

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	1584
Total RAM Bits	18432
Number of I/O	137
Number of Gates	60000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	176-TQFP
Supplier Device Package	176-VQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/aglp060v5-vq176i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

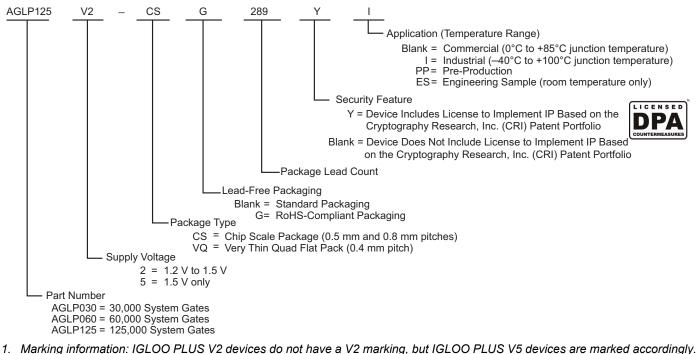
🌜 Microsemi.

IGLOO PLUS Low Power Flash FPGAs

I/Os Per Package¹

IGLOO PLUS Devices	AGLP030	AGLP060	AGLP125		
Package		Single-Ended I/Os			
CS201	120	157	_		
CS281	-	-	212		
CS289	120	157	212		
VQ128	101	-	_		
VQ176	-	137	_		

Note: When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not used as a regular I/O, the number of singleended user I/Os available is reduced by one.


Table 2 • IGLOO PLUS FPGAs Package Size Dimensions

Package	CS201	CS281	CS289	VQ128	VQ176
Length × Width (mm/mm)	8 × 8	10 × 10	14 × 14	14 × 14	20 × 20
Nominal Area (mm2)	64	100	196	196	400
Pitch (mm)	0.5	0.5	0.8	0.4	0.4
Height (mm)	0.89	1.05	1.20	1.0	1.0

IGLOO PLUS Device Status

IGLOO PLUS Device	Status
AGLP030	Production
AGLP060	Production
AGLP125	Production

IGLOO PLUS Ordering Information

2. "G" indicates RoHS-compliant packages.

Calculating Power Dissipation

Quiescent Supply Current

Quiescent supply current (I_{DD}) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power mode usage. Microsemi recommends using the Power Calculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature.

Table 2-8 • Power Supply State per Mode

	Power Supply Configurations				
Modes/Power Supplies	VCC	VCCPLL	VCCI	VJTAG	VPUMP
Flash*Freeze	On	On	On	On	On/off/floating
Sleep	Off	Off	On	Off	Off
Shutdown	Off	Off	Off	Off	Off
No Flash*Freeze	On	On	On	On	On/off/floating

Note: Off: Power Supply level = 0 V

Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Flash*Freeze Mode*

	Core Voltage	AGLP030	AGLP060	AGLP125	Units
Typical (25°C)	1.2 V	4	8	13	μA
	1.5 V	6	10	18	μA
		6	10	18	

Note: *IDD includes VCC, VPUMP, VCCI, VJTAG, and VCCPLL currents.

Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Sleep Mode*

ICCI Current	Core Voltage	AGLP030	AGLP060	AGLP125	Units
VCCI = 1.2 V (per bank) Typical (25°C)	1.2 V	1.7	1.7	1.7	μA
VCCI = 1.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.8	1.8	1.8	μA
VCCI = 1.8 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.9	1.9	1.9	μA
VCCI = 2.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.2	2.2	2.2	μA
VCCI = 3.3 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.5	2.5	2.5	μA

Note: *IDD = N_{BANKS} * ICCI

Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Shutdown Mode

	Core Voltage	AGLP030	AGLP060	AGLP125	Units
Typical (25°C)	1.2 V / 1.5 V	0	0	0	μA

Power per I/O Pin

Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings

	VCCI (V)	Dynamic Power PAC9 (μW/MHz) ¹
Single-Ended		
3.3 V LVTTL / 3.3 V LVCMOS	3.3	16.26
3.3 V LVTTL / 3.3 V LVCMOS – Schmitt Trigger	3.3	18.95
3.3 V LVCMOS Wide Range ²	3.3	16.26
3.3 V LVCMOS Wide Range ² – Schmitt Trigger	3.3	18.95
2.5 V LVCMOS	2.5	4.59
2.5 V LVCMOS – Schmitt Trigger	2.5	6.01
1.8 V LVCMOS	1.8	1.61
1.8 V LVCMOS – Schmitt Trigger	1.8	1.70
1.5 V LVCMOS (JESD8-11)	1.5	0.96
1.5 V LVCMOS (JESD8-11) – Schmitt Trigger	1.5	0.90
1.2 V LVCMOS ³	1.2	0.55
1.2 V LVCMOS ³ – Schmitt Trigger	1.2	0.47
1.2 V LVCMOS Wide Range ³	1.2	0.55
1.2 V LVCMOS Wide Range ³ – Schmitt Trigger	1.2	0.47

