

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	3120
Total RAM Bits	36864
Number of I/O	212
Number of Gates	125000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	289-TFBGA, CSBGA
Supplier Device Package	289-CSP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/aglp125v2-cs289i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – IGLOO PLUS Device Family Overview

General Description

The IGLOO PLUS family of flash FPGAs, based on a 130 nm flash process, offers the lowest power FPGA, a single-chip solution, small-footprint packages, reprogrammability, and an abundance of advanced features.

The Flash*Freeze technology used in IGLOO PLUS devices enables entering and exiting an ultra-low power mode that consumes as little as 5 μ W while retaining the design information, SRAM content, registers, and I/O states. Flash*Freeze technology simplifies power management through I/O and clock management with rapid recovery to operation mode.

The Low Power Active capability (static idle) allows for ultra-low power consumption while the IGLOO PLUS device is completely functional in the system. This allows the IGLOO PLUS device to control system power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power.

Nonvolatile flash technology gives IGLOO PLUS devices the advantage of being a secure, low power, single-chip solution that is Instant On. IGLOO PLUS is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost.

These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

IGLOO PLUS devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). IGLOO PLUS devices have up to 125 k system gates, supported with up to 36 kbits of true dual-port SRAM and up to 212 user I/Os. The AGLP030 devices have no PLL or RAM support.

Flash*Freeze Technology

The IGLOO PLUS device offers unique Flash*Freeze technology, allowing the device to enter and exit ultra-low power Flash*Freeze mode. IGLOO PLUS devices do not need additional components to turn off I/Os or clocks while retaining the design information, SRAM content, registers, and I/O states. Flash*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of IGLOO PLUS V2 devices to support a wide range of core and I/O voltages (1.2 V to 1.5 V) allows further reduction in power consumption, thus achieving the lowest total system power.

During Flash*Freeze mode, each I/O can be set to the following configurations: hold previous state, tristate, or set as HIGH or LOW.

The availability of low power modes, combined with reprogrammability, a single-chip and single-voltage solution, and availability of small-footprint, high-pin-count packages, make IGLOO PLUS devices the best fit for portable electronics.

Flash Advantages

Low Power

IGLOO PLUS devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. IGLOO PLUS devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

IGLOO PLUS devices also have low dynamic power consumption to further maximize power savings; power is even further reduced by the use of a 1.2 V core voltage.

Low dynamic power consumption, combined with low static power consumption and Flash*Freeze technology, gives the IGLOO PLUS device the lowest total system power offered by any FPGA.

IGLOO PLUS Device Family Overview

Security

Nonvolatile, flash-based IGLOO PLUS devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. IGLOO PLUS devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

IGLOO PLUS devices (except AGLP030) utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of security in the FPGA industry for programmed intellectual property and configuration data. In addition, all FlashROM data in IGLOO PLUS devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOO PLUS devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. IGLOO PLUS devices with AES-based security provide a high level of protection for secure, remote field updates over public networks such as the Internet, and ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

Security, built into the FPGA fabric, is an inherent component of the IGLOO PLUS family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The IGLOO PLUS family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. An IGLOO PLUS device provides the best available security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based IGLOO PLUS FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

The IGLOO PLUS devices can be operated with a 1.2 V or 1.5 V single-voltage supply for core and I/Os, eliminating the need for additional supplies while minimizing total power consumption.

Instant On

Flash-based IGLOO PLUS devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based IGLOO PLUS devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs. In addition, glitches and brownouts in system power will not corrupt the IGLOO PLUS device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based IGLOO PLUS devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

IGLOO PLUS flash FPGAs allow the user to quickly enter and exit Flash*Freeze mode. This is done almost instantly (within 1 µs), and the device retains configuration and data in registers and RAM. Unlike SRAM-based FPGAs, the device does not need to reload configuration and design state from external memory components; instead, it retains all necessary information to resume operation immediately.

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAMbased FPGAs, flash-based IGLOO PLUS devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the industrystandard AES algorithm.

Note: *Not supported by AGLP030 devices

Figure 1-1 • IGLOO PLUS Device Architecture Overview with Four I/O Banks (AGLP030, AGLP060, and AGLP125)

Flash*Freeze Technology

The IGLOO PLUS device has an ultra-low power static mode, called Flash*Freeze mode, which retains all SRAM and register information and can still quickly return to normal operation. Flash*Freeze technology enables the user to quickly (within 1 μ s) enter and exit Flash*Freeze mode by activating the Flash*Freeze pin while all power supplies are kept at their original values. In addition, I/Os and global I/Os can still be driven and can be toggling without impact on power consumption, clocks can still be driven or can be toggling without impact on power consumption, and the device retains all core registers, SRAM information, and I/O states. I/Os can be individually configured to either hold their previous state or be tristated during Flash*Freeze mode. Alternatively, they can be set to a certain state using weak pull-up or pull-down I/O attribute configuration. No power is consumed by the I/O banks, clocks, JTAG pins, or PLL, and the device consumes as little as 5 μ W in this mode.

Flash*Freeze technology allows the user to switch to Active mode on demand, thus simplifying the power management of the device.

The Flash*Freeze pin (active low) can be routed internally to the core to allow the user's logic to decide when it is safe to transition to this mode. Refer to Figure 1-2 for an illustration of entering/exiting Flash*Freeze mode. It is also possible to use the Flash*Freeze pin as a regular I/O if Flash*Freeze mode usage is not planned.

Figure 1-2 • IGLOO PLUS Flash*Freeze Mode

Combinatorial Cells Contribution—P_{C-CELL}

 $P_{C-CELL} = N_{C-CELL} * \alpha_1 / 2 * PAC7 * F_{CLK}$

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-14.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

Routing Net Contribution—P_{NET}

 $P_{NET} = (N_{S-CELL} + N_{C-CELL}) * \alpha_1 / 2 * PAC8 * F_{CLK}$

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

 N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-14.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

I/O Input Buffer Contribution—PINPUTS

 $P_{INPUTS} = N_{INPUTS} * \alpha_2 / 2 * P_{AC9} * F_{CLK}$

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-19 on page 2-14.

 F_{CLK} is the global clock signal frequency.

I/O Output Buffer Contribution—POUTPUTS

 $P_{OUTPUTS} = N_{OUTPUTS} * \alpha_2 / 2 * \beta_1 * PAC10 * F_{CLK}$

N_{OUTPUTS} is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-19 on page 2-14.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 2-20 on page 2-14.

F_{CLK} is the global clock signal frequency.

RAM Contribution—P_{MEMORY}

 $\mathsf{P}_{\mathsf{MEMORY}} = \mathsf{P}_{\mathsf{AC11}} * \mathsf{N}_{\mathsf{BLOCKS}} * \mathsf{F}_{\mathsf{READ-CLOCK}} * \beta_2 + \mathsf{PAC12} * \mathsf{N}_{\mathsf{BLOCK}} * \mathsf{F}_{\mathsf{WRITE-CLOCK}} * \beta_3$

N_{BLOCKS} is the number of RAM blocks used in the design.

 $\mathsf{F}_{\mathsf{READ}\text{-}\mathsf{CLOCK}}$ is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations.

F_{WRITE-CLOCK} is the memory write clock frequency.

 β_3 is the RAM enable rate for write operations—guidelines are provided in Table 2-20 on page 2-14.

PLL Contribution—PPLL

 $P_{PLL} = PDC4 + PAC1_3 * F_{CLKOUT}$

F_{CLKOUT} is the output clock frequency.¹

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:

If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (P_{AC13}* F_{CLKOUT} product) to the total PLL contribution.

