

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	3120
Total RAM Bits	36864
Number of I/O	212
Number of Gates	125000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	289-TFBGA, CSBGA
Supplier Device Package	289-CSP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/aglp125v5-csg289

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The IGLOO PLUS family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the IGLOO PLUS family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/communications, computing, and avionics markets.

Firm-Error Immunity

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of IGLOO PLUS flash-based FPGAs. Once it is programmed, the flash cell configuration element of IGLOO PLUS FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Advanced Flash Technology

The IGLOO PLUS family offers many benefits, including nonvolatility and reprogrammability, through an advanced flash-based, 130 nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

IGLOO PLUS family FPGAs utilize design and process techniques to minimize power consumption in all modes of operation.

Advanced Architecture

The proprietary IGLOO PLUS architecture provides granularity comparable to standard-cell ASICs. The IGLOO PLUS device consists of five distinct and programmable architectural features (Figure 1-1 on page 1-4):

- Flash*Freeze technology
- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory[†]
- Extensive CCCs and PLLs[†]
- · Advanced I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the IGLOO PLUS core tile as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC® family of third-generation-architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

Revision 17 1-3

[†] The AGLP030 device does not support PLL or SRAM.

Ramping up (V2 devices): $0.65 \text{ V} < \text{trip_point_up} < 1.05 \text{ V}$ Ramping down (V2 devices): $0.55 \text{ V} < \text{trip_point_down} < 0.95 \text{ V}$

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels (see Figure 2-1 and Figure 2-2 on page 2-5 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V \pm 0.25 V for V5 devices, and 0.75 V \pm 0.2 V for V2 devices), the PLL output lock signal goes Low and/or the output clock is lost. Refer to the "Brownout Voltage" section in the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *IGLOO PLUS Device Family User's Guide* for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers
- 3. Output buffers, after 200 ns delay from input buffer activation

To make sure the transition from input buffers to output buffers is clean, ensure that there is no path longer than 100 ns from input buffer to output buffer in your design.

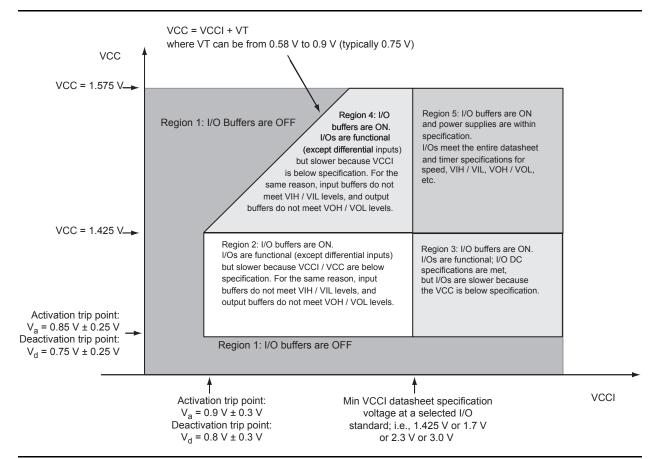


Figure 2-1 • V5 Devices – I/O State as a Function of VCCI and VCC Voltage Levels

2-4 Revision 17

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ja} are shown for two air flow rates. The maximum operating junction temperature is 100°C. EQ 2 shows a sample calculation of the maximum operating power dissipation allowed for a 484-pin FBGA package at commercial temperature and in still air.

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°\text{C/W})} = \frac{100°\text{C} - 70°\text{C}}{20.5°\text{C/W}} = 1.46~\text{W}$$

EQ 2

Table 2-5 • Package Thermal Resistivities

		Pin				θ_{ja}		
Package Type	Device	Count	$\theta_{ extsf{jc}}$	θ_{jb}	Still Air	1 m/s	2.5 m/s	Unit
Chip Scale Package (CSP)	AGLP030	CS201	-	-	46.3	-	-	C/W
	AGLP060	CS201	7.1	19.7	40.5	35.1	32.9	C/W
	AGLP060	CS289	13.9	34.1	48.7	43.5	41.9	C/W
	AGLP125	CS289	10.8	27.9	42.2	37.1	35.5	C/W
	AGLP125	CS281	11.3	17.6	-	-	-	C/W
Thin Quad Flat Package (VQ)	AGLP030	VQ128	18.0	50.0	56.0	49.0	47.0	C/W
	AGLP060	VQ176	21.0	55.0	58.0	52.0	50.0	C/W