Notes:

1. PAC9 is the total dynamic power measured on VCCI.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

3. Applicable for IGLOO PLUS V2 devices only, operating at VCCI \geq VCC.

Table 2-14 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹

	C _{LOAD} (pF)	VCCI (V)	Dynamic Power PAC10 (µW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	127.11
3.3 V LVCMOS Wide Range ³	5	3.3	127.11
2.5 V LVCMOS	5	2.5	70.71
1.8 V LVCMOS	5	1.8	35.57
1.5 V LVCMOS (JESD8-11)	5	1.5	24.30
1.2 V LVCMOS ⁴	5	1.2	15.22
1.2 V LVCMOS Wide Range ⁴	5	1.2	15.22

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PAC10 is the total dynamic power measured on VCCI.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

4. Applicable for IGLOO PLUS V2 devices only, operating at VCCI \geq VCC.

Microsemi.

IGLOO PLUS DC and Switching Characteristics

Power Consumption of Various Internal Resources

 Table 2-15 • Different Components Contributing to Dynamic Power Consumption in IGLOO PLUS Devices

 For IGLOO PLUS V2 or V5 Devices, 1.5 V Core Supply Voltage

			Device Specific Dynamic Power (µW/MHz)		
Parameter	Definition	AGLP125	AGLP060	AGLP030	
PAC1	Clock contribution of a Global Rib	4.489	2.696	0.000 ¹	
PAC2	Clock contribution of a Global Spine	1.991	1.962	3.499	
PAC3	Clock contribution of a VersaTile row	1.510	1.523	1.537	
PAC4	Clock contribution of a VersaTile used as a sequential module	0.153	0.151	0.151	
PAC5	First contribution of a VersaTile used as a sequential module	0.029	0.029	0.029	
PAC6	Second contribution of a VersaTile used as a sequential module	0.323	0.323	0.323	
PAC7	Contribution of a VersaTile used as a combinatorial module	0.280	0.300	0.278	
PAC8	Average contribution of a routing net	1.097	1.081	1.130	
PAC9	Contribution of an I/O input pin (standard-dependent)	See Ta	ble 2-13 on	page 2-9.	
PAC10	Contribution of an I/O output pin (standard-dependent)	See Ta	See Table 2-14 on page 2-9.		
PAC11	Average contribution of a RAM block during a read operation		25.00		
PAC12	Average contribution of a RAM block during a write operation		30.00		
PAC13	Dynamic contribution for PLL		2.70		

Note: 1. There is no Center Global Rib present in AGLP030, and thus it starts directly at the spine resulting in 0μW/MHz.

Table 2-16 • Different Components Contributing to the Static Power Consumption in IGLOO PLUS Devices For IGLOO PLUS V2 or V5 Devices, 1.5 V Core Supply Voltage

		Device-Spo	Device-Specific Static Power (mW)			
Parameter	Definition	AGLP125	AGLP125 AGLP060 AGLI			
PDC1	Array static power in Active mode	See Ta	See Table 2-12 on page 2-8			
PDC2	Array static power in Static (Idle) mode	See Ta	See Table 2-11 on page 2-7			
PDC3	Array static power in Flash*Freeze mode	See T	See Table 2-9 on page 2-7			
PDC4	Static PLL contribution		1.84 ¹			
PDC5	Bank quiescent power (VCCI-dependent)	See Ta	See Table 2-12 on page 2-8			

Notes:

1. This is the minimum contribution of the PLL when operating at lowest frequency.

2. For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or the SmartPower tool in Libero SoC software.

Microsemi

IGLOO PLUS DC and Switching Characteristics

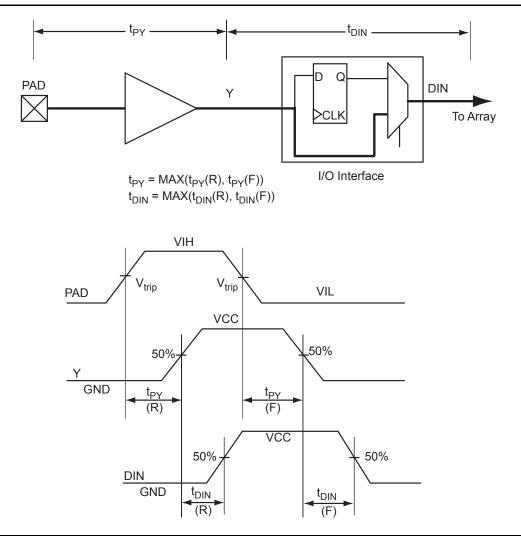


Figure 2-4 • Input Buffer Timing Model and Delays (example)

IGLOO PLUS DC and Switching Characteristics

Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings, STD Speed Grade,Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

	inter erai				•	-					-					
I/O Standard	Drive Strength	Equivalent Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	toour	top	t _{DIN}	tpy	tpys	teour	t _{zL}	тzн	t _{LZ}	tHz	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA		High	5 pF	Ι	0.97	1.76	0.18	0.85	1.15	0.66	1.80	1.39	2.20	2.64	ns
3.3 V LVCMOS Wide Range ²	100 µA	12 mA	High	5 pF	-	0.97	2.47	0.18	1.18	1.64	0.66	2.48	1.91	3.16	3.76	ns
2.5 V LVCMOS	12 mA	12 mA	High	5 pF	-	0.97	1.77	0.18	1.06	1.22	0.66	1.81	1.51	2.22	2.56	ns
1.8 V LVCMOS	8 mA	8 mA	High	5 pF	-	0.97	2.00	0.18	1.00	1.43	0.66	2.04	1.76	2.29	2.55	ns
1.5 V LVCMOS	4 mA	4 mA	High	5 pF	-	0.97	2.29	0.18	1.16	1.62	0.66	2.33	2.00	2.37	2.57	ns

Notes:

1. Note that 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO PLUS DC and Switching Characteristics

1.2 V LVCMOS (JESD8-12A)

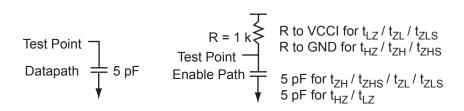
Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose 1.2 V applications. It uses a 1.2 V input buffer and a push-pull output buffer.

Table 2-64 • Minimum and Maximum DC Input and Output Levels

1.2 V LVCMOS ¹		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ⁴	Max. mA ⁴	μA⁵	μA ⁵
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	20	26	10	10

Notes:

1. Applicable to IGLOO nano V2 devices operating at VCCI \geq VCC.


2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

4. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Figure 2-11 • AC Loading

Table 2-65 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.2	0.6	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

Timing Characteristics

Applies to 1.2 V DC Core Voltage

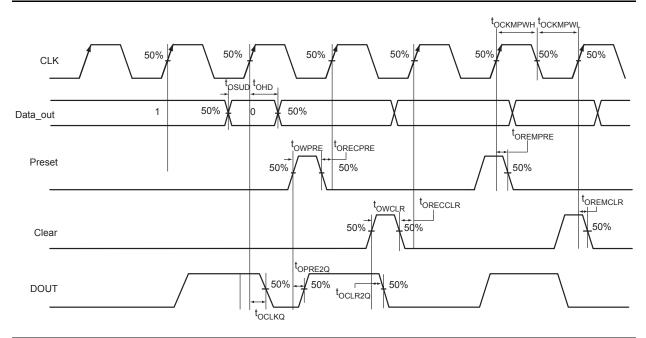
Table 2-66 • 1.2 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.98	8.27	0.19	1.57	2.34	0.67	7.94	6.77	3.00	3.11	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-67 • 1.2 V LVCMOS High Slew


Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.98	3.38	0.19	1.57	2.34	0.67	3.26	2.78	2.99	3.24	ns

Notes:

1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2. Software default selection highlighted in gray.