User I/O Characteristics

Timing Model

Figure 2-3 • Timing Model

Operating Conditions: STD Speed, Commercial Temperature Range (T_J = 70°C), Worst-Case VCC = 1.425 V, for DC 1.5 V Core Voltage, Applicable to V2 and V5 Devices

Overview of I/O Performance

Summary of I/O DC Input and Output Levels – Default I/O Software Settings

Table 2-21	• Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and
	Industrial Conditions—Software Default Settings

		Equiv.			VIL	VIH		VOL	VOH	IOL ¹	IOH ¹
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range ³	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VDD 3 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	12	12
1.8 V LVCMOS	8 mA	8 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	8	8
1.5 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	4	4
1.2 V LVCMOS ⁴	2 mA	2 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2
1.2 V LVCMOS Wide Range ^{4,5}	100 µA	2 mA	High	-0.3	0.3 * VCCI	0.7 * VCCI	3.6	0.1	VCCI – 0.1	0.1	0.1

Notes:

1. Currents are measured at 85°C junction temperature.

2. Note that 1.2 V LVCMOS and 3.3 V LVCMOS wide range are applicable to 100 μA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

4. Applicable to IGLOO PLUS V2 devices operating at VCC₁ \geq VCC.

5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.

I/O Standard	Drive Strength	Equivalent Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	t _{воит}	top	t _{DIN}	t _P V)	tpys	teour	t _{zı}	t _{zн}	t _{LZ}	t _{HZ}	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	5 pF	-	0.98	2.31	0.19	0.99	1.37	0.67	2.34	1.86	2.65	3.38	ns
3.3 V LVCMOS Wide Range ²	100 µA	12 mA	High	5 pF	-	0.98	3.21	0.19	1.32	1.92	0.67	3.21	2.52	3.73	4.73	ns
2.5 V LVCMOS	12 mA	12 mA	High	5 pF	-	0.98	2.29	0.19	1.19	1.40	0.67	2.32	1.94	2.65	3.27	ns
1.8 V LVCMOS	8 mA	8 mA	High	5 pF	-	0.98	2.45	0.19	1.12	1.61	0.67	2.48	2.16	2.71	3.16	ns
1.5 V LVCMOS	4 mA	4 mA	High	5 pF	-	0.98	2.71	0.19	1.26	1.80	0.67	2.75	2.39	2.78	3.15	ns
1.2 V LVCMOS	2 mA	2 mA	High	5 pF	-	0.98	3.38	0.19	1.57	2.34	0.67	3.26	2.78	2.99	3.24	ns
1.2 V LVCMOS Wide Range ³	100 µA	2 mA	High	5 pF	_	0.98	3.38	0.19	1.57	2.34	0.67	3.26	2.78	2.99	3.24	ns

Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings, STD Speed GradeCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.
For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-29 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R _{(WEAK}	PULL-UP) ¹ Ω)	$R_{(WEAK PULL-DOWN)}^{2}$				
VCCI	Min.	Max.	Min.	Max.			
3.3 V	10 K	45 K	10 K	45 K			
3.3 V (wide range I/Os)	10 K	45 K	10 K	45 K			
2.5 V	11 K	55 K	12 K	74 K			
1.8 V	18 K	70 K	17 K	110 K			
1.5 V	19 K	90 K	19 K	140 K			
1.2 V	25 K	110 K	25 K	150 K			
1.2 V (wide range I/Os)	19 K	110 K	19 K	150 K			

Notes:

R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_(WEAK PULL-UP-MIN)
R_(WEAK PULLDOWN-MAX) = (VOLspec) / I_(WEAK PULLDOWN-MIN)

Table 2-30 • I/O Short Currents IOSH/IOSL

	Drive Strength	IOSL (mA)*	IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	27	25
	4 mA	27	25
	6 mA	54	51
	8 mA	54	51
	12 mA	109	103
	16 mA	109	103
3.3 V LVCMOS Wide Range	100 µA	Same as equivalent	software default drive
2.5 V LVCMOS	2 mA	18	16
	4 mA	18	16
	6 mA	37	32
	8 mA	37	32
	12 mA	27 25 27 25 54 51 54 51 109 103 109 103 Same as equivalent software default of 18 18 16 37 32 74 65 11 9 22 17 44 35 44 35 16 13 33 25 26 20	65
1.8 V LVCMOS	2 mA	11	9
	4 mA	22	17
	6 mA	44	35
	8 mA	44	35
1.5 V LVCMOS	2 mA	16	13
	4 mA	33	25
1.2 V LVCMOS	2 mA	26	20
1.2 V LVCMOS Wide Range	100 µA	26	20

Note: $^{*}T_{J} = 100^{\circ}C$

Microsemi.

IGLOO PLUS DC and Switching Characteristics

1.8 V LVCMOS

Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

1.8 V LVCMOS	VIL VIH			VOL	VOL VOH I		ЮН	IOSL	IOSH	IIL ¹	IIH ²	
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA	Max., mA ³	Max., mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	2	2	9	11	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	4	4	17	22	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	6	6	35	44	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI-0.45	8	8	35	44	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
Datapath
$$\downarrow$$
 5 pF $R = 1 k$
Enable Path \downarrow R to VCCI for $t_{LZ} / t_{ZL} / t_{ZLS}$
 R to GND for $t_{HZ} / t_{ZH} / t_{ZHS}$
 $5 pF$ for $t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$
 $5 pF$ for $t_{HZ} / t_{ZL} / t_{ZLS}$

Figure 2-9 • AC Loading

Table 2-53 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.8	0.9	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-54 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	5.89	0.18	1.00	1.43	0.66	6.01	5.43	1.78	1.30	ns
4 mA	STD	0.97	4.82	0.18	1.00	1.43	0.66	4.92	4.56	2.08	2.08	ns
6 mA	STD	0.97	4.13	0.18	1.00	1.43	0.66	4.21	3.96	2.30	2.46	ns
8 mA	STD	0.97	4.13	0.18	1.00	1.43	0.66	4.21	3.96	2.30	2.46	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-55 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_{.1} = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.97	2.82	0.18	1.00	1.43	0.66	2.88	2.78	1.78	1.35	ns
4 mA	STD	0.97	2.30	0.18	1.00	1.43	0.66	2.35	2.11	2.08	2.15	ns
6 mA	STD	0.97	2.00	0.18	1.00	1.43	0.66	2.04	1.76	2.29	2.55	ns
8 mA	STD	0.97	2.00	0.18	1.00	1.43	0.66	2.04	1.76	2.29	2.55	ns

Notes:

1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2. Software default selection highlighted in gray.

Applies to 1.2 V DC Core Voltage

Table 2-56 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.98	6.43	0.19	1.12	1.61	0.67	6.54	5.93	2.19	1.88	ns
4 mA	STD	0.98	5.33	0.19	1.12	1.61	0.67	5.41	5.03	2.50	2.68	ns
6 mA	STD	0.98	4.61	0.19	1.12	1.61	0.67	4.69	4.41	2.72	3.07	ns
8 mA	STD	0.98	4.61	0.19	1.12	1.61	0.67	4.69	4.41	2.72	3.07	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-57 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.98	3.30	0.19	1.12	1.61	0.67	3.34	3.21	2.19	1.93	ns
4 mA	STD	0.98	2.76	0.19	1.12	1.61	0.67	2.79	2.51	2.50	2.76	ns
6 mA	STD	0.98	2.45	0.19	1.12	1.61	0.67	2.48	2.16	2.71	3.16	ns
8 mA	STD	0.98	2.45	0.19	1.12	1.61	0.67	2.48	2.16	2.71	3.16	ns

Notes:

1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2. Software default selection highlighted in gray.

1.2 V LVCMOS Wide Range

1.2 V LVCMOS Range ¹	Wide		VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ³	IIH ⁴
Drive Strength	Equivalent Software Default Drive Strength Option ²	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ⁵	Max mA ⁵	μA ⁶	μA ⁶
100 µA	2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	20	26	10	10

Table 2-68 • Minimum and Maximum DC Input and Output Levels

Notes:

1. Applicable to V2 devices only.

2. The minimum drive strength for any LVCMOS 1.2 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

3. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

5. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

6. Currents are measured at 85°C junction temperature.

7. Software default selection highlighted in gray.

Table 2-69 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.2	0.6	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

Microsemi.