Temperature and Voltage Derating Factors

Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.425 V)

For IGLOO PLUS V2 or V5 devices, 1.5 V DC Core Supply Voltage

Array Voltage	Junction Temperature (°C)									
VCC (V)	-40°C	0°C	25°C	70°C	85°C	100°C				
1.425	0.934	0.953	0.971	1.000	1.007	1.013				
1.5	0.855	0.874	0.891	0.917	0.924	0.929				
1.575	0.799	0.816	0.832	0.857	0.864	0.868				

Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.14 V)
For IGLOO PLUS V2, 1.2 V DC Core Supply Voltage

Array Voltage	Junction Temperature (°C)									
VCC (V)	-40°C	0°C	25°C	70°C	85°C	100°C				
1.14	0.963	0.975	0.989	1.000	1.007	1.011				
1.2	0.853	0.865	.0877	0.893	0.893	0.897				
1.26	0.781	0.792	0.803	0.813	0.819	0.822				

2-6 Revision 17

Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_{.1} = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	STD	0.98	2.92	0.19	0.99	1.37	0.67	2.97	2.38	2.25	2.70	ns
4 mA	STD	0.98	2.92	0.19	0.99	1.37	0.67	2.97	2.38	2.25	2.70	ns
6 mA	STD	0.98	2.52	0.19	0.99	1.37	0.67	2.56	2.03	2.49	3.11	ns
8 mA	STD	0.98	2.52	0.19	0.99	1.37	0.67	2.56	2.03	2.49	3.11	ns
12 mA	STD	0.98	2.31	0.19	0.99	1.37	0.67	2.34	1.86	2.65	3.38	ns
16 mA	STD	0.98	2.31	0.19	0.99	1.37	0.67	2.34	1.86	2.65	3.38	ns

Notes:

- 1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
- 2. Software default selection highlighted in gray

3.3 V LVCMOS Wide Range

Table 2-40 • Minimum and Maximum DC Input and Output Levels

3.3 V LVCMOS Wide Range	Equivalent Software Default Drive Strength Option ¹		'IL	v	IH	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ²	IIH ³
Drive Strength		Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μΑ	μΑ	Max. μA ⁴	Max. μA ⁴	μ Α ⁵	μ Α ⁵
100 μΑ	2 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	25	27	10	10
100 μΑ	4 mA	-0.3	0.8	2	3.6	0.4	VDD – 0.2	100	100	25	27	10	10
100 μΑ	6 mA	-0.3	0.8	2	3.6	0.4	VDD – 0.2	100	100	51	54	10	10
100 μΑ	8 mA	-0.3	0.8	2	3.6	0.4	VDD – 0.2	100	100	51	54	10	10
100 μΑ	12 mA	-0.3	0.8	2	3.6	0.4	VDD – 0.2	100	100	103	109	10	10
100 μΑ	16 mA	-0.3	0.8	2	3.6	0.4	VDD – 0.2	100	100	103	109	10	10

Notes:

- 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
- 2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < V CCI. Input current is larger when operating outside recommended ranges.
- 4. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 5. Currents are measured at 85°C junction temperature.
- 6. Software default selection highlighted in gray.

Table 2-41 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	1.4	5

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-20 for a complete table of trip points.

Revision 17 2-29

1.2 V DC Core Voltage

Table 2-75 • Input Data Register Propagation Delays
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.66	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.43	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.86	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.86	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.24	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.24	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.19	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.19	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.31	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

2-46 Revision 17

Global Resource Characteristics

AGLP125 Clock Tree Topology

Clock delays are device-specific. Figure 2-21 is an example of a global tree used for clock routing. The global tree presented in Figure 2-21 is driven by a CCC located on the west side of the AGLP125 device. It is used to drive all D-flip-flops in the device.