Output Register

Figure 2-15 • Output Register Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-76 • Output Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{oclkq}	Clock-to-Q of the Output Data Register	0.66	ns
tosud	Data Setup Time for the Output Data Register	0.33	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	0.82	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	0.88	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.24	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.24	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.19	ns
t _{оскмрwн}	Clock Minimum Pulse Width High for the Output Data Register	0.31	ns
t _{OCKMPWL}	Clock Minimum Pulse Width Low for the Output Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO PLUS DC and Switching Characteristics

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-61. Table 2-84 to Table 2-89 on page 2-60 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-84 • AGLP030 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

			St	td.	
Parameter	Description	Γ	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock		1.21	1.42	ns
t _{RCKH}	Input High Delay for Global Clock		1.23	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock		1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock		1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock			0.27	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-85 • AGLP060 Global Resource Commercial-Case Conditions: T₁ = 70°C, VCC = 1.425 V

		St	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.32	1.62	ns
t _{RCKH}	Input High Delay for Global Clock	1.34	1.72	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.38	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

IGLOO PLUS DC and Switching Characteristics

Table 2-88 • AGLP060 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		St	d.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.02	2.43	ns
t _{RCKH}	Input High Delay for Global Clock	2.09	2.65	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.56	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

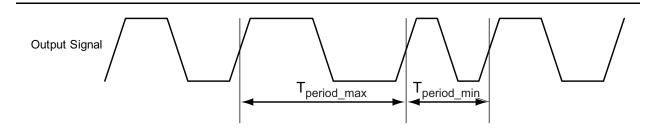
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-89 • AGLP125 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		Si	d.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.08	2.54	ns
t _{RCKH}	Input High Delay for Global Clock	2.15	2.77	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.62	ns


Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Note: Peak-to-peak jitter measurements are defined by $T_{peak-to-peak} = T_{period_max} - T_{period_min}$. *Figure 2-22* • Peak-to-Peak Jitter Definition

Microsemi.

IGLOO PLUS DC and Switching Characteristics

Embedded FlashROM Characteristics

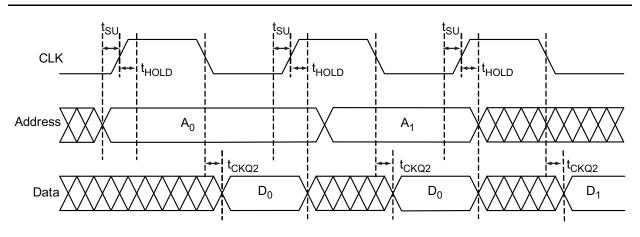


Figure 2-37 • Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-98 • Embedded FlashROM Access Time Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.57	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{CK2Q}	Clock to Out	17.58	ns
F _{MAX}	Maximum Clock Frequency	15	MHz

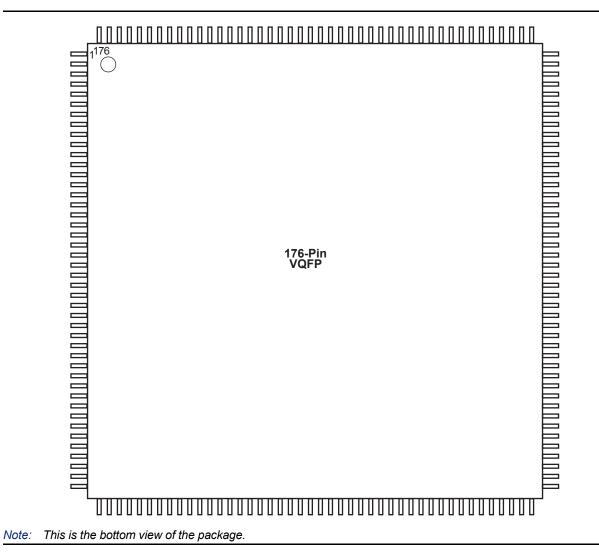

1.2 V DC Core Voltage

Table 2-99 • Embedded FlashROM Access Time Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.59	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{CK2Q}	Clock to Out	30.94	ns
F _{MAX}	Maximum Clock Frequency	10	MHz

VQ176

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

🌜 Microsemi.