IGLOO PLUS DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-79 • Output Enable Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	1.06	ns
tOESUD	Data Setup Time for the Output Enable Register	0.52	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	1.25	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	1.36	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.24	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.24	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OECKMPWH}	Clock Minimum Pulse Width High for the Output Enable Register	0.31	ns
t _{OECKMPWL}	Clock Minimum Pulse Width Low for the Output Enable Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-93 • RAM512X18

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{AS}	Address setup time	0.69	ns
t _{AH}	Address hold time	0.13	ns
t _{ENS}	REN, WEN setup time	0.61	ns
t _{ENH}	REN, WEN hold time	0.07	ns
t _{DS}	Input data (WD) setup time	0.59	ns
t _{DH}	Input data (WD) hold time	0.30	ns
t _{CKQ1}	Clock High to new data valid on RD (output retained)	3.51	ns
t _{CKQ2}	Clock High to new data valid on RD (pipelined)	1.43	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address – applicable to opening edge	0.21	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address – applicable to opening edge	0.25	ns
t _{RSTBQ}	RESET Low to data out Low on RD (flow-through)	1.72	ns
	RESET Low to data out Low on RD (pipelined)	1.72	ns
t _{REMRSTB}	RESET removal	0.51	ns
t _{RECRSTB}	RESET recovery	2.68	ns
t _{MPWRSTB}	RESET minimum pulse width	0.68	ns
t _{CYC}	Clock cycle time	6.24	ns
F _{MAX}	Maximum frequency	160	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-97 • FIFO

Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	3.44	ns
t _{ENH}	REN, WEN Hold Time	0.26	ns
t _{BKS}	BLK Setup Time	0.30	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (WD) Setup Time	1.30	ns
t _{DH}	Input Data (WD) Hold Time	0.41	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	5.67	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	3.02	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	6.02	ns
t _{WCKFF}	WCLK High to Full Flag Valid	5.71	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	22.17	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	5.93	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	21.94	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	3.41	ns
	RESET Low to Data Out Low on RD (pipelined)	3.41	ns
t _{REMRSTB}	RESET Removal	1.02	ns
t _{RECRSTB}	RESET Recovery	5.48	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	1.18	ns
t _{CYC}	Clock Cycle Time	10.90	ns
F _{MAX}	Maximum Frequency for FIFO	92	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

JTAG 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-15 for more details.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-100 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DISU}	Test Data Input Setup Time	1.00	ns
t _{DIHD}	Test Data Input Hold Time	2.00	ns
t _{TMSSU}	Test Mode Select Setup Time	1.00	ns
t _{TMDHD}	Test Mode Select Hold Time	2.00	ns
t _{TCK2Q}	Clock to Q (data out)	8.00	ns
t _{RSTB2Q}	Reset to Q (data out)	25.00	ns
F _{TCKMAX}	TCK Maximum Frequency	15	MHz
t _{TRSTREM}	ResetB Removal Time	0.58	ns
t _{TRSTREC}	ResetB Recovery Time	0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-101 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DISU}	Test Data Input Setup Time	1.50	ns
t _{DIHD}	Test Data Input Hold Time	3.00	ns
t _{TMSSU}	Test Mode Select Setup Time	1.50	ns
t _{TMDHD}	Test Mode Select Hold Time	3.00	ns
t _{TCK2Q}	Clock to Q (data out)	11.00	ns
t _{RSTB2Q}	Reset to Q (data out)	30.00	ns
F _{TCKMAX}	TCK Maximum Frequency	9.00	MHz
t _{TRSTREM}	ResetB Removal Time	1.18	ns
t _{TRSTREC}	ResetB Recovery Time	0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Pin Descriptions and Packaging

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on IGLOO PLUS devices.

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

IGLOO PLUS devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

GL

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO PLUS FPGA Fabric User's Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the I/O Structure chapter of the IGLOO PLUS FPGA Fabric User's Guide for an explanation of the naming of global pins.

4 – Package Pin Assignments

VQ128

Note

Note:

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

Pin information is in the "Pin Descriptions" chapter of the IGLOO PLUS FPGA Fabric User's Guide.

