

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	3120
Total RAM Bits	36864
Number of I/O	212
Number of Gates	125000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	289-TFBGA, CSBGA
Supplier Device Package	289-CSP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/aglp125v5-cs289

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

🌜 Microsemi.

IGLOO PLUS Low Power Flash FPGAs

I/Os Per Package¹

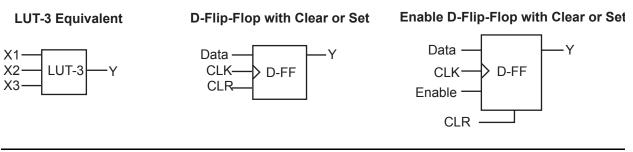
IGLOO PLUS Devices	AGLP030	AGLP060	AGLP125					
Package	Single-Ended I/Os							
CS201	120	157	_					
CS281	-	-	212					
CS289	120	157	212					
VQ128	101	-	_					
VQ176	-	137	-					

Note: When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not used as a regular I/O, the number of singleended user I/Os available is reduced by one.

Table 2 • IGLOO PLUS FPGAs Package Size Dimensions

Package	CS201	CS281	CS289	VQ128	VQ176
Length × Width (mm/mm)	8 × 8 10 × 10		14 × 14	14 × 14	20 × 20
Nominal Area (mm2)	64	64 100		196	400
Pitch (mm)	0.5	0.5	0.8	0.4	0.4
Height (mm)	0.89	1.05	1.20	1.0	1.0

IGLOO PLUS Device Status


IGLOO PLUS Device	Status
AGLP030	Production
AGLP060	Production
AGLP125	Production

VersaTiles

The IGLOO PLUS core consists of VersaTiles, which have been enhanced beyond the ProASIC^{PLUS®} core tiles. The IGLOO PLUS VersaTile supports the following:

- All 3-input logic functions—LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set

Refer to Figure 1-3 for VersaTile configurations.

Figure 1-3 • VersaTile Configurations

User Nonvolatile FlashROM

IGLOO PLUS devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- · Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- · Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard IGLOO PLUS IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in AGLP030 devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The IGLOO PLUS development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

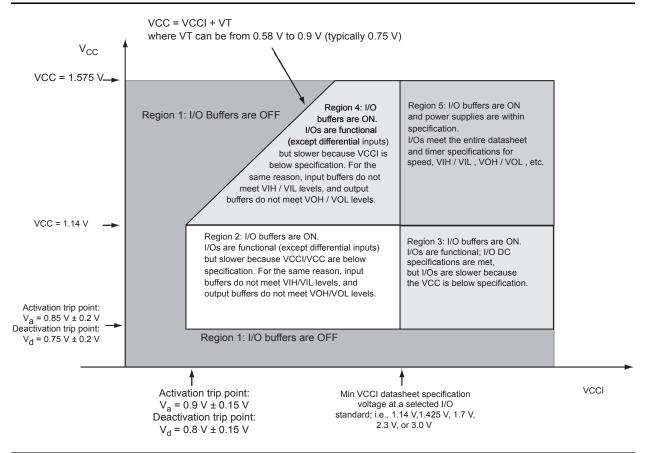


Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels

Thermal Characteristics

Introduction

The temperature variable in the Microsemi Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction temperature to be higher than the ambient temperature.

EQ 1 can be used to calculate junction temperature.

$$T_J$$
 = Junction Temperature = $\Delta T + T_A$

EQ 1

where:

 T_A = Ambient temperature

 ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ_{ja} * P

 θ_{ja} = Junction-to-ambient of the package. θ_{ja} numbers are located in Figure 2-5.

P = Power dissipation

Combinatorial Cells Contribution—P_{C-CELL}

 $P_{C-CELL} = N_{C-CELL} * \alpha_1 / 2 * PAC7 * F_{CLK}$

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-14.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

Routing Net Contribution—P_{NET}

 $P_{NET} = (N_{S-CELL} + N_{C-CELL}) * \alpha_1 / 2 * PAC8 * F_{CLK}$

 $N_{S\text{-}CELL}$ is the number of VersaTiles used as sequential modules in the design.