Package Pin Assignments

CS281			CS281		CS281		
Pin Number	AGLP125 Function	Pin Number	AGLP125 Function	Pin Number	AGLP125 Function		
H8	VCC	K15	IO89RSB1	N4	IO182RSB3		
H9	VCCIB0	K16	GND	N5	IO161RSB2		
H10	VCC	K18	IO88RSB1	N7	GEA2/IO164RSB2		
H11	VCCIB0	K19	VCCIB1	N8	VCCIB2		
H12	VCC	L1	GFB2/IO187RSB3	N9	IO137RSB2		
H13	VCCIB1	L2	IO185RSB3	N10	IO135RSB2		
H15	IO77RSB1	L4	GFC2/IO186RSB3	N11	IO131RSB2		
H16	GCB0/IO82RSB1	L5	IO184RSB3	N12	VCCIB2		
H18	GCA1/IO83RSB1	L7	IO199RSB3	N13	VPUMP		
H19	GCA2/IO85RSB1	L8	VCCIB3	N15	IO117RSB2		
J1	VCOMPLF	L9	GND	N16	IO96RSB1		
J2	GFA0/IO189RSB3	L10	GND	N18	IO98RSB1		
J4	VCCPLF	L11	GND	N19	IO94RSB1		
J5	GFC0/IO193RSB3	L12	VCCIB1	P1	IO174RSB3		
J7	GFA2/IO188RSB3	L13	IO95RSB1	P2	GND		
J8	VCCIB3	L15	IO91RSB1	P3	IO176RSB3		
J9	GND	L16	NC	P4	IO177RSB3		
J10	GND	L18	IO90RSB1	P5	GEA0/IO165RSB3		
J11	GND	L19	NC	P15	IO111RSB2		
J12	VCCIB1	M1	IO180RSB3	P16	IO108RSB2		
J13	GCC1/IO79RSB1	M2	IO179RSB3	P17	GDC1/IO99RSB1		
J15	GCA0/IO84RSB1	M4	IO181RSB3	P18	GND		
J16	GCB2/IO86RSB1	M5	IO183RSB3	P19	IO97RSB1		
J18	IO76RSB1	M7	VCCIB3	R1	IO173RSB3		
J19	IO78RSB1	M8	VCC	R2	IO172RSB3		
K1	VCCIB3	M9	VCCIB2	R4	GEC1/IO170RSB3		
K2	GFA1/IO190RSB3	M10	VCC	R5	GEB1/IO168RSB3		
K4	GND	M11	VCCIB2	R6	IO154RSB2		
K5	IO19RSB0	M12	VCC	R7	IO149RSB2		
K7	IO197RSB3	M13	VCCIB1	R8	IO146RSB2		
K8	VCC	M15	IO122RSB2	R9	IO138RSB2		
K9	GND	M16	IO93RSB1	R10	IO134RSB2		
K10	GND	M18	IO92RSB1	R11	IO132RSB2		
K11	GND	M19	NC	R12	IO130RSB2		
K12	VCC	N1	IO178RSB3	R13	IO118RSB2		
K13	GCC2/IO87RSB1	N2	IO175RSB3	R14	IO112RSB2		

IGLOO PLUS Low Power Flash FPGAs

C	CS289		CS289		CS289	
Pin Number	AGLP030 Function	Pin Number	AGLP030 Function	Pin Number	AGLP030 Function	
A1	IO03RSB0	C4	NC	E7	IO06RSB0	
A2	NC	C5	VCCIB0	E8	IO11RSB0	
A3	NC	C6	IO09RSB0	E9	IO22RSB0	
A4	GND	C7	IO13RSB0	E10	IO26RSB0	
A5	IO10RSB0	C8	IO15RSB0	E11	VCCIB0	
A6	IO14RSB0	C9	IO21RSB0	E12	NC	
A7	IO16RSB0	C10	GND	E13	IO33RSB0	
A8	IO18RSB0	C11	IO29RSB0	E14	IO36RSB1	
A9	GND	C12	NC	E15	IO38RSB1	
A10	IO23RSB0	C13	NC	E16	VCCIB1	
A11	IO27RSB0	C14	NC	E17	NC	
A12	NC	C15	GND	F1	IO111RSB3	
A13	NC	C16	IO34RSB0	F2	NC	
A14	GND	C17	NC	F3	IO116RSB3	
A15	NC	D1	NC	F4	VCCIB3	
A16	NC	D2	IO119RSB3	F5	IO117RSB3	
A17	IO30RSB0	D3	GND	F6	NC	
B1	IO01RSB0	D4	IO02RSB0	F7	NC	
B2	GND	D5	NC	F8	IO08RSB0	
B3	NC	D6	NC	F9	IO12RSB0	
B4	NC	D7	NC	F10	NC	
B5	IO07RSB0	D8	GND	F11	NC	
B6	NC	D9	IO20RSB0	F12	NC	
B7	VCCIB0	D10	IO25RSB0	F13	NC	
B8	IO17RSB0	D11	NC	F14	GND	
B9	IO19RSB0	D12	NC	F15	NC	
B10	IO24RSB0	D13	GND	F16	IO37RSB1	
B11	IO28RSB0	D14	IO32RSB0	F17	IO41RSB1	
B12	VCCIB0	D15	IO35RSB0	G1	IO110RSB3	
B13	NC	D16	NC	G2	GND	
B14	NC	D17	NC	G3	IO113RSB3	
B15	NC	E1	VCCIB3	G4	NC	
B16	IO31RSB0	E2	IO114RSB3	G5	NC	
B17	GND	E3	IO115RSB3	G6	NC	
C1	NC	E4	IO118RSB3	G7	GND	
C2	IO00RSB0	E5	IO05RSB0	G8	GND	
C3	IO04RSB0	E6	NC	G9	VCC	