IGLOO PLUS Low Power Flash FPGAs

Pin Number AGLP125 Function Pin Number AGLP125 Function A1 GND B18 VCCIB1 E13 I048RSB0 A2 GAB0/I002RSB0 B19 I064RSB1 E14 GBB1/I060RSB0 A3 GAC1/I009RSB0 C2 I0210RSB3 E15 I069RSB1 A4 I009RSB0 C2 I0210RSB3 E18 I069RSB1 A5 I013RSB0 C14 I047RSB0 E18 I069RSB1 A6 I015RSB0 C18 I054RSB0 E19 I071RSB1 A7 I018RSB0 C19 GBB2/066RSB1 F1 I069RSB3 A8 I022RSB0 D1 I0208RSB3 F4 I0201RSB3 A11 I033RSB0 D4 GAA0/000RSB0 F15 I050RSB0 A11 I043RSB0 D6 I010RSB0 F16 I074RSB1 A14 I046RSB0 D7 I017RSB0 F17 I073RSB1 A14 I046RSB0 D10 GAD G11 I0198R		CS281		CS281		CS281
A1 GND B18 VCCIB1 E13 IO48RS80 A2 GAB0/IO02RS80 B19 IO64RS81 E14 GBB1/IO60RS80 A3 GAC1/IO05RS80 C1 GAB2/IO20RS83 E15 IO53RS80 A4 IO09RS80 C2 IO210RS83 E16 IO69RS81 A5 IO13RS80 C14 IO47RS80 E19 IO71RS81 A6 IO15RS80 C18 IO54RS83 F1 IO198RS83 A7 IO18RS80 C19 GB82/IO66RS81 F2 GND A9 IO25RS80 D1 IO206RS83 F3 IO201RS83 A11 IO33RS80 D4 GAA0/IO00RS80 F5 ID16RS80 A12 IO41RS80 D5 GAA1/IO1RS80 F16 IO74RS81 A13 IO43RS80 D6 ID10RS80 F17 IO57RS81 A15 IO56RS80 D7 IO17RS80 F18 GND A14 IO46RS80 D11 IO31RS80 G2	Pin Number	AGLP125 Function	Pin Number	AGLP125 Function	Pin Number	AGLP125 Function
A2 GAB0/I002RSB0 B19 IO64RSB1 E14 GBB1/IO60RSB0 A3 GAC1//005RSB0 C1 GAB2/IO209RSB3 E15 IO53RSB0 A4 IO09RSB0 C2 IO210RSB3 E16 IO69RSB1 A5 IO13RSB0 C6 IO12RSB0 E18 IO69RSB1 A6 IO13RSB0 C14 IO47RSB0 E19 IO71RSB1 A7 IO18RSB0 C19 GB2/IO65RSB1 F2 GND A9 IO22RSB0 D1 IO206RSB3 F4 IO201RSB3 A10 VCCIB0 D2 IO208RSB3 F4 IO204RSB3 A11 IO33RSB0 D4 GAA0/IO0RSB0 F5 IO18RSB0 A13 IO43RSB0 D5 GAA1/IO1RSB0 F15 IO50RSB0 A14 IO46RSB0 D7 IO17RSB0 F17 IO72RSB1 A14 IO46RSB0 D11 G31RSB0 F18 GND A14 IO46RSB0 D11 IO31RSB0 G5<	A1	GND	B18	VCCIB1	E13	IO48RSB0
A3 GAC1//005RSB0 C1 GAB2//0209RSB3 E15 I053RSB0 A4 I009RSB0 C2 I0210RSB3 E16 I069RSB1 A5 I013RSB0 C6 I012RSB0 E18 I068RSB1 A6 I015RSB0 C14 I047RSB0 E19 I071RSB1 A7 I018RSB0 C18 I054RSB0 F1 I0198RSB3 A8 I022RSB0 D1 I0206RSB3 F3 I0201RSB3 A10 VCCIB0 D2 I0208RSB0 F5 I016RSB0 A11 I033RSB0 D4 GAA0/000RSB0 F5 I016RSB0 A12 I041RSB0 D5 GAA1/1001RSB0 F15 I050RSB0 A13 I043RSB0 D6 I010RSB0 F16 I074RSB1 A14 I046RSB0 D7 I017RSB0 F18 GND A14 I045RSB0 D8 I024RSB0 G1 I073RSB1 A15 I056RSB0 D10 GND G1 <	A2	GAB0/IO02RSB0	B19	IO64RSB1	E14	GBB1/IO60RSB0
A4 IO09RSB0 C2 IO210RSB3 E16 IO69RSB1 A5 IO13RSB0 C6 IO12RSB0 E18 IO68RSB1 A6 IO13RSB0 C14 IO47RSB0 E19 IO71RSB1 A7 IO18RSB0 C18 IO54RSB0 F1 IO198RSB3 A8 IO23RSB0 D1 IO206RSB3 F4 IO201RSB3 A10 VCCIB0 D2 IO208RSB0 F5 IO16RSB0 A11 IO33RSB0 D4 GAA0/IO0RSB0 F5 IO16RSB0 A12 IO41RSB0 D5 GAA1/IO1RSB0 F16 IO74RSB1 A13 IO43RSB0 D6 IO10RSB0 F16 IO74RSB1 A14 IO46RSB0 D7 IO17RSB0 F17 IO73RSB1 A15 IO55RSB0 D8 IO24RSB3 F18 GND A17 GBC1/IO58RSB0 D11 IO31RSB0 G1 IO195RSB3 A14 GAA2/IO21RSB3 D13 IO49RSB3 G44	A3	GAC1/IO05RSB0	C1	GAB2/IO209RSB3	E15	IO53RSB0
A5 IO13RSB0 C6 IO12RSB0 E18 IO68RSB1 A6 IO15RSB0 C14 IO47RSB0 E19 IO71RSB1 A7 IO18RSB0 C18 IO54RSB0 F1 IO198RSB3 A8 IO23RSB0 D1 IO206RSB3 F3 IO201RSB3 A10 VCCIB0 D2 IO208RSB3 F4 IO204RSB3 A11 IO33RSB0 D4 GAA0/IO0RSB0 F5 IO16RSB0 A12 IO41RSB0 D5 GAA1/IO1RSB0 F15 IO50RSB0 A13 IO43RSB0 D6 IO10RSB0 F16 IO74RSB1 A14 IO46RSB0 D7 IO17RSB0 F17 IO72RSB1 A15 IO55RSB0 D8 IO24RSB0 F19 IO73RSB1 A17 GBC1/IO58RSB0 D10 GND G11 IO195RSB3 A18 GBA0/IO61RSB0 D11 IO31RSB0 G5 IO08RSB0 B2 VCCIB0 D14 IO49RSB0 G6	A4	IO09RSB0	C2	IO210RSB3	E16	IO69RSB1
A6 IO15RSB0 C14 IO47RSB0 E19 IO71RSB1 A7 IO18RSB0 C18 IO54RSB0 F1 IO198RSB3 A8 IO23RSB0 C19 GBB2/IO65RSB1 F2 GND A9 IO25RSB0 D1 IO208RSB3 F4 IO204RSB3 A10 VCCIB0 D2 IO208RSB3 F4 IO204RSB3 A11 IO33RSB0 D4 GAA0/IO00RSB0 F5 IO16RSB0 A12 IO41RSB0 D5 GAA1/IO01RSB0 F16 IO74RSB1 A14 IO46RSB0 D7 IO17RSB0 F17 IO72RSB1 A15 IO55RSB0 D8 IO24RSB0 F18 GND A16 IO66RSB0 D9 IO27RSB0 F19 IO73RSB1 A17 GB2/IO6RSB0 D11 IO31RSB0 G2 IO200RSB3 B1 GAA2/IO211RSB3 D13 IO49RSB0 G5 IO08RSB0 B2 VCCIB0 D16 GBA2/IO63RSB1 G9	A5	IO13RSB0	C6	IO12RSB0	E18	IO68RSB1
A7 IO18RSB0 C18 IO54RSB0 F1 IO198RSB3 A8 IO23RSB0 C19 GBB2/IO65RSB1 F2 GND A9 IO25RSB0 D1 IO208RSB3 F3 IO201RSB3 A10 VCCIB0 D2 IO208RSB3 F4 IO204RSB3 A11 IO33RSB0 D4 GAA0/IO00RSB0 F5 IO16RSB0 A12 IO41RSB0 D5 GAA1/IO01RSB0 F16 IO74RSB1 A13 IO43RSB0 D6 IO10RSB0 F16 IO74RSB1 A15 IO56RSB0 D9 IO27RSB0 F18 GND A16 IO56RSB0 D9 IO27RSB0 F18 GND A17 GBC1/IO58RSB0 D10 GND G1 IO198RSB3 A17 GBC1/IO58RSB0 D11 IO31RSB0 G2 IO200RSB3 A18 GBA0/IO61RSB0 D14 IO45RSB0 G5 IO08RSB0 B2 VCCIB0 D14 IO45RSB0 G65	A6	IO15RSB0	C14	IO47RSB0	E19	IO71RSB1