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-14.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

I/O Input Buffer Contribution—PINPUTS

 $P_{INPUTS} = N_{INPUTS} * \alpha_2 / 2 * P_{AC9} * F_{CLK}$

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-19 on page 2-14.

 F_{CLK} is the global clock signal frequency.

I/O Output Buffer Contribution—POUTPUTS

 $P_{OUTPUTS} = N_{OUTPUTS} * \alpha_2 / 2 * \beta_1 * PAC10 * F_{CLK}$

N_{OUTPUTS} is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-19 on page 2-14.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 2-20 on page 2-14.

F_{CLK} is the global clock signal frequency.

RAM Contribution—P_{MEMORY}

 $\mathsf{P}_{\mathsf{MEMORY}} = \mathsf{P}_{\mathsf{AC11}} * \mathsf{N}_{\mathsf{BLOCKS}} * \mathsf{F}_{\mathsf{READ-CLOCK}} * \beta_2 + \mathsf{PAC12} * \mathsf{N}_{\mathsf{BLOCK}} * \mathsf{F}_{\mathsf{WRITE-CLOCK}} * \beta_3$

N_{BLOCKS} is the number of RAM blocks used in the design.

 $\mathsf{F}_{\mathsf{READ-CLOCK}}$ is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations.

F_{WRITE-CLOCK} is the memory write clock frequency.

 β_3 is the RAM enable rate for write operations—guidelines are provided in Table 2-20 on page 2-14.

PLL Contribution—PPLL

 $P_{PLL} = PDC4 + PAC1_3 * F_{CLKOUT}$

F_{CLKOUT} is the output clock frequency.¹

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:

If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (P_{AC13}* F_{CLKOUT} product) to the total PLL contribution.

IGLOO PLUS DC and Switching Characteristics

- Bit 0 (LSB) = 100%
- Bit 1 = 50%
- Bit 2 = 25%
- ...
- Bit 7 (MSB) = 0.78125%
- Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%.

Component	Definition	Guideline
α_1	Toggle rate of VersaTile outputs	10%
α ₂	I/O buffer toggle rate	10%

Table 2-20 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
β ₁	I/O output buffer enable rate	100%
β ₂	RAM enable rate for read operations	12.5%
β ₃	RAM enable rate for write operations	12.5%

Parameter	Parameter Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{HZ}	Enable to Pad delay through the Output Buffer—High to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to High
t _{LZ}	Enable to Pad delay through the Output Buffer—Low to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to Low
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to High
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to Low

Table 2-24 • I/O AC Parameter Definitions

IGLOO PLUS DC and Switching Characteristics

Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings, STD Speed Grade,Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

	inter erai				•	-					-					
I/O Standard	Drive Strength	Equivalent Software Default Drive Strength Option ¹	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	toour	top	t _{DIN}	tpy	tpys	teour	t _{zL}	тzн	t _{LZ}	tHz	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA		High	5 pF	Ι	0.97	1.76	0.18	0.85	1.15	0.66	1.80	1.39	2.20	2.64	ns
3.3 V LVCMOS Wide Range ²	100 µA	12 mA	High	5 pF	-	0.97	2.47	0.18	1.18	1.64	0.66	2.48	1.91	3.16	3.76	ns
2.5 V LVCMOS	12 mA	12 mA	High	5 pF	-	0.97	1.77	0.18	1.06	1.22	0.66	1.81	1.51	2.22	2.56	ns
1.8 V LVCMOS	8 mA	8 mA	High	5 pF	-	0.97	2.00	0.18	1.00	1.43	0.66	2.04	1.76	2.29	2.55	ns
1.5 V LVCMOS	4 mA	4 mA	High	5 pF	-	0.97	2.29	0.18	1.16	1.62	0.66	2.33	2.00	2.37	2.57	ns

Notes:

1. Note that 3.3 V LVCMOS wide range is applicable to 100 μA drive strength only. The configuration will not operate at the equivalent software default drive strength. These values are for normal ranges only.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer.