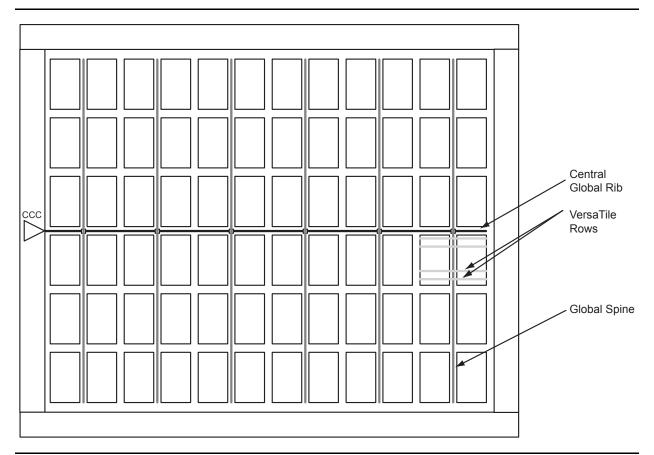


Figure 2-21 • Example of Global Tree Use in an AGLP125 Device for Clock Routing

Revision 17 2-57

Table 2-86 • AGLP125 Global Resource Commercial-Case Conditions: $T_J = 70$ °C, VCC = 1.425 V

			St		
Parameter	Description	М	lin. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1	.36	1.71	ns
t _{RCKH}	Input High Delay for Global Clock	1	.39	1.82	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1	.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1	.15		ns
t _{RCKSW}	Maximum Skew for Global Clock			0.43	ns

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-87 • AGLP030 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

			Std.			
Parameter	Description	Min	.1	Max. ²	Units	
t _{RCKL}	Input Low Delay for Global Clock	1.8	0	2.09	ns	
t _{RCKH}	Input High Delay for Global Clock	1.8	8	2.27	ns	
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.4	0		ns	
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.6	5		ns	
t _{RCKSW}	Maximum Skew for Global Clock			0.39	ns	

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Revision 17 2-59

Table 2-91 • IGLOO PLUS CCC/PLL Specification
For IGLOO PLUS V2 Devices, 1.2 V DC Core Supply Voltage

Parameter	Min.	Тур.	Max.	Units
Clock Conditioning Circuitry Input Frequency f _{IN_CCC}	1.5		160	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		160	MHz
Delay Increments in Programmable Delay Blocks ^{1, 2}		580 ³		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Serial Clock (SCLK) for Dynamic PLL ^{4,5}			60	MHz
Input Cycle-to-Cycle Jitter (peak magnitude)			.25	ns
Acquisition Time				
LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁶				
LockControl = 0			4	ns
LockControl = 1			3	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1, 2}	2.3		20.86	ns
Delay Range in Block: Programmable Delay 2 ^{1, 2}	0.863		20.86	ns
Delay Range in Block: Fixed Delay ^{1, 2}		5.7		ns
VCO Output Peak-to-Peak Period Jitter F _{CCC_OUT} ⁷	Maximu	ım Peak-to-F	Peak Period	Jitter ^{7,8,9}
	SSO ≤ 2	SSO ≤ 4	SSO ≤ 8	SSO ≤ 16
0.75 MHz to 50 MHz	0.50%	1.20%	2.00%	3.00%
50 MHz to 160 MHz	2.50%	5.00%	7.00%	15.00%

Notes:

- 1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-6 for deratings.
- 2. $T_{.J} = 25^{\circ}C$, VCC = 1.2 V
- 3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the online help associated with the core for more information.
- 4. Maximum value obtained for a STD speed grade device in Worst Case Commercial Conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 and Table 2-7 on page 2-6 for derating values.
- 5. The AGLP030 device does not support PLL.
- 6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.
- 7. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the per cent jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, regardless of the output divider settings.
- 8. Measurements are done with LVTTL 3.3 V, 8 mA, I/O drive strength and high slew rate. VCC/VCCPLL = 1.14 V, VCCI = 3.3 V, VQ/PQ/TQ type of packages, 20 pF load.
- 9. SSO are outputs that are synchronous to a single clock domain, and have their clock-to-out times within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO PLUS FPGA Fabric User's Guide