A8 IO23RSB0 C19 GBB2/IO65RSB1 F2 GND A9 IO25RSB0 D1 IO206RSB3 F3 IO201RSB3 A10 VCCIB0 D2 IO208RSB3 F4 IO204RSB3 A11 IO33RSB0 D4 GAA0/IO00RSB0 F5 IO16RSB0 A12 IO41RSB0 D5 GAA1/IO1RSB0 F15 IO50RSB0 A13 IO43RSB0 D6 IO10RSB0 F16 IO74RSB1 A14 IO46RSB0 D7 IO17RSB0 F16 IO74RSB1 A15 IO55RSB0 D8 IO22RSB0 F19 IO73RSB1 A17 GBC/IO56RSB0 D10 GND G1 IO195RSB3 A17 GBC/IO56RSB0 D11 IO31RSB0 G2 IO200RSB3 A18 GBA0/IO61RSB0 D114 IO49RSB0 G4 IO202RSB3 B1 GAA2/IO211RSB3 D13 IO49RSB0 G5 IO08RSB0 B2 VCCIB0 D14 IO49RSB0 G	A7	IO18RSB0	C18	IO54RSB0	F1	IO198RSB3
A9 IO25RSB0 D1 IO206RSB3 F3 IO201RSB3 A10 VCCIB0 D2 IO208RSB3 F4 IO204RSB3 A11 IO33RSB0 D4 GAA0/IO00RSB0 F5 IO16RSB0 A12 IO41RSB0 D5 GAA1/IO01RSB0 F15 IO50RSB0 A13 IO43RSB0 D6 IO10RSB0 F16 IO74RSB1 A14 IO46RSB0 D7 IO17RSB0 F17 IO72RSB1 A15 IO55RSB0 D8 IO24RSB0 F19 IO73RSB1 A16 IO56RSB0 D9 IO27RSB0 F19 IO73RSB1 A17 GBC1/IO58RSB0 D10 GND G1 IO195RSB3 A18 GBA0/IO61RSB0 D11 IO31RSB0 G4 IO200RSB3 B1 GAA2/IO211RSB3 D13 IO49RSB0 G5 IO08RSB0 B2 VCCIB0 D14 IO45RSB0 G6 IO08RSB0 B3 GAB1/IO03RSB0 D15 GBB0/IO59RSB0	A8	IO23RSB0	C19	GBB2/IO65RSB1	F2	GND
A10 VCCIB0 D2 IO208RSB3 F4 IO204RSB3 A11 IO33RSB0 D4 GAA0/IO00RSB0 F5 IO16RSB0 A12 IO41RSB0 D5 GAA1/IO01RSB0 F15 IO50RSB0 A13 IO43RSB0 D6 IO10RSB0 F16 IO74RSB1 A14 IO46RSB0 D7 IO17RSB0 F17 IO72RSB1 A15 IO55RSB0 D8 IO24RSB0 F19 IO73RSB1 A16 IO56RSB0 D9 IO27RSB0 F19 IO73RSB1 A17 GBC1/IO58RSB0 D10 GND G1 IO195RSB3 A18 GBA0/IO61RSB0 D11 IO31RSB0 G2 IO200RSB3 B1 GAA2/IO211RSB3 D13 IO49RSB0 G5 IO08RSB0 B2 VCCIB0 D14 IO45RSB0 G7 GAC2/IO20RSB3 B3 GAB1/IO03RSB0 D15 GBB0/IO59RSB0 G8 VCCIB0 B4 GACO/IO4RSB0 D16 GBA2/IO63RSB1 </td <td>A9</td> <td>IO25RSB0</td> <td>D1</td> <td>IO206RSB3</td> <td>F3</td> <td>IO201RSB3</td>	A9	IO25RSB0	D1	IO206RSB3	F3	IO201RSB3
A11 IO33RSB0 D4 GAA0/IO00RSB0 F5 IO16RSB0 A12 IO41RSB0 D5 GAA1/IO01RSB0 F15 IO50RSB0 A13 IO43RSB0 D6 IO10RSB0 F16 IO74RSB1 A14 IO46RSB0 D7 IO17RSB0 F17 IO72RSB1 A15 IO55RSB0 D8 IO24RSB0 F18 GND A16 IO56RSB0 D9 IO27RSB0 F19 IO73RSB1 A17 GBC1/IO58RSB0 D10 GND G1 IO195RSB3 A18 GBA0/IO61RSB0 D11 IO31RSB0 G2 IO200RSB3 B1 GAA2/IO211RSB3 D13 IO49RSB0 G4 IO202RSB3 B2 VCCIB0 D14 IO45RSB0 G3 IO08RSB0 B4 GAC0/IO04RSB0 D16 GBA2/IO63RSB1 G9 IO26RSB0 B4 GAC0/IO04RSB0 D18 GBC2/IO67RSB1 G10 IO35RSB0 B5 IO11RSB0 E1 IO203RSB3	A10	VCCIB0	D2	IO208RSB3	F4	IO204RSB3
A12 IO41RSB0 D5 GAA1/IO01RSB0 F15 IO50RSB0 A13 IO43RSB0 D6 IO10RSB0 F16 IO74RSB1 A14 IO46RSB0 D7 IO17RSB0 F17 IO72RSB1 A15 IO55RSB0 D8 IO24RSB0 F18 GND A16 IO56RSB0 D9 IO27RSB0 F19 IO73RSB1 A17 GBC1/IO58RSB0 D10 GND G1 IO195RSB3 A18 GBA0/IO61RSB0 D11 IO31RSB0 G2 IO200RSB3 B1 GAA2/IO211RSB3 D13 IO49RSB0 G5 IO08RSB0 B2 VCCIB0 D14 IO45RSB0 G3 IO28RSB0 B4 GAC0/IO04RSB0 D16 GBA2/IO63RSB1 G9 IO26RSB0 B5 IO11RSB0 D19 IO66RSB1 G11 IO44RSB0 B7 IO21RSB0 E1 IO203RSB3 G12 VCCIB0 B8 IO22RSB0 E2 IO203RSB3 G13 <td>A11</td> <td>IO33RSB0</td> <td>D4</td> <td>GAA0/IO00RSB0</td> <td>F5</td> <td>IO16RSB0</td>	A11	IO33RSB0	D4	GAA0/IO00RSB0	F5	IO16RSB0
A13 IO43RSB0 D6 IO10RSB0 F16 IO74RSB1 A14 IO46RSB0 D7 IO17RSB0 F17 IO72RSB1 A15 IO55RSB0 D8 IO24RSB0 F18 GND A16 IO56RSB0 D9 IO27RSB0 F19 IO73RSB1 A17 GBC1/IO58RSB0 D10 GND G1 IO195RSB3 A18 GBA0/IO61RSB0 D11 IO31RSB0 G2 IO200RSB3 B1 GAA2/IO211RSB3 D13 IO49RSB0 G4 IO202RSB3 B2 VCCIB0 D14 IO45RSB0 G7 GAC2/IO207RSB3 B3 GAB1/IO03RSB0 D15 GBB0/IO59RSB0 G8 VCCIB0 B4 GAC0/IO44RSB0 D18 GBC2/IO67RSB1 G10 IO35RSB0 B5 IO11RSB0 E1 IO203RSB3 G12 VCCIB0 B7 IO21RSB0 E1 IO203RSB3 G12 VCCIB0 B8 IO22RSB0 E4 IO07RSB0 <td< td=""><td>A12</td><td>IO41RSB0</td><td>D5</td><td>GAA1/IO01RSB0</td><td>F15</td><td>IO50RSB0</td></td<>	A12	IO41RSB0	D5	GAA1/IO01RSB0	F15	IO50RSB0
A14 IO46RSB0 D7 IO17RSB0 F17 IO72RSB1 A15 IO55RSB0 D8 IO24RSB0 F18 GND A16 IO56RSB0 D9 IO27RSB0 F19 IO73RSB1 A17 GBC1/IO58RSB0 D10 GND G1 IO195RSB3 A18 GBA0/IO61RSB0 D11 IO31RSB0 G2 IO20RSB3 A19 GND D12 IO40RSB0 G4 IO202RSB3 B1 GAA2/IO211RSB3 D13 IO49RSB0 G5 IO08RSB0 B2 VCCIB0 D14 IO45RSB0 G7 GAC2/IO207RSB3 B3 GAB1/IO03RSB0 D15 GBB0/IO59RSB0 G8 VCCIB0 B4 GAC0/IO44RSB0 D16 GBA2/IO63RSB1 G9 IO26RSB0 B5 IO11RSB0 E1 IO203RSB3 G12 VCCIB0 B7 IO21RSB0 E1 IO203RSB3 G13 IO51RSB0 B7 IO21RSB0 E4 IO07RSB0 G15<	A13	IO43RSB0	D6	IO10RSB0	F16	IO74RSB1
A15 IO55RSB0 D8 IO24RSB0 F18 GND A16 IO56RSB0 D9 IO27RSB0 F19 IO73RSB1 A17 GBC1/IO58RSB0 D10 GND G1 IO195RSB3 A18 GBA0/IO61RSB0 D11 IO31RSB0 G2 IO200RSB3 A19 GND D12 IO40RSB0 G4 IO202RSB3 B1 GAA2/IO211RSB3 D13 IO49RSB0 G5 IO08RSB0 B2 VCCIB0 D14 IO45RSB0 G7 GAC2/IO207RSB3 B3 GAB1/IO03RSB0 D15 GBB0/IO59RSB0 G8 VCCIB0 B4 GAC0/IO04RSB0 D16 GBA2/IO63RSB1 G9 IO26RSB0 B5 IO11RSB0 D18 GBC2/IO67RSB1 G10 IO35RSB0 B6 GND D19 IO66RSB1 G11 IO44RSB0 B7 IO21RSB0 E1 IO203RSB3 G12 VCCIB0 B8 IO22RSB0 E5 IO06RSB0 G15	A14	IO46RSB0	D7	IO17RSB0	F17	IO72RSB1