3.3 V LVTTL / 3.3 V LVCMOS			VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	103	109	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	103	109	10	10

Table 2-34 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Test Point
$$rac{1}{1}$$
 $rac{1}{1}$ $rac{1$

Figure 2-7 • AC Loading

Table 2-35 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)		
0	3.3	1.4	5		

Note: **Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.*

Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

			5					•				
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.98	2.92	0.19	0.99	1.37	0.67	2.97	2.38	2.25	2.70	ns
4 mA	STD	0.98	2.92	0.19	0.99	1.37	0.67	2.97	2.38	2.25	2.70	ns
6 mA	STD	0.98	2.52	0.19	0.99	1.37	0.67	2.56	2.03	2.49	3.11	ns
8 mA	STD	0.98	2.52	0.19	0.99	1.37	0.67	2.56	2.03	2.49	3.11	ns
12 mA	STD	0.98	2.31	0.19	0.99	1.37	0.67	2.34	1.86	2.65	3.38	ns
16 mA	STD	0.98	2.31	0.19	0.99	1.37	0.67	2.34	1.86	2.65	3.38	ns

Notes:

1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

2. Software default selection highlighted in gray

3.3 V LVCMOS Wide Range

Table 2-40 • Minimum and Maximum DC Input and Output Levels

3.3 V LVCMOS Wide Range	Equivalent Software Default Drive Strength Option ¹		11	v	IH	VOL	VОН	IOL	юн	IOSL	IOSH	IIL ²	IIH ³
Drive Strength		Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μA	μA	Max. μA ⁴	Max. μA ⁴	μA ⁵	μA ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.4	VDD - 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.4	VDD - 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.4	VDD - 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.4	VDD - 0.2	100	100	103	109	10	10
100 µA	16 mA	-0.3	0.8	2	3.6	0.4	VDD – 0.2	100	100	103	109	10	10

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < V CCI. Input current is larger when operating outside recommended ranges.

4. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Table 2-41 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	1.4	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

static Microsemi.

IGLOO PLUS DC and Switching Characteristics

Timing Characteristics

Applies to 1.2 V DC Core Voltage

Table 2-70 • 1.2 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	STD	0.98	8.27	0.19	1.57	2.34	0.67	7.94	6.77	3.00	3.11	ns

Notes:

 The minimum drive strength for any LVCMOS 1.2 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-71 • 1.2 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T₁ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	STD	0.98	3.38	0.19	1.57	2.34	0.67	3.26	2.78	2.99	3.24	ns

Notes:

1. The minimum drive strength for any LVCMOS 1.2 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

3. Software default selection highlighted in gray.

IGLOO PLUS DC and Switching Characteristics

Table 2-88 • AGLP060 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		St	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.02	2.43	ns
t _{RCKH}	Input High Delay for Global Clock	2.09	2.65	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.56	ns

Notes:

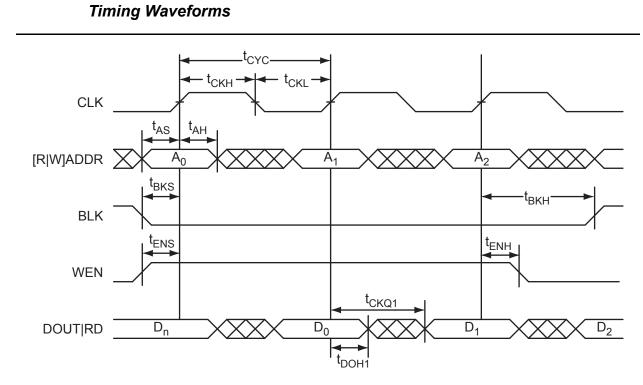
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