2-62 Revision 17

FIFO

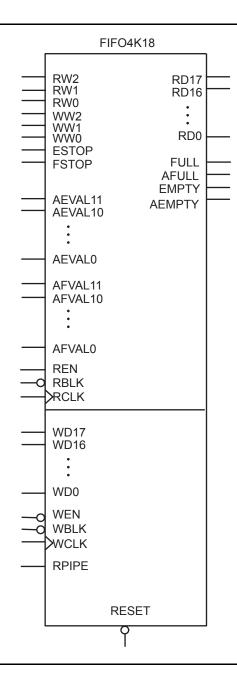


Figure 2-29 • FIFO Model

2-72 Revision 17

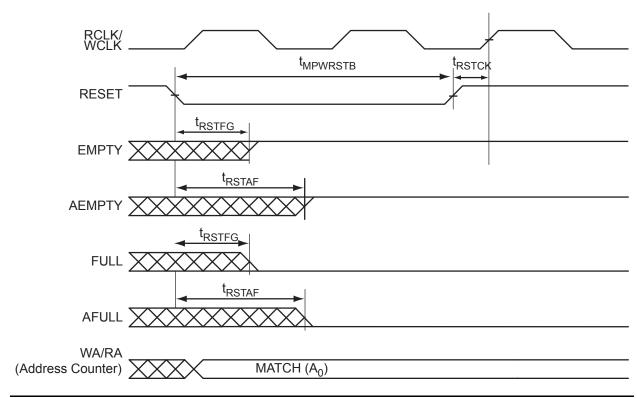


Figure 2-32 • FIFO Reset

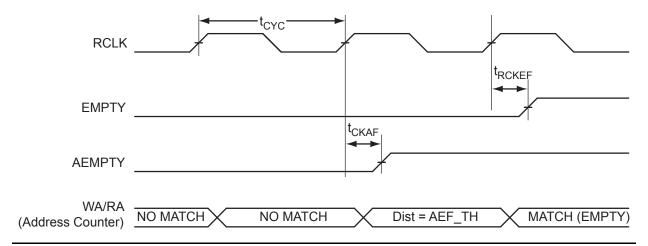


Figure 2-33 • FIFO EMPTY Flag and AEMPTY Flag Assertion

2-74 Revision 17

Special Function Pins

NC No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Packaging

Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility.

Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems.

Related Documents

IGLOO PLUS Device Family User's Guide

http://www.microsemi.com/soc/documents/IGLOOPLUS UG.pdf

The following documents provide packaging information and device selection for low power flash devices.

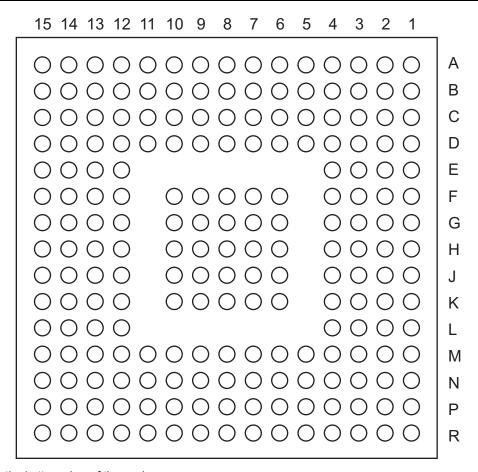
Product Catalog

http://www.microsemi.com/soc/documents/ProdCat PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf


This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials are available at

http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

Revision 17 3-5

CS201

Note: This is the bottom view of the package.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

Revision 17 4-7

(CS201		S201		CS201			
	AGLP060	<u> </u>	AGLP060		AGLP060			
Pin Number	Function	Pin Number	Function	Pin Number	Function			
A1	IO150RSB3	C6	IO07RSB0	F3	IO145RSB3			
A2	GAA0/IO00RSB0	C7	IO16RSB0	F4	IO147RSB3			
A3	GAC0/IO04RSB0	C8	IO21RSB0	F6	GND			
A4	IO08RSB0	C9	IO28RSB0	F7	VCC			
A5	IO11RSB0	C10	GBB1/IO33RSB0	F8	VCCIB0			
A6	IO15RSB0	C11	GBA1/IO35RSB0	F9	VCCIB0			
A7	IO17RSB0	C12	GBB2/IO38RSB1	F10	VCCIB0			
A8	IO18RSB0	C13	GND	F12	IO47RSB1			
A9	IO22RSB0	C14	IO48RSB1	F13	IO45RSB1			
A10	IO26RSB0	C15	IO39RSB1	F14	GCC1/IO52RSB1			
A11	IO29RSB0	D1	IO146RSB3	F15	GCA1/IO56RSB1			
A12	GBC1/IO31RSB0	D2	IO144RSB3	G1*	VCOMPLF			
A13	GBA2/IO36RSB1	D3	IO148RSB3	G2	GFB0/IO137RSB3			
A14	IO41RSB1	D4	GND	G3	GFC0/IO139RSB3			
A15	NC	D5	GAB0/IO02RSB0	G4	IO143RSB3			
B1	IO151RSB3	D6	GAC1/IO05RSB0	G6	VCCIB3			
B2	GAB2/IO154RSB3	D7	IO14RSB0	G7	GND			
В3	IO06RSB0	D8	IO19RSB0	G8	VCC			
B4	IO09RSB0	D9	GBC0/IO30RSB0	G9	GND			
B5	IO13RSB0	D10	GBB0/IO32RSB0	G10	GND			
B6	IO10RSB0	D11	GBA0/IO34RSB0	G12	IO50RSB1			
B7	IO12RSB0	D12	GND	G13	GCB1/IO54RSB1			
В8	IO20RSB0	D13	GBC2/IO40RSB1	G14	GCC2/IO60RSB1			
B9	IO23RSB0	D14	IO51RSB1	G15	GCA2/IO58RSB1			
B10	IO25RSB0	D15	IO44RSB1	H1*	VCCPLF			
B11	IO24RSB0	E1	IO142RSB3	H2	GFA1/IO136RSB3			
B12	IO27RSB0	E2	IO149RSB3	H3	GFB1/IO138RSB3			
B13	IO37RSB1	E3	IO153RSB3	H4	NC			
B14	IO46RSB1	E4	GAC2/IO152RSB3	H6	VCCIB3			
B15	IO42RSB1	E12	IO43RSB1	H7	GND			
C1	IO155RSB3	E13	IO49RSB1	H8	VCC			
C2	GAA2/IO156RSB3	E14	GCC0/IO53RSB1	H9	GND			
C3	GND	E15	GCB0/IO55RSB1	H10	VCCIB1			
C4	GAA1/IO01RSB0	F1	IO141RSB3	H12	GCB2/IO59RSB1			
C5	GAB1/IO03RSB0	F2	GFC1/IO140RSB3	H13	GCA0/IO57RSB1			