A16 IO56RSB0 D9 IO27RSB0 F19 IO73RSB1 A17 GBC1/IO58RSB0 D10 GND G1 IO195RSB3 A18 GBA0/IO61RSB0 D11 IO31RSB0 G2 IO200RSB3 A19 GND D12 IO40RSB0 G4 IO202RSB3 B1 GAA2/IO211RSB3 D13 IO49RSB0 G5 IO08RSB0 B2 VCCIB0 D14 IO45RSB0 G7 GAC2/IO207RSB3 B3 GAB1/IO03RSB0 D15 GBB0/IO59RSB0 G8 VCCIB0 B4 GAC0/IO4RSB0 D16 GBA2/IO63RSB1 G9 IO26RSB0 B5 IO11RSB0 D18 GBC2/IO67RSB1 G10 IO35RSB0 B6 GND D19 IO666RSB1 G11 IO44RSB0 B7 IO21RSB0 E1 IO203RSB3 G12 VCCIB0 B8 IO22RSB0 E4 IO07RSB0 G15 IO70RSB1 B10 IO32RSB0 E5 IO06RSB0 <t< td=""><td>A15</td><td>IO55RSB0</td><td>D8</td><td>IO24RSB0</td><td>F18</td><td>GND</td></t<>	A15	IO55RSB0	D8	IO24RSB0	F18	GND
A17 GBC1/I/058RSB0 D10 GND G1 IO195RSB3 A18 GBA0/I/O61RSB0 D11 IO31RSB0 G2 IO200RSB3 A19 GND D12 IO40RSB0 G4 IO202RSB3 B1 GAA2/IO211RSB3 D13 IO49RSB0 G5 IO08RSB0 B2 VCCIB0 D14 IO49RSB0 G7 GAC2/IO207RSB3 B3 GAB1/IO03RSB0 D15 GBB0/IO59RSB0 G8 VCCIB0 B4 GAC0/IO04RSB0 D16 GBA2/IO63RSB1 G9 IO26RSB0 B5 IO11RSB0 D19 IO66RSB1 G11 IO44RSB0 B6 GND D19 IO66RSB1 G12 VCCIB0 B7 IO21RSB0 E1 IO203RSB3 G13 IO51RSB0 B8 IO22RSB0 E4 IO07RSB0 G15 IO70RSB1 B10 IO32RSB0 E5 IO06RSB0 G18 GCC0/IO80RSB1 B11 IO39RSB0 E6 IO14RSB0	A16	IO56RSB0	D9	IO27RSB0	F19	IO73RSB1
A18 GBA0/IO61RSB0 D11 IO31RSB0 G2 IO200RSB3 A19 GND D12 IO40RSB0 G4 IO202RSB3 B1 GAA2/IO211RSB3 D13 IO49RSB0 G5 IO08RSB0 B2 VCCIB0 D14 IO49RSB0 G5 IO08RSB0 B3 GAB1/IO3RSB0 D15 GBB0/IO59RSB0 G8 VCCIB0 B4 GAC0/IO4RSB0 D16 GBA2/IO63RSB1 G9 IO26RSB0 B5 IO11RSB0 D18 GBC2/IO67RSB1 G10 IO35RSB0 B6 GND D19 IO66RSB1 G11 IO44RSB0 B7 IO21RSB0 E1 IO203RSB3 G12 VCCIB0 B8 IO22RSB0 E4 IO07RSB0 G15 IO70RSB1 B10 IO32RSB0 E5 IO06RSB0 G16 IO75RSB1 B11 IO39RSB0 E6 IO14RSB0 G18 GCC0/I080RSB1 B13 IO42RSB0 E8 IO29RSB0 H1	A17	GBC1/IO58RSB0	D10	GND	G1	IO195RSB3
A19 GND D12 IO40RSB0 G4 IO202RSB3 B1 GAA2/IO211RSB3 D13 IO49RSB0 G5 IO08RSB0 B2 VCCIB0 D14 IO45RSB0 G7 GAC2/IO207RSB3 B3 GAB1/IO03RSB0 D15 GBB0/IO59RSB0 G8 VCCIB0 B4 GAC0/IO04RSB0 D16 GBA2/IO63RSB1 G9 IO26RSB0 B5 IO11RSB0 D18 GBC2/IO67RSB1 G10 IO35RSB0 B6 GND D19 IO66RSB1 G11 IO44RSB0 B7 IO21RSB0 E1 IO203RSB3 G12 VCCIB0 B8 IO22RSB0 E4 IO07RSB0 G15 IO70RSB1 B10 IO32RSB0 E5 IO06RSB0 G16 IO75RSB1 B11 IO36RSB0 E6 IO14RSB0 G16 IO75RSB1 B12 IO39RSB0 E7 IO20RSB0 G19 GCB1/IO81RSB1 B13 IO42RSB0 E10 IO30RSB0 <td< td=""><td>A18</td><td>GBA0/IO61RSB0</td><td>D11</td><td>IO31RSB0</td><td>G2</td><td>IO200RSB3</td></td<>	A18	GBA0/IO61RSB0	D11	IO31RSB0	G2	IO200RSB3
B1 GAA2/IO211RSB3 D13 IO49RSB0 G5 IO08RSB0 B2 VCCIB0 D14 IO45RSB0 G7 GAC2/IO207RSB3 B3 GAB1/IO03RSB0 D15 GBB0/IO59RSB0 G8 VCCIB0 B4 GAC0/IO04RSB0 D16 GBA2/IO63RSB1 G9 IO26RSB0 B5 IO11RSB0 D18 GBC2/IO67RSB1 G10 IO35RSB0 B6 GND D19 IO666RSB1 G11 IO44RSB0 B7 IO21RSB0 E1 IO203RSB3 G13 IO51RSB0 B8 IO22RSB0 E2 IO205RSB3 G15 IO70RSB1 B10 IO32RSB0 E4 IO07RSB0 G16 IO75RSB1 B11 IO36RSB0 E5 IO06RSB0 G16 IO75RSB1 B11 IO39RSB0 E7 IO20RSB0 G18 GCC0/IO80RSB1 B13 IO42RSB0 E8 IO29RSB0 H1 GFB0/IO191RSB3 B14 GND E9 IO30RSB0	A19	GND	D12	IO40RSB0	G4	IO202RSB3
B2 VCCIB0 D14 IO45RSB0 G7 GAC2/IO207RSB3 B3 GAB1/IO03RSB0 D15 GBB0/IO59RSB0 G8 VCCIB0 B4 GAC0/IO04RSB0 D16 GBA2/IO63RSB1 G9 IO26RSB0 B5 IO11RSB0 D18 GBC2/IO67RSB1 G10 IO35RSB0 B6 GND D19 IO66RSB1 G11 IO44RSB0 B7 IO21RSB0 E1 IO203RSB3 G12 VCCIB0 B8 IO22RSB0 E2 IO205RSB3 G13 IO51RSB0 B9 IO28RSB0 E4 IO07RSB0 G15 IO70RSB1 B10 IO32RSB0 E5 IO066RSB0 G16 IO75RSB1 B11 IO36RSB0 E6 IO14RSB0 G18 GCC0/IO80RSB1 B12 IO39RSB0 E8 IO29RSB0 H1 GFB0/IO191RSB3 B14 GND E9 IO34RSB0 H2 IO196RSB3 B15 IO52RSB0 E10 IO39RSB0 <td< td=""><td>B1</td><td>GAA2/IO211RSB3</td><td>D13</td><td>IO49RSB0</td><td>G5</td><td>IO08RSB0</td></td<>	B1	GAA2/IO211RSB3	D13	IO49RSB0	G5	IO08RSB0
B3 GAB1/IO03RSB0 D15 GBB0/IO59RSB0 G8 VCCIB0 B4 GAC0/IO04RSB0 D16 GBA2/IO63RSB1 G9 IO26RSB0 B5 IO11RSB0 D18 GBC2/IO67RSB1 G10 IO35RSB0 B6 GND D19 IO66RSB1 G11 IO44RSB0 B7 IO21RSB0 E1 IO203RSB3 G12 VCCIB0 B8 IO22RSB0 E2 IO205RSB3 G13 IO51RSB0 B9 IO28RSB0 E4 IO07RSB0 G15 IO70RSB1 B10 IO32RSB0 E5 IO06RSB0 G16 IO75RSB1 B11 IO36RSB0 E6 IO14RSB0 G18 GCC0/IO80RSB1 B12 IO39RSB0 E7 IO20RSB0 G19 GCB1/IO81RSB1 B13 IO42RSB0 E9 IO34RSB0 H1 GFB0/IO191RSB3 B14 GND E9 IO30RSB0 H4 GFC1/IO194RSB3 B16 GBC0/IO57RSB0 E11 IO37RSB0	B2	VCCIB0	D14	IO45RSB0	G7	GAC2/IO207RSB3