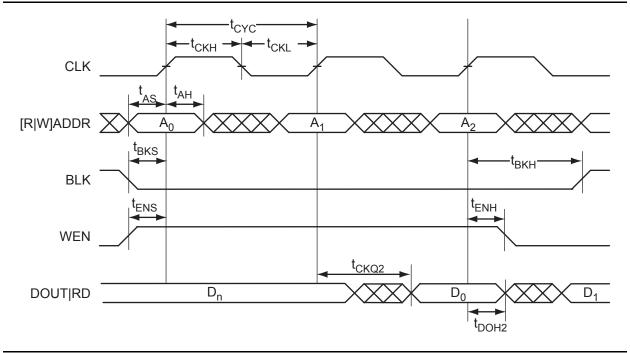
3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-89 • AGLP125 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V


		Si	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.08	2.54	ns
t _{RCKH}	Input High Delay for Global Clock	2.15	2.77	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.62	ns

Notes:


1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Figure 2-24 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18.

Figure 2-25 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

Revision 17

Table 2-95 • RAM512X18

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{AS}	Address setup time	1.28	ns
t _{AH}	Address hold time	0.25	ns
t _{ENS}	REN, WEN setup time	1.13	ns
t _{ENH}	REN, WEN hold time	0.13	ns
t _{DS}	Input data (WD) setup time	1.10	ns
t _{DH}	Input data (WD) hold time	0.55	ns
t _{CKQ1}	Clock High to new data valid on RD (output retained)	6.56	ns
t _{CKQ2}	Clock High to new data valid on RD (pipelined)	2.67	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address – applicable to opening edge	0.29	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address – applicable to opening edge	0.36	ns
t _{RSTBQ}	RESET Low to data out Low on RD (flow through)	3.21	ns
	RESET Low to data out Low on RD (pipelined)	3.21	ns
t _{REMRSTB}	RESET removal	0.93	ns
t _{RECRSTB}	RESET recovery	4.94	ns
t _{MPWRSTB}	RESET minimum pulse width	1.18	ns
t _{CYC}	Clock cycle time	10.90	ns
F _{MAX}	Maximum frequency	92	MHz

Notes:

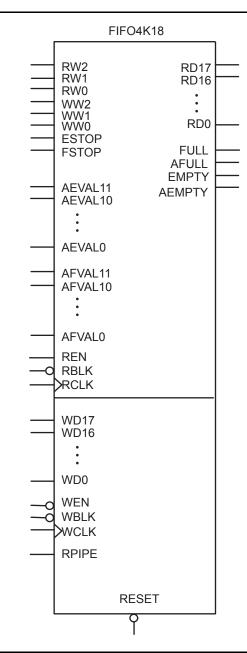
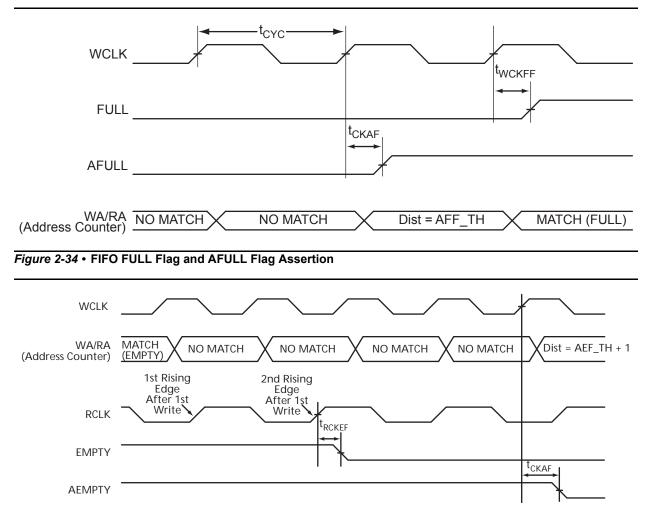
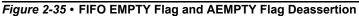
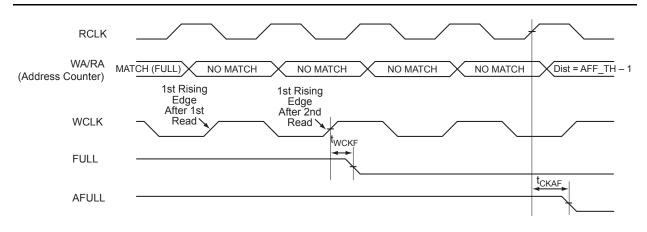
1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

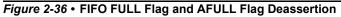
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

🌜 Microsemi.

