz	2.50%	5.00%	7.00%	15.00%

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-6 for deratings.

2. $T_J = 25^{\circ}C$, VCC = 1.2 V

- 3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the online help associated with the core for more information.
- 4. Maximum value obtained for a STD speed grade device in Worst Case Commercial Conditions.For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 and Table 2-7 on page 2-6 for derating values.

5. The AGLP030 device does not support PLL.

- 6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.
- 7. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the per cent jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, regardless of the output divider settings.
- 8. Measurements are done with LVTTL 3.3 V, 8 mA, I/O drive strength and high slew rate. VCC/VCCPLL = 1.14 V, VCCI = 3.3 V, VQ/PQ/TQ type of packages, 20 pF load.
- 9. SSO are outputs that are synchronous to a single clock domain, and have their clock-to-out times within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO PLUS FPGA Fabric User's Guide

3 – Pin Descriptions and Packaging

Supply Pins

GND

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V for IGLOO PLUS V5 devices, and 1.2 V or 1.5 V for IGLOO PLUS V2 devices. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

For IGLOO PLUS V2 devices, VCC can be switched dynamically from 1.2 V to 1.5 V or vice versa. This allows in-system programming (ISP) when VCC is at 1.5 V and the benefit of low power operation when VCC is at 1.2 V.

VCCIBx

I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are four I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V or 1.2 V, depending on the device.

- 1.5 V for IGLOO PLUS V5 devices
- 1.2 V or 1.5 V for IGLOO PLUS V2 devices

When the PLLs are not used, the Microsemi Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed signal FPGAs " chapter of the *IGLOO PLUS FPGA Fabric User's Guide* for a complete board solution for the PLL analog power supply and ground.

There is one VCCPLF pin on IGLOO PLUS devices.

Pin Descriptions and Packaging

JTAG Pins

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

тск

Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pullup/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 3-2 for more information.

Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pine	s
--	---

VJTAG	Tie-Off Resistance
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 k Ω
VJTAG at 1.5 V	500 Ω to 1 kΩ

Notes:

- 1. Equivalent parallel resistance if more than one device is on the JTAG chain
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin is pulled down.

TDI

Test Data Input

Test Data Output

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS

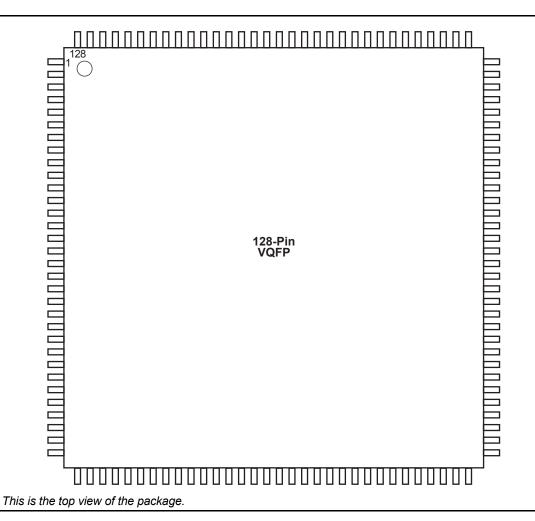
Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST

Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-2 and must satisfy the parallel resistance value requirement. The values in Table 3-2 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.


In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

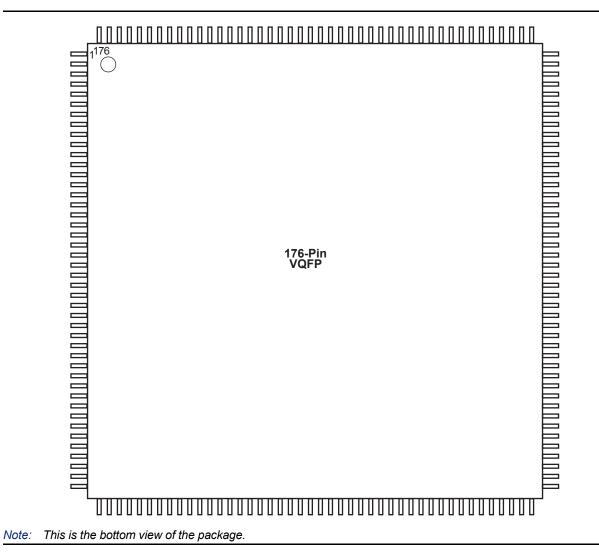
4 – Package Pin Assignments

VQ128

Note

Note:

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.