B4 GAC0/IO04RSB0 D16 GBA2/IO63RSB1 G9 IO26RSB0 B5 IO11RSB0 D18 GBC2/IO67RSB1 G10 IO35RSB0 B6 GND D19 IO66RSB1 G11 IO44RSB0 B7 IO21RSB0 E1 IO203RSB3 G12 VCCIB0 B8 IO22RSB0 E2 IO205RSB3 G15 IO51RSB0 B9 IO28RSB0 E4 IO07RSB0 G16 IO75RSB1 B10 IO33RSB0 E6 IO14RSB0 G18 GCC0/IO80RSB1 B11 IO36RSB0 E6 IO14RSB0 G18 GCC0/IO80RSB1 B12 IO39RSB0 E7 IO20RSB0 G19 GCB1/IO81RSB1 B13 IO42RSB0 E8 IO29RSB0 H1 GFB0/IO191RSB3 B14 GND E9 IO34RSB0 H2 IO196RSB3 B15 IO52RSB0 E10 IO30RSB0 H4 GFC1/IO194RSB3 B16 GBA1/IO62RSB0 E12 IO38RSB0	B3	GAB1/IO03RSB0	D15	GBB0/IO59RSB0	G8	VCCIB0
B5 IO11RSB0 D18 GBC2/IO67RSB1 G10 IO35RSB0 B6 GND D19 IO66RSB1 G11 IO44RSB0 B7 IO21RSB0 E1 IO203RSB3 G12 VCCIB0 B8 IO22RSB0 E2 IO205RSB3 G13 IO51RSB0 B9 IO28RSB0 E4 IO07RSB0 G15 IO70RSB1 B10 IO36RSB0 E5 IO06RSB0 G18 GCC0/IO80RSB1 B11 IO36RSB0 E7 IO20RSB0 G19 GCB1/IO81RSB1 B13 IO42RSB0 E8 IO29RSB0 H1 GFB0/IO191RSB3 B14 GND E9 IO34RSB0 H2 IO196RSB3 B15 IO52RSB0 E10 IO30RSB0 H4 GFC1/IO194RSB3 B16 GBC0/IO57RSB0 E11 IO38RSB0 H7 VCCIB3	B4	GAC0/IO04RSB0	D16	GBA2/IO63RSB1	G9	IO26RSB0
B6 GND D19 IO66RSB1 G11 IO44RSB0 B7 IO21RSB0 E1 IO203RSB3 G12 VCCIB0 B8 IO22RSB0 E2 IO205RSB3 G13 IO51RSB0 B9 IO28RSB0 E4 IO07RSB0 G15 IO70RSB1 B10 IO32RSB0 E5 IO06RSB0 G16 IO75RSB1 B11 IO36RSB0 E6 IO14RSB0 G18 GCC0/IO80RSB1 B12 IO39RSB0 E7 IO20RSB0 G19 GCB1/IO81RSB1 B13 IO42RSB0 E8 IO29RSB0 H1 GFB0/IO191RSB3 B14 GND E9 IO34RSB0 H2 IO196RSB3 B15 IO52RSB0 E10 IO30RSB0 H4 GFC1/IO194RSB3 B16 GBC0/IO57RSB0 E11 IO38RSB0 H5 GFB1/IO192RSB3 B17 GBA1/IO62RSB0 E12 IO38RSB0 H7 VCCIB3	B5	IO11RSB0	D18	GBC2/IO67RSB1	G10	IO35RSB0
B7 IO21RSB0 E1 IO203RSB3 G12 VCCIB0 B8 IO22RSB0 E2 IO205RSB3 G13 IO51RSB0 B9 IO28RSB0 E4 IO07RSB0 G15 IO70RSB1 B10 IO32RSB0 E5 IO06RSB0 G18 GC20/IO80RSB1 B11 IO36RSB0 E6 IO14RSB0 G18 GC20/IO80RSB1 B12 IO39RSB0 E7 IO20RSB0 G19 GCB1/IO81RSB1 B13 IO42RSB0 E8 IO29RSB0 H1 GFB0/IO191RSB3 B14 GND E9 IO30RSB0 H2 IO196RSB3 B15 IO52RSB0 E10 IO30RSB0 H4 GFC1/IO194RSB3 B16 GBC0/IO57RSB0 E11 IO38RSB0 H5 GFB1/IO192RSB3 B17 GBA1/IO62RSB0 E12 IO38RSB0 H7 VCCIB3	B6	GND	D19	IO66RSB1	G11	IO44RSB0
B8 IO22RSB0 E2 IO205RSB3 G13 IO51RSB0 B9 IO28RSB0 E4 IO07RSB0 G15 IO70RSB1 B10 IO32RSB0 E5 IO06RSB0 G16 IO75RSB1 B11 IO36RSB0 E6 IO14RSB0 G18 GCC0/IO80RSB1 B12 IO39RSB0 E7 IO20RSB0 G19 GCB1/IO81RSB1 B13 IO42RSB0 E8 IO29RSB0 H1 GFB0/IO191RSB3 B14 GND E9 IO30RSB0 H2 IO196RSB3 B16 GBC0/IO57RSB0 E11 IO37RSB0 H5 GFB1/IO192RSB3 B17 GBA1/IO62RSB0 E12 IO38RSB0 H7 VCCIB3	B7	IO21RSB0	E1	IO203RSB3	G12	VCCIB0
B9 IO28RSB0 E4 IO07RSB0 G15 IO70RSB1 B10 IO32RSB0 E5 IO06RSB0 G16 IO75RSB1 B11 IO36RSB0 E6 IO14RSB0 G18 GC0/IO80RSB1 B12 IO39RSB0 E7 IO20RSB0 G19 GCB1/IO81RSB1 B13 IO42RSB0 E8 IO29RSB0 H1 GFB0/IO191RSB3 B14 GND E9 IO34RSB0 H2 IO196RSB3 B15 IO52RSB0 E10 IO30RSB0 H4 GFC1/IO194RSB3 B16 GBC0/IO57RSB0 E11 IO38RSB0 H5 GFB1/IO192RSB3 B17 GBA1/IO62RSB0 E12 IO38RSB0 H7 VCCIB3	B8	IO22RSB0	E2	IO205RSB3	G13	IO51RSB0
B10 IO32RSB0 E5 IO06RSB0 G16 IO75RSB1 B11 IO36RSB0 E6 IO14RSB0 G18 GCC0/IO80RSB1 B12 IO39RSB0 E7 IO20RSB0 G19 GCB1/IO81RSB1 B13 IO42RSB0 E8 IO29RSB0 H1 GFB0/IO191RSB3 B14 GND E9 IO34RSB0 H2 IO196RSB3 B15 IO52RSB0 E10 IO30RSB0 H4 GFC1/IO194RSB3 B16 GBC0/IO57RSB0 E11 IO38RSB0 H5 GFB1/IO192RSB3 B17 GBA1/IO62RSB0 E12 IO38RSB0 H7 VCCIB3	B9	IO28RSB0	E4	IO07RSB0	G15	IO70RSB1
B11 IO36RSB0 E6 IO14RSB0 G18 GCC0/IO80RSB1 B12 IO39RSB0 E7 IO20RSB0 G19 GCB1/IO81RSB1 B13 IO42RSB0 E8 IO29RSB0 H1 GFB0/IO191RSB3 B14 GND E9 IO34RSB0 H2 IO196RSB3 B15 IO52RSB0 E10 IO30RSB0 H4 GFC1/IO194RSB3 B16 GBC0/IO57RSB0 E11 IO38RSB0 H5 GFB1/IO192RSB3 B17 GBA1/IO62RSB0 E12 IO38RSB0 H7 VCCIB3	B10	IO32RSB0	E5	IO06RSB0	G16	IO75RSB1
B12 IO39RSB0 E7 IO20RSB0 G19 GCB1/IO81RSB1 B13 IO42RSB0 E8 IO29RSB0 H1 GFB0/IO191RSB3 B14 GND E9 IO34RSB0 H2 IO196RSB3 B15 IO52RSB0 E10 IO30RSB0 H4 GFC1/IO194RSB3 B16 GBC0/IO57RSB0 E11 IO37RSB0 H5 GFB1/IO192RSB3 B17 GBA1/IO62RSB0 E12 IO38RSB0 H7 VCCIB3	B11	IO36RSB0	E6	IO14RSB0	G18	GCC0/IO80RSB1
B13 IO42RSB0 E8 IO29RSB0 H1 GFB0/IO191RSB3 B14 GND E9 IO34RSB0 H2 IO196RSB3 B15 IO52RSB0 E10 IO30RSB0 H4 GFC1/IO194RSB3 B16 GBC0/IO57RSB0 E11 IO37RSB0 H5 GFB1/IO192RSB3 B17 GBA1/IO62RSB0 E12 IO38RSB0 H7 VCCIB3	B12	IO39RSB0	E7	IO20RSB0	G19	GCB1/IO81RSB1
B14 GND E9 IO34RSB0 H2 IO196RSB3 B15 IO52RSB0 E10 IO30RSB0 H4 GFC1/IO194RSB3 B16 GBC0/IO57RSB0 E11 IO37RSB0 H5 GFB1/IO192RSB3 B17 GBA1/IO62RSB0 E12 IO38RSB0 H7 VCCIB3	B13	IO42RSB0	E8	IO29RSB0	H1	GFB0/IO191RSB3
B15 IO52RSB0 E10 IO30RSB0 H4 GFC1/IO194RSB3 B16 GBC0/IO57RSB0 E11 IO37RSB0 H5 GFB1/IO192RSB3 B17 GBA1/IO62RSB0 E12 IO38RSB0 H7 VCCIB3	B14	GND	E9	IO34RSB0	H2	IO196RSB3
B16 GBC0/IO57RSB0 E11 IO37RSB0 H5 GFB1/IO192RSB3 B17 GBA1/IO62RSB0 E12 IO38RSB0 H7 VCCIB3	B15	IO52RSB0	E10	IO30RSB0	H4	GFC1/IO194RSB3
B17 GBA1/IO62RSB0 E12 IO38RSB0 H7 VCCIB3	B16	GBC0/IO57RSB0	E11	IO37RSB0	H5	GFB1/IO192RSB3
	B17	GBA1/IO62RSB0	E12	IO38RSB0	H7	VCCIB3