IGLOO PLUS DC and Switching Characteristics

FIFO


Figure 2-29 • FIFO Model

IGLOO PLUS Low Power Flash FPGAs

Microsemi.

IGLOO PLUS DC and Switching Characteristics

Embedded FlashROM Characteristics

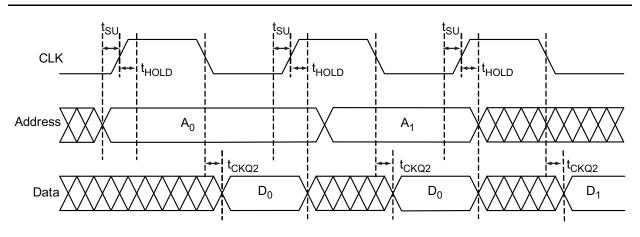


Figure 2-37 • Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-98 • Embedded FlashROM Access Time Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.57	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{CK2Q}	Clock to Out	17.58	ns
F _{MAX}	Maximum Clock Frequency	15	MHz

1.2 V DC Core Voltage

Table 2-99 • Embedded FlashROM Access Time Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.59	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{CK2Q}	Clock to Out	30.94	ns
F _{MAX}	Maximum Clock Frequency	10	MHz

JTAG 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-15 for more details.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-100 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DISU}	Test Data Input Setup Time	1.00	ns
t _{DIHD}	Test Data Input Hold Time	2.00	ns
t _{TMSSU}	Test Mode Select Setup Time	1.00	ns
t _{TMDHD}	Test Mode Select Hold Time	2.00	ns
t _{TCK2Q}	Clock to Q (data out)	8.00	ns
t _{RSTB2Q}	Reset to Q (data out)	25.00	ns
F _{TCKMAX}	TCK Maximum Frequency	15	MHz
t _{TRSTREM}	ResetB Removal Time	0.58	ns
t _{TRSTREC}	ResetB Recovery Time	0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-101 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DISU}	Test Data Input Setup Time	1.50	ns
t _{DIHD}	Test Data Input Hold Time	3.00	ns
t _{TMSSU}	Test Mode Select Setup Time	1.50	ns
t _{TMDHD}	Test Mode Select Hold Time	3.00	ns
t _{TCK2Q}	Clock to Q (data out)	11.00	ns
t _{RSTB2Q}	Reset to Q (data out)	30.00	ns
F _{TCKMAX}	TCK Maximum Frequency	9.00	MHz
t _{TRSTREM}	ResetB Removal Time	1.18	ns
t _{TRSTREC}	ResetB Recovery Time	0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Package Pin Assignments