Pin information is in the "Pin Descriptions" chapter of the IGLOO PLUS FPGA Fabric User's Guide.

VQ128				
Pin Number	AGLP030 Function			
106	IO26RSB0			
107	IO25RSB0			
108	IO23RSB0			
109	IO22RSB0			
110	IO21RSB0			
111	IO19RSB0			
112	IO18RSB0			
113	VCC			
114	IO17RSB0			
115	IO16RSB0			
116	IO14RSB0			
117	IO13RSB0			
118	IO12RSB0			
119	IO10RSB0			
120	IO09RSB0			
121	VCCIB0			
122	GND			
123	IO07RSB0			
124	IO05RSB0			
125	IO03RSB0			
126	IO02RSB0			
127	IO01RSB0			
128	IO00RSB0			

VQ176

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

Package Pin Assignments

(CS201	(CS201	(CS201
Pin Number	AGLP060 Function	Pin Number	AGLP060 Function	Pin Number	AGLP060 Function
A1	IO150RSB3	C6	IO07RSB0	F3	IO145RSB3
A2	GAA0/IO00RSB0	C7	IO16RSB0	F4	IO147RSB3
A3	GAC0/IO04RSB0	C8	IO21RSB0	F6	GND
A4	IO08RSB0	C9	IO28RSB0	F7	VCC
A5	IO11RSB0	C10	GBB1/IO33RSB0	F8	VCCIB0
A6	IO15RSB0	C11	GBA1/IO35RSB0	F9	VCCIB0
A7	IO17RSB0	C12	GBB2/IO38RSB1	F10	VCCIB0
A8	IO18RSB0	C13	GND	F12	IO47RSB1
A9	IO22RSB0	C14	IO48RSB1	F13	IO45RSB1
A10	IO26RSB0	C15	IO39RSB1	F14	GCC1/IO52RSB1
A11	IO29RSB0	D1	IO146RSB3	F15	GCA1/IO56RSB1
A12	GBC1/IO31RSB0	D2	IO144RSB3	G1*	VCOMPLF
A13	GBA2/IO36RSB1	D3	IO148RSB3	G2	GFB0/IO137RSB3
A14	IO41RSB1	D4	GND	G3	GFC0/IO139RSB3
A15	NC	D5	GAB0/IO02RSB0	G4	IO143RSB3
B1	IO151RSB3	D6	GAC1/IO05RSB0	G6	VCCIB3
B2	GAB2/IO154RSB3	D7	IO14RSB0	G7	GND
B3	IO06RSB0	D8	IO19RSB0	G8	VCC
B4	IO09RSB0	D9	GBC0/IO30RSB0	G9	GND
B5	IO13RSB0	D10	GBB0/IO32RSB0	G10	GND
B6	IO10RSB0	D11	GBA0/IO34RSB0	G12	IO50RSB1
B7	IO12RSB0	D12	GND	G13	GCB1/IO54RSB1
B8	IO20RSB0	D13	GBC2/IO40RSB1	G14	GCC2/IO60RSB1
B9	IO23RSB0	D14	IO51RSB1	G15	GCA2/IO58RSB1
B10	IO25RSB0	D15	IO44RSB1	H1*	VCCPLF
B11	IO24RSB0	E1	IO142RSB3	H2	GFA1/IO136RSB3
B12	IO27RSB0	E2	IO149RSB3	H3	GFB1/IO138RSB3
B13	IO37RSB1	E3	IO153RSB3	H4	NC
B14	IO46RSB1	E4	GAC2/IO152RSB3	H6	VCCIB3
B15	IO42RSB1	E12	IO43RSB1	H7	GND
C1	IO155RSB3	E13	IO49RSB1	H8	VCC
C2	GAA2/IO156RSB3	E14	GCC0/IO53RSB1	H9	GND
C3	GND	E15	GCB0/IO55RSB1	H10	VCCIB1
C4	GAA1/IO01RSB0	F1	IO141RSB3	H12	GCB2/IO59RSB1
C5	GAB1/IO03RSB0	F2	GFC1/IO140RSB3	H13	GCA0/IO57RSB1

Note: *Pin numbers G1 and H1 must be connected to ground because a PLL is not supported for AGLP060-CS/G201.