Note: *Pin numbers G1 and H1 must be connected to ground because a PLL is not supported for AGLP060-CS/G201.

4-10 Revision 17

	CS281		
Pin Number	AGLP125 Function		
A1	GND		
A2	GAB0/IO02RSB0		
A3	GAC1/IO05RSB0		
A4	IO09RSB0		
A5	IO13RSB0		
A6	IO15RSB0		
A7	IO18RSB0		
A8	IO23RSB0		
A9	IO25RSB0		
A10	VCCIB0		
A11	IO33RSB0		
A12	IO41RSB0		
A13	IO43RSB0		
A14	IO46RSB0		
A15	IO55RSB0		
A16	IO56RSB0		
A17	GBC1/IO58RSB0		
A18	GBA0/IO61RSB0		
A19	GND		
B1	GAA2/IO211RSB3		
B2	VCCIB0		
В3	GAB1/IO03RSB0		
B4	GAC0/IO04RSB0		
B5	IO11RSB0		
В6	GND		
В7	IO21RSB0		
B8	IO22RSB0		
В9	IO28RSB0		
B10	IO32RSB0		
B11	IO36RSB0		
B12	IO39RSB0		
B13	IO42RSB0		
B14	GND		
B15	IO52RSB0		
B16	GBC0/IO57RSB0		
B17	GBA1/IO62RSB0		

	CS281
Pin Number	AGLP125 Function
B18	VCCIB1
B19	IO64RSB1
C1	GAB2/IO209RSB3
C2	IO210RSB3
C6	IO12RSB0
C14	IO47RSB0
C18	IO54RSB0
C19	GBB2/IO65RSB1
D1	IO206RSB3
D2	IO208RSB3
D4	GAA0/IO00RSB0
D5	GAA1/IO01RSB0
D6	IO10RSB0
D7	IO17RSB0
D8	IO24RSB0
D9	IO27RSB0
D10	GND
D11	IO31RSB0
D12	IO40RSB0
D13	IO49RSB0
D14	IO45RSB0
D15	GBB0/IO59RSB0
D16	GBA2/IO63RSB1
D18	GBC2/IO67RSB1
D19	IO66RSB1
E1	IO203RSB3
E2	IO205RSB3
E4	IO07RSB0
E5	IO06RSB0
E6	IO14RSB0
E7	IO20RSB0
E8	IO29RSB0
E9	IO34RSB0
E10	IO30RSB0
E11	IO37RSB0
E12	IO38RSB0