(CS201	(CS201	(CS201
Pin Number	AGLP060 Function	Pin Number	AGLP060 Function	Pin Number	AGLP060 Function
A1	IO150RSB3	C6	IO07RSB0	F3	IO145RSB3
A2	GAA0/IO00RSB0	C7	IO16RSB0	F4	IO147RSB3
A3	GAC0/IO04RSB0	C8	IO21RSB0	F6	GND
A4	IO08RSB0	C9	IO28RSB0	F7	VCC
A5	IO11RSB0	C10	GBB1/IO33RSB0	F8	VCCIB0
A6	IO15RSB0	C11	GBA1/IO35RSB0	F9	VCCIB0
A7	IO17RSB0	C12	GBB2/IO38RSB1	F10	VCCIB0
A8	IO18RSB0	C13	GND	F12	IO47RSB1
A9	IO22RSB0	C14	IO48RSB1	F13	IO45RSB1
A10	IO26RSB0	C15	IO39RSB1	F14	GCC1/IO52RSB1
A11	IO29RSB0	D1	IO146RSB3	F15	GCA1/IO56RSB1
A12	GBC1/IO31RSB0	D2	IO144RSB3	G1*	VCOMPLF
A13	GBA2/IO36RSB1	D3	IO148RSB3	G2	GFB0/IO137RSB3
A14	IO41RSB1	D4	GND	G3	GFC0/IO139RSB3
A15	NC	D5	GAB0/IO02RSB0	G4	IO143RSB3
B1	IO151RSB3	D6	GAC1/IO05RSB0	G6	VCCIB3
B2	GAB2/IO154RSB3	D7	IO14RSB0	G7	GND
B3	IO06RSB0	D8	IO19RSB0	G8	VCC
B4	IO09RSB0	D9	GBC0/IO30RSB0	G9	GND
B5	IO13RSB0	D10	GBB0/IO32RSB0	G10	GND
B6	IO10RSB0	D11	GBA0/IO34RSB0	G12	IO50RSB1
B7	IO12RSB0	D12	GND	G13	GCB1/IO54RSB1
B8	IO20RSB0	D13	GBC2/IO40RSB1	G14	GCC2/IO60RSB1
B9	IO23RSB0	D14	IO51RSB1	G15	GCA2/IO58RSB1
B10	IO25RSB0	D15	IO44RSB1	H1*	VCCPLF
B11	IO24RSB0	E1	IO142RSB3	H2	GFA1/IO136RSB3
B12	IO27RSB0	E2	IO149RSB3	H3	GFB1/IO138RSB3
B13	IO37RSB1	E3	IO153RSB3	H4	NC
B14	IO46RSB1	E4	GAC2/IO152RSB3	H6	VCCIB3
B15	IO42RSB1	E12	IO43RSB1	H7	GND
C1	IO155RSB3	E13	IO49RSB1	H8	VCC
C2	GAA2/IO156RSB3	E14	GCC0/IO53RSB1	H9	GND
C3	GND	E15	GCB0/IO55RSB1	H10	VCCIB1
C4	GAA1/IO01RSB0	F1	IO141RSB3	H12	GCB2/IO59RSB1
C5	GAB1/IO03RSB0	F2	GFC1/IO140RSB3	H13	GCA0/IO57RSB1

Note: *Pin numbers G1 and H1 must be connected to ground because a PLL is not supported for AGLP060-CS/G201.