(CS201	(CS201		CS201
Pin Number	AGLP060 Function	Pin Number	AGLP060 Function	Pin Number	AGLP060 Function
H14	IO64RSB1	L15	GDC0/IO73RSB1	P5	IO106RSB2
H15	IO62RSB1	M1	IO122RSB3	P6	IO105RSB2
J1	GFA2/IO134RSB3	M2	IO124RSB3	P7	IO103RSB2
J2	GFA0/IO135RSB3	M3	IO119RSB3	P8	IO99RSB2
J3	GFB2/IO133RSB3	M4	GND	P9	IO93RSB2
J4	IO131RSB3	M5	IO125RSB3	P10	IO92RSB2
J6	VCCIB3	M6	IO98RSB2	P11	IO95RSB2
J7	GND	M7	IO96RSB2	P12	IO86RSB2
J8	VCC	M8	IO91RSB2	P13	IO83RSB2
J9	GND	M9	IO89RSB2	P14	VPUMP
J10	VCCIB1	M10	IO82RSB2	P15	TRST
J12	IO61RSB1	M11	GDA2/IO78RSB2	R1	IO118RSB3
J13	IO63RSB1	M12	GND	R2	GEB0/IO113RSB3
J14	IO68RSB1	M13	GDA1/IO76RSB1	R3	GEA2/IO110RSB2
J15	IO66RSB1	M14	GDA0/IO77RSB1	R4	FF/GEB2/IO109RS
K1	IO130RSB3	M15	GDB0/IO75RSB1		B2
K2	GFC2/IO132RSB3	N1	IO117RSB3	R5	GEC2/IO108RSB2
K3	IO127RSB3	N2	IO120RSB3	R6	IO102RSB2
K4	IO129RSB3	N3	GND	R7	IO101RSB2
K6	GND	N4	GEB1/IO114RSB3	R8	IO104RSB2
K7	VCCIB2	N5	IO107RSB2	R9	IO97RSB2
K8	VCCIB2	N6	IO100RSB2	R10	IO88RSB2
K9	VCCIB2	N7	IO94RSB2	R11	IO81RSB2
K10	VCCIB1	N8	IO87RSB2	R12	GDB2/IO79RSB2
K12	IO65RSB1	N9	IO85RSB2	R13	TMS
K13	IO67RSB1	N10	GDC2/IO80RSB2	R14	TDI
K14	IO69RSB1	N11	IO90RSB2	R15	ТСК
K15	IO70RSB1	N12	IO84RSB2		
L1	IO126RSB3	N13	GND		
L2	IO128RSB3	N14	TDO		
L3	IO121RSB3	N15	VJTAG		
L4	IO123RSB3	P1	GEC0/IO115RSB3		
L12	GDB1/IO74RSB1	P2	GEC1/IO116RSB3		
L13	GDC1/IO72RSB1	P3	GEA0/IO111RSB3		
L14	IO71RSB1	P4	GEA1/IO112RSB3		

	CS281		CS281	CS281	
Pin Number	AGLP125 Function	Pin Number	AGLP125 Function	Pin Number	AGLP125 Function
A1	GND	B18	VCCIB1	E13	IO48RSB0
A2	GAB0/IO02RSB0	B19	IO64RSB1	E14	GBB1/IO60RSB0
A3	GAC1/IO05RSB0	C1	GAB2/IO209RSB3	E15	IO53RSB0
A4	IO09RSB0	C2	IO210RSB3	E16	IO69RSB1
A5	IO13RSB0	C6	IO12RSB0	E18	IO68RSB1
A6	IO15RSB0	C14	IO47RSB0	E19	IO71RSB1
A7	IO18RSB0	C18	IO54RSB0	F1	IO198RSB3
A8	IO23RSB0	C19	GBB2/IO65RSB1	F2	GND
A9	IO25RSB0	D1	IO206RSB3	F3	IO201RSB3
A10	VCCIB0	D2	IO208RSB3	F4	IO204RSB3
A11	IO33RSB0	D4	GAA0/IO00RSB0	F5	IO16RSB0
A12	IO41RSB0	D5	GAA1/IO01RSB0	F15	IO50RSB0
A13	IO43RSB0	D6	IO10RSB0	F16	IO74RSB1
A14	IO46RSB0	D7	IO17RSB0	F17	IO72RSB1
A15	IO55RSB0	D8	IO24RSB0	F18	GND
A16	IO56RSB0	D9	IO27RSB0	F19	IO73RSB1
A17	GBC1/IO58RSB0	D10	GND	G1	IO195RSB3
A18	GBA0/IO61RSB0	D11	IO31RSB0	G2	IO200RSB3
A19	GND	D12	IO40RSB0	G4	IO202RSB3
B1	GAA2/IO211RSB3	D13	IO49RSB0	G5	IO08RSB0
B2	VCCIB0	D14	IO45RSB0	G7	GAC2/IO207RSB3
B3	GAB1/IO03RSB0	D15	GBB0/IO59RSB0	G8	VCCIB0
B4	GAC0/IO04RSB0	D16	GBA2/IO63RSB1	G9	IO26RSB0
B5	IO11RSB0	D18	GBC2/IO67RSB1	G10	IO35RSB0
B6	GND	D19	IO66RSB1	G11	IO44RSB0
B7	IO21RSB0	E1	IO203RSB3	G12	VCCIB0
B8	IO22RSB0	E2	IO205RSB3	G13	IO51RSB0
B9	IO28RSB0	E4	IO07RSB0	G15	IO70RSB1
B10	IO32RSB0	E5	IO06RSB0	G16	IO75RSB1
B11	IO36RSB0	E6	IO14RSB0	G18	GCC0/IO80RSB1
B12	IO39RSB0	E7	IO20RSB0	G19	GCB1/IO81RSB1
B13	IO42RSB0	E8	IO29RSB0	H1	GFB0/IO191RSB3
B14	GND	E9	IO34RSB0	H2	IO196RSB3
B15	IO52RSB0	E10	IO30RSB0	H4	GFC1/IO194RSB3
B16	GBC0/IO57RSB0	E11	IO37RSB0	H5	GFB1/IO192RSB3
B17	GBA1/IO62RSB0	E12	IO38RSB0	H7	VCCIB3