🌜 Microsemi.

Package Pin Assignments

	CS289		CS289		
Pin Number	AGLP060 Function	Pin Number	AGLP060 Function		
P8	GND	T12	IO82RSB2		
P9	IO91RSB2	T13	NC		
P10	IO86RSB2	T14	GND		
P11	IO81RSB2	T15	NC		
P12	NC	T16	TDI		
P13	VCCIB2	T17	TDO		
P14	NC	U1	FF/GEB2/IO109RS		
P15	GDA2/IO78RSB2		B2		
P16	GDC2/IO80RSB2	U2	GND		
P17	VJTAG	U3	NC		
R1	GND	U4	IO107RSB2		
R2	GEA2/IO110RSB2	U5	IO105RSB2		
R3	NC	U6	IO101RSB2		
R4	NC	U7	GND		
R5	NC	U8	IO94RSB2		
R6	VCCIB2	U9	IO92RSB2		
R7	IO102RSB2	U10	IO87RSB2		
R8	IO97RSB2	U11	IO85RSB2		
R9	IO93RSB2	U12	GND		
R10	IO89RSB2	U13	NC		
R11	GND	U14	NC		
R12	NC	U15	NC		
R13	NC	U16	ТСК		
R14	NC	U17	VPUMP		
R15	NC				
R16	TMS				
R17	TRST				
T1	GEA1/IO112RSB3				
T2	GEC2/IO108RSB2				
Т3	NC				
T4	GND				
T5	NC				
T6	IO103RSB2				
T7	IO100RSB2				
T8	IO95RSB2				
Т9	VCCIB2				
T10	IO88RSB2				
T11	IO84RSB2				

Datasheet Information

Revision	Changes	Page
Revision 13 (June 2012)	Figure 2-30 • FIFO Read and Figure 2-31 • FIFO Write have been added (SAR 34843).	2-73
	Updated the terminology used in Timing Characteristics in the following tables: Table 2-96 • FIFO and Table 2-97 • FIFO (SAR 38236).	2-76
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions and Packaging" section: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38320). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1
Revision 12 (March 2012)	The in-dystem rogramming (ior) and becanty section and becanty section	
	The Y security option and Licensed DPA Logo were added to the "IGLOO PLUS Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 34724).	III
	The "Specifying I/O States During Programming" section is new (SAR 34695).	1-7
	The following sentence was removed from the "Advanced Architecture" section: "In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of IGLOO PLUS devices via an IEEE 1532 JTAG interface" (SAR 34684).	1-3