IGLOO PLUS Low Power Flash FPGAs

	CS289		CS289		CS289
Pin Number	AGLP125 Function	Pin Number	AGLP125 Function	Pin Number	AGLP125 Function
A1	GAB1/IO03RSB0	C5	VCCIB0	E9	IO32RSB0
A2	IO11RSB0	C6	IO17RSB0	E10	IO36RSB0
A3	IO08RSB0	C7	IO23RSB0	E11	VCCIB0
A4	GND	C8	IO27RSB0	E12	IO56RSB0
A5	IO19RSB0	C9	IO33RSB0	E13	GBB1/IO60RSB0
A6	IO24RSB0	C10	GND	E14	GBA2/IO63RSB1
A7	IO26RSB0	C11	IO43RSB0	E15	GBB2/IO65RSB1
A8	IO30RSB0	C12	IO45RSB0	E16	VCCIB1
A9	GND	C13	IO50RSB0	E17	IO73RSB1
A10	IO35RSB0	C14	IO52RSB0	F1	GFC1/IO194RSB3
A11	IO38RSB0	C15	GND	F2	IO196RSB3
A12	IO40RSB0	C16	GBA0/IO61RSB0	F3	IO202RSB3
A13	IO42RSB0	C17	IO68RSB1	F4	VCCIB3
A14	GND	D1	IO204RSB3	F5	GAB2/IO209RSB3
A15	IO48RSB0	D2	IO205RSB3	F6	IO208RSB3
A16	IO54RSB0	D3	GND	F7	IO14RSB0
A17	GBC0/IO57RSB0	D4	GAB0/IO02RSB0	F8	IO20RSB0
B1	GAA1/IO01RSB0	D5	IO07RSB0	F9	IO25RSB0
B2	GND	D6	IO10RSB0	F10	IO29RSB0
B3	IO06RSB0	D7	IO18RSB0	F11	IO51RSB0
B4	IO13RSB0	D8	GND	F12	IO53RSB0
B5	IO15RSB0	D9	IO34RSB0	F13	GBC2/IO67RSB1
B6	IO21RSB0	D10	IO41RSB0	F14	GND
B7	VCCIB0	D11	IO47RSB0	F15	IO75RSB1
B8	IO28RSB0	D12	IO55RSB0	F16	IO71RSB1
B9	IO31RSB0	D13	GND	F17	IO77RSB1
B10	IO37RSB0	D14	GBB0/IO59RSB0	G1	GFC0/IO193RSB3
B11	IO39RSB0	D15	GBA1/IO62RSB0	G2	GND
B12	VCCIB0	D16	IO66RSB1	G3	IO198RSB3
B13	IO44RSB0	D17	IO70RSB1	G4	IO203RSB3
B14	IO46RSB0	E1	VCCIB3	G5	IO201RSB3
B15	IO49RSB0	E2	IO200RSB3	G6	IO206RSB3
B16	GBC1/IO58RSB0	E3	GAC2/IO207RSB3	G7	GND
B17	GND	E4	GAA2/IO211RSB3	G8	GND
C1	IO210RSB3	E5	GAC1/IO05RSB0	G9	VCC
C2	GAA0/IO00RSB0	E6	IO12RSB0	G10	GND
C3	GAC0/IO04RSB0	E7	IO16RSB0	G11	GND
C4	IO09RSB0	E8	IO22RSB0	G12	IO72RSB1

Datasheet Information

Revision	Changes	Page
Revision 10 (Apr 2009) Product Brief v1.5 DC and Switching Characteristics Advance v0.5	The –F speed grade is no longer offered for IGLOO PLUS devices. References to it have been removed from the document. The speed grade column and note regarding –F speed grade were removed from "IGLOO PLUS Ordering Information". The "Speed Grade and Temperature Grade Matrix" section was removed.	III, IV
Revision 9 (Feb 2009) Product Brief v1.4	The "Advanced I/O" section was revised to add two bullets regarding support of wide range power supply voltage.	I
	The "I/Os with Advanced I/O Standards" section was revised to add 3.0 V wide range to the list of supported voltages. The "Wide Range I/O Support" section is new.	1-7
Revision 8 (Jan 2009) Packaging v1.5	The "CS201" pin table was revised to add a note regarding pins G1 and H1.	4-8
Revision 7 (Dec 2008) Product Brief v1.3	A note was added to IGLOO PLUS Devices: "AGLP060 in CS201 does not support the PLL."	I
	Table 2 • IGLOO PLUS FPGAs Package Size Dimensions was updated tochange the nominal size of VQ176 from 100 to 400 mm².	II
Revision 6 (Oct 2008) DC and Switching Characteristics Advance v0.4	Data was revised significantly in the following tables: Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings, STD Speed Grade, Commercial-Case Conditions: T _J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V	2-22, 2-33
	Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings, STD Speed Grade Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Table 2-50 • 2.5 LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Table 2-51 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage	
Revision 5 (Aug 2008) Product Brief v1.2	The VQ128 and VQ176 packages were added to Table 1 • IGLOO PLUS Product Family, the "I/Os Per Package ¹ " table, Table 2 • IGLOO PLUS FPGAs Package Size Dimensions, "IGLOO PLUS Ordering Information", and the "Temperature Grade Offerings" table.	I to IV
Packaging v1.4	The "VQ128" package drawing and pin table are new.	4-2
	The "VQ176" package drawing and pin table are new.	4-5
Revision 4 (Jul 2008) Product Brief v1.1 DC and Switching Characteristics Advance v0.3	As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core voltage support. The document was updated to change $1.2 \text{ V} / 1.5 \text{ V}$ to 1.2 V to 1.5 V .	N/A
Revision 3 (Jun 2008) DC and Switching Characteristics Advance v0.2	Tables have been updated to reflect default values in the software. The default I/O capacitance is 5 pF. Tables have been updated to include the LVCMOS 1.2 V I/O set.	N/A
	Table note 3 was updated in Table 2-2 • Recommended Operating Conditions ^{1,2} to add the sentence, "VCCI should be at the same voltage within a given I/O bank." References to table notes 5, 6, 7, and 8 were added. Reference to table note 3 was removed from VPUMP Operation and placed next to VCC.	2-2
	Table 2-4 Overshoot and Undershoot Limits ¹ was revised to remove "as measured on quiet I/Os" from the title. Table note 2 was revised to remove "estimated SSO density over cycles." Table note 3 was deleted.	2-3