Package Pin Assignments

CS289		CS289		CS289	
Pin Number	AGLP125 Function	Pin Number	AGLP125 Function	Pin Number	AGLP125 Function
G13	IO64RSB1	J17	GCA1/IO83RSB1	M4	IO172RSB3
G14	IO69RSB1	K1	GND	M5	GEB0/IO167RSB3
G15	IO78RSB1	K2	GFA0/IO189RSB3	M6	GEB1/IO168RSB3
G16	IO76RSB1	K3	GFB2/IO187RSB3	M7	IO159RSB2
G17	GND	K4	IO179RSB3	M8	IO161RSB2
H1	VCOMPLF	K5	IO175RSB3	M9	IO135RSB2
H2	GFB0/IO191RSB3	K6	IO177RSB3	M10	IO128RSB2
H3	IO195RSB3	K7	GND	M11	IO121RSB2
H4	IO197RSB3	K8	GND	M12	IO113RSB2
H5	IO199RSB3	K9	GND	M13	GDA1/IO103RSB1
H6	GFB1/IO192RSB3	K10	GND	M14	GDA0/IO104RSB1
H7	GND	K11	GND	M15	IO97RSB1
H8	GND	K12	IO88RSB1	M16	IO96RSB1
H9	GND	K13	IO94RSB1	M17	VCCIB1
H10	GND	K14	IO95RSB1	N1	IO180RSB3
H11	GND	K15	IO93RSB1	N2	IO178RSB3
H12	GCC1/IO79RSB1	K16	GND	N3	GEC0/IO169RSB3
H13	IO74RSB1	K17	GCC2/IO87RSB1	N4	GEA0/IO165RSB3
H14	GCA0/IO84RSB1	L1	GFA2/IO188RSB3	N5	GND
H15	VCCIB1	L2	GFC2/IO186RSB3	N6	IO156RSB2
H16	GCA2/IO85RSB1	L3	IO182RSB3	N7	IO148RSB2
H17	GCC0/IO80RSB1	L4	GND	N8	IO144RSB2
J1	VCCPLF	L5	IO173RSB3	N9	IO137RSB2
J2	GFA1/IO190RSB3	L6	GEC1/IO170RSB3	N10	VCCIB2
J3	VCCIB3	L7	GND	N11	IO119RSB2
J4	IO185RSB3	L8	GND	N12	IO111RSB2
J5	IO183RSB3	L9	VCC	N13	GDB2/IO106RSB2
J6	IO181RSB3	L10	GND	N14	IO109RSB2
J7	VCC	L11	GND	N15	GND
J8	GND	L12	GDC1/IO99RSB1	N16	GDB0/IO102RSB1
J9	GND	L13	GDB1/IO101RSB1	N17	GDC0/IO100RSB1
J10	GND	L14	VCCIB1	P1	IO174RSB3
J11	VCC	L15	IO98RSB1	P2	IO171RSB3
J12	GCB2/IO86RSB1	L16	IO92RSB1	P3	GND
J13	GCB1/IO81RSB1	L17	IO91RSB1	P4	IO160RSB2
J14	IO90RSB1	M1	IO184RSB3	P5	IO157RSB2
J15	IO89RSB1	M2	VCCIB3	P6	IO154RSB2
J16	GCB0/IO82RSB1	M3	IO176RSB3	P7	IO152RSB2