Datasheet Information

Revision	Changes	Page
Revision 10 (Apr 2009) Product Brief v1.5 DC and Switching Characteristics Advance v0.5	The –F speed grade is no longer offered for IGLOO PLUS devices. References to it have been removed from the document. The speed grade column and note regarding –F speed grade were removed from "IGLOO PLUS Ordering Information". The "Speed Grade and Temperature Grade Matrix" section was removed.	III, IV
Revision 9 (Feb 2009) Product Brief v1.4	The "Advanced I/O" section was revised to add two bullets regarding support of wide range power supply voltage.	
	The "I/Os with Advanced I/O Standards" section was revised to add 3.0 V wide range to the list of supported voltages. The "Wide Range I/O Support" section is new.	1-7
Revision 8 (Jan 2009) Packaging v1.5	The "CS201" pin table was revised to add a note regarding pins G1 and H1.	4-8
Revision 7 (Dec 2008) Product Brief v1.3	A note was added to IGLOO PLUS Devices: "AGLP060 in CS201 does not support the PLL."	I
	Table 2 • IGLOO PLUS FPGAs Package Size Dimensions was updated to change the nominal size of VQ176 from 100 to 400 mm ² .	II
Revision 6 (Oct 2008) DC and Switching Characteristics Advance v0.4	Data was revised significantly in the following tables: Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings, STD Speed Grade, Commercial-Case Conditions: T _J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V	2-22, 2-33
	Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings, STD Speed Grade Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Table 2-50 • 2.5 LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage	
	Table 2-51 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage	
Revision 5 (Aug 2008) Product Brief v1.2	The VQ128 and VQ176 packages were added to Table 1 • IGLOO PLUS Product Family, the "I/Os Per Package ¹ " table, Table 2 • IGLOO PLUS FPGAs Package Size Dimensions, "IGLOO PLUS Ordering Information", and the "Temperature Grade Offerings" table.	I to IV
Packaging v1.4	The "VQ128" package drawing and pin table are new.	4-2
	The "VQ176" package drawing and pin table are new.	4-5
Revision 4 (Jul 2008) Product Brief v1.1 DC and Switching Characteristics Advance v0.3	As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core voltage support. The document was updated to change $1.2 \text{ V} / 1.5 \text{ V}$ to 1.2 V to 1.5 V .	N/A
Revision 3 (Jun 2008) DC and Switching Characteristics Advance v0.2	Tables have been updated to reflect default values in the software. The default I/O capacitance is 5 pF. Tables have been updated to include the LVCMOS 1.2 V I/O set.	N/A
	Table note 3 was updated in Table 2-2 • Recommended Operating Conditions ^{1,2} to add the sentence, "VCCI should be at the same voltage within a given I/O bank." References to table notes 5, 6, 7, and 8 were added. Reference to table note 3 was removed from VPUMP Operation and placed next to VCC.	2-2
	Table 2-4 • Overshoot and Undershoot Limits ¹ was revised to remove "as measured on quiet I/Os" from the title. Table note 2 was revised to remove "estimated SSO density over cycles." Table note 3 was deleted.	2-3

IGLOO PLUS Low Power Flash FPGAs

Revision	Changes	Page
Revision 3 (continued)	The table note for Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Flash*Freeze Mode* to remove the sentence stating that values do not include I/O static contribution.	2-7
	The table note for Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Sleep Mode* was updated to remove VJTAG and VCCI and the statement that values do not include I/O static contribution.	2-7
	The table note for Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Shutdown Mode was updated to remove the statement that values do not include I/O static contribution.	2-7
	Note 2 of Table 2-12 • Quiescent Supply Current (IDD), No IGLOO PLUS Flash*Freeze Mode 1 was updated to include VCCPLL. Table note 4 was deleted.	2-8
	Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings and Table 2-14 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings ¹ were updated to remove static power. The table notes were updated to reflect that power was measured on VCC ₁ . Table note 2 was added to Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings.	2-9, 2-9
	Table 2-16 • Different Components Contributing to the Static Power Consumption in IGLOO PLUS Devices and Table 2-18 • Different Components Contributing to the Static Power Consumption in IGLOO PLUS Devices were updated to change the definition for P_{DC5} from bank static power to bank quiescent power. Table subtitles were added for Table 2-16 • Different Components Contributing to the Static Power Consumption in IGLOO PLUS Devices, Table 2-17 • Different Components Contributing to Dynamic Power Consumption in IGLOO PLUS Devices, and Table 2-18 • Different Components Contributing to the Static Power Consumption in IGLOO PLUS Devices.	2-10, 2-11
	The "Total Static Power Consumption—P _{STAT} " section was revised.	2-12
	Table 2-32 • Schmitt Trigger Input Hysteresis is new.	2-26
Packaging v1.3	The "CS281" package drawing is new.	4-13
	The "CS281" table for the AGLP125 device is new.	4-13
Revision 3 (continued)	The "CS289" package drawing was incorrect. The graphic was showing the CS281 mechanical drawing and not the CS289 mechanical drawing. This has now been corrected.	4-17
Revision 2 (Jun 2008) Packaging v1.2	The "CS289" table for the AGLP030 device is new.	4-17
Revision 1 (Jun 2008)	The "CS289" table for the AGLP060 device is new.	4-20
Packaging v1.1	The "CS289" table for the AGLP125 device is new.	4-23