IGLOO PLUS Low Power Flash FPGAs

(CS201	(CS201	(CS201
Pin Number	AGLP060 Function	Pin Number	AGLP060 Function	Pin Number	AGLP060 Function
H14	IO64RSB1	L15	GDC0/IO73RSB1	P5	IO106RSB2
H15	IO62RSB1	M1	IO122RSB3	P6	IO105RSB2
J1	GFA2/IO134RSB3	M2	IO124RSB3	P7	IO103RSB2
J2	GFA0/IO135RSB3	M3	IO119RSB3	P8	IO99RSB2
J3	GFB2/IO133RSB3	M4	GND	P9	IO93RSB2
J4	IO131RSB3	M5	IO125RSB3	P10	IO92RSB2
J6	VCCIB3	M6	IO98RSB2	P11	IO95RSB2
J7	GND	M7	IO96RSB2	P12	IO86RSB2
J8	VCC	M8	IO91RSB2	P13	IO83RSB2
J9	GND	M9	IO89RSB2	P14	VPUMP
J10	VCCIB1	M10	IO82RSB2	P15	TRST
J12	IO61RSB1	M11	GDA2/IO78RSB2	R1	IO118RSB3
J13	IO63RSB1	M12	GND	R2	GEB0/IO113RSB3
J14	IO68RSB1	M13	GDA1/IO76RSB1	R3	GEA2/IO110RSB2
J15	IO66RSB1	M14	GDA0/IO77RSB1	R4	FF/GEB2/IO109RS
K1	IO130RSB3	M15	GDB0/IO75RSB1		B2
K2	GFC2/IO132RSB3	N1	IO117RSB3	R5	GEC2/IO108RSB2
K3	IO127RSB3	N2	IO120RSB3	R6	IO102RSB2
K4	IO129RSB3	N3	GND	R7	IO101RSB2
K6	GND	N4	GEB1/IO114RSB3	R8	IO104RSB2
K7	VCCIB2	N5	IO107RSB2	R9	IO97RSB2
K8	VCCIB2	N6	IO100RSB2	R10	IO88RSB2
K9	VCCIB2	N7	IO94RSB2	R11	IO81RSB2
K10	VCCIB1	N8	IO87RSB2	R12	GDB2/IO79RSB2
K12	IO65RSB1	N9	IO85RSB2	R13	TMS
K13	IO67RSB1	N10	GDC2/IO80RSB2	R14	TDI
K14	IO69RSB1	N11	IO90RSB2	R15	TCK
K15	IO70RSB1	N12	IO84RSB2		
L1	IO126RSB3	N13	GND		
L2	IO128RSB3	N14	TDO		
L3	IO121RSB3	N15	VJTAG		
L4	IO123RSB3	P1	GEC0/IO115RSB3		
L12	GDB1/IO74RSB1	P2	GEC1/IO116RSB3		
L13	GDC1/IO72RSB1	P3	GEA0/IO111RSB3		
L14	IO71RSB1	P4	GEA1/IO112RSB3		

IGLOO PLUS Low Power Flash FPGAs

Revision	Changes	Page
Revision 3 (continued)	The table note for Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Flash*Freeze Mode* to remove the sentence stating that values do not include I/O static contribution.	2-7
	The table note for Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Sleep Mode* was updated to remove VJTAG and VCCI and the statement that values do not include I/O static contribution.	2-7
	The table note for Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO PLUS Shutdown Mode was updated to remove the statement that values do not include I/O static contribution.	2-7
	Note 2 of Table 2-12 • Quiescent Supply Current (IDD), No IGLOO PLUS Flash*Freeze Mode 1 was updated to include VCCPLL. Table note 4 was deleted.	2-8
	Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings and Table 2-14 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings ¹ were updated to remove static power. The table notes were updated to reflect that power was measured on VCC ₁ . Table note 2 was added to Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings.	2-9, 2-9
	Table 2-16 • Different Components Contributing to the Static Power Consumption in IGLOO PLUS Devices and Table 2-18 • Different Components Contributing to the Static Power Consumption in IGLOO PLUS Devices were updated to change the definition for P_{DC5} from bank static power to bank quiescent power. Table subtitles were added for Table 2-16 • Different Components Contributing to the Static Power Consumption in IGLOO PLUS Devices, Table 2-17 • Different Components Contributing to Dynamic Power Consumption in IGLOO PLUS Devices, and Table 2-18 • Different Components Contributing to the Static Power Consumption in IGLOO PLUS Devices.	2-10, 2-11
	The "Total Static Power Consumption—P _{STAT} " section was revised.	2-12
	Table 2-32 • Schmitt Trigger Input Hysteresis is new.	2-26
Packaging v1.3	The "CS281" package drawing is new.	4-13
	The "CS281" table for the AGLP125 device is new.	4-13
Revision 3 (continued)	The "CS289" package drawing was incorrect. The graphic was showing the CS281 mechanical drawing and not the CS289 mechanical drawing. This has now been corrected.	4-17
Revision 2 (Jun 2008) Packaging v1.2	The "CS289" table for the AGLP030 device is new.	4-17
Revision 1 (Jun 2008)	The "CS289" table for the AGLP060 device is new.	4-20
Packaging v1.1	The "CS289" table for the AGLP125 device is new.	4-23