Revision	Changes	Page
Revision 12 (continued)	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—P _{CLOCK} " section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>IGLOO PLUS FPGA Fabric User's Guide</i> (SAR 34733).	2-12
	t_{DOUT} was corrected to t_{DIN} in Figure 2-4 \bullet Input Buffer Timing Model and Delays (example) (SAR 37107).	2-16
	The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34887).	2-27
	Minimum pulse width High and Low values were added to the tables in the "Global Tree Timing Characteristics" section. The maximum frequency for global clock parameter was removed from these tables because a frequency on the global is only an indication of what the global network can do. There are other limiters such as the SRAM, I/Os, and PLL. SmartTime software should be used to determine the design frequency (SAR 36963).	2-58
	Table 2-90 • IGLOO PLUS CCC/PLL Specification and Table 2-91 • IGLOO PLUS CCC/PLL Specification were updated. A note was added to both tables indicating that when the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available (SAR 34820).	2-61, 2-62
	The value for serial clock was missing from these tables and has been restored. The value and units for input cycle-to-cycle jitter were incorrect and have been restored. The note to Table 2-90 • IGLOO PLUS CCC/PLL Specification giving specifications for which measurements done was corrected from VCC/VCCPLL = 1.14 V to VCC/VCCPLL = 1.425 V. The Delay Range in Block: Programmable Delay 2 value in Table 2-91 • IGLOO PLUS CCC/PLL Specification was corrected from 0.025 to 0.863 (SAR 37058).	
	Figure 2-28 • Write Access after Read onto Same Address was deleted. Reference was made to a new application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 34868).	2-65,
	The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" tables, Figure 2-32 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SAR 35748).	2-68, 2-74, 2-76
	The "Pin Descriptions and Packaging" chapter has been added (SAR 34769).	3-1
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 34769).	4-1
Revision 11 (July 2010)	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "IGLOO PLUS Device Status" table indicates the status for each device in the family.	N/A
	The "Reprogrammable Flash Technology" section was revised to add "250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System Performance."	I
	The "I/Os with Advanced I/O Standards" section was revised to add definitions for hot-swap and cold-sparing.	1-6
	Conditional statements regarding hot insertion were removed from the description of VI in Table 2-1 • Absolute Maximum Ratings, since all IGLOO PLUS devices are hot insertion enabled.	2-1

Revision	Changes	Page
Revision 11 (continued)	The tables in the "Single-Ended I/O Characteristics" section were updated. Notes clarifying IIL and IIH were added.	2-27
	Tables for 3.3 V LVCMOS and 1.2 V LVCMOS wide range were added (SAR 79370, SAR 79353, and SAR 79366).	
	Notes in the wide range tables state that the minimum drive strength for any LVCMOS 3.3 V (or LVCMOS 1.2 V) software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 25700).	
	The following sentence was deleted from the "2.5 V LVCMOS" section: It uses a 5 V-tolerant input buffer and push-pull output buffer (SAR 24916).	2-32
	The tables in the "Input Register" section, "Output Register" section, and "Output Enable Register" section were updated. The tables in the "VersaTile Characteristics" section were updated.	2-45 through 2-56
	The following tables were updated in the "Global Tree Timing Characteristics" section:	2-58
	Table 2-85 • AGLP060 Global Resource (1.5 V)	
	Table 2-86 • AGLP125 Global Resource (1.5 V)	
	Table 2-88 • AGLP060 Global Resource (1.2 V)	
	Table 2-90 • IGLOO PLUS CCC/PLL Specification and Table 2-91 • IGLOO PLUS CCC/PLL Specification were revised (SAR 79388). VCO output jitter and maximum peak-to-peak jitter data were changed. Three notes were added to the table in connection with these changes.	2-61
	Figure 2-28 • Write Access after Write onto Same Address and Figure 2-29 • Write Access after Read onto Same Address were deleted.	N/A
	The tables in the "SRAM", "FIFO" and "Embedded FlashROM Characteristics" sections were updated.	2-68, 2-78