CS281		
Pin Number	AGLP125 Function	
E13	IO48RSB0	
E14	GBB1/IO60RSB0	
E15	IO53RSB0	
_		
E16	IO69RSB1	
E18	IO68RSB1	
E19	IO71RSB1	
F1	IO198RSB3	
F2	GND	
F3	IO201RSB3	
F4	IO204RSB3	
F5	IO16RSB0	
F15	IO50RSB0	
F16	IO74RSB1	
F17	IO72RSB1	
F18	GND	
F19	IO73RSB1	
G1	IO195RSB3	
G2	IO200RSB3	
G4	IO202RSB3	
G5	IO08RSB0	
G7	GAC2/IO207RSB3	
G8	VCCIB0	
G9	IO26RSB0	
G10	IO35RSB0	
G11	IO44RSB0	
G12	VCCIB0	
G13	IO51RSB0	
G15	IO70RSB1	
G16	IO75RSB1	
G18	GCC0/IO80RSB1	
G19	GCB1/IO81RSB1	
H1	GFB0/IO191RSB3	
H2	IO196RSB3	
H4	GFC1/IO194RSB3	
H5	GFB1/IO192RSB3	
H7	VCCIB3	
	-	

Package Pin Assignments

00000		
	CS289	
Pin Number	AGLP060 Function	
P8	GND	
P9	IO91RSB2	
P10	IO86RSB2	
P11	IO81RSB2	
P12	NC	
P13	VCCIB2	
P14	NC	
P15	GDA2/IO78RSB2	
P16	GDC2/IO80RSB2	
P17	VJTAG	
R1	GND	
R2	GEA2/IO110RSB2	
R3	NC	
R4	NC	
R5	NC	
R6	VCCIB2	
R7	IO102RSB2	
R8	IO97RSB2	
R9	IO93RSB2	
R10	IO89RSB2	
R11	GND	
R12	NC	
R13	NC	
R14	NC	
R15	NC	
R16	TMS	
R17	TRST	
T1	GEA1/IO112RSB3	
T2	GEC2/IO108RSB2	
T3	NC	
T4	GND	
T5	NC	
T6	IO103RSB2	
T7	IO100RSB2	
T8	IO95RSB2	
T9	VCCIB2	
T10	IO88RSB2	
T11	IO84RSB2	

CS289		
Pin Number	AGLP060 Function	
T12	IO82RSB2	
T13	NC	
T14	GND	
T15	NC	
T16	TDI	
T17	TDO	
U1	FF/GEB2/IO109RS B2	
U2	GND	
U3	NC	
U4	IO107RSB2	
U5	IO105RSB2	
U6	IO101RSB2	
U7	GND	
U8	IO94RSB2	
U9	IO92RSB2	
U10	IO87RSB2	
U11	IO85RSB2	
U12	GND	
U13	NC	
U14	NC	
U15	NC	
U16	TCK	
U17	VPUMP	

4-22 Revision 17

Package Pin Assignments

	CS289		
Pin Number	AGLP125 Function		
G13	IO64RSB1		
G14	IO69RSB1		
G15	IO78RSB1		
G16	IO76RSB1		
G17	GND		
H1	VCOMPLF		
H2	GFB0/IO191RSB3		
H3	IO195RSB3		
H4	IO197RSB3		
H5	IO199RSB3		
H6	GFB1/IO192RSB3		
H7	GND		
H8	GND		
H9	GND		
H10	GND		
H11	GND		
H12	GCC1/IO79RSB1		
H13	IO74RSB1		
H14	GCA0/IO84RSB1		
H15	VCCIB1		
H16	GCA2/IO85RSB1		
H17	GCC0/IO80RSB1		
J1	VCCPLF		
J2	GFA1/IO190RSB3		
J3	VCCIB3		
J4	IO185RSB3		
J5	IO183RSB3		
J6	IO181RSB3		
J7	VCC		
J8	GND		
J9	GND		
J10	GND		
J11	VCC		
J12	GCB2/IO86RSB1		
J13	GCB1/IO81RSB1		
J14	IO90RSB1		
J15	IO89RSB1		
J16	GCB0/IO82RSB1		
	i		

CS289	
Pin Number	AGLP125 Function
J17	GCA1/IO83RSB1
K1	GND
K2	GFA0/IO189RSB3
K3	GFB2/IO187RSB3
K4	IO179RSB3
K5	IO175RSB3
K6	IO177RSB3
K7	GND
K8	GND
K9	GND
K10	GND
K11	GND
K12	IO88RSB1
K13	IO94RSB1
K14	IO95RSB1
K15	IO93RSB1
K16	GND
K17	GCC2/IO87RSB1
L1	GFA2/IO188RSB3
L2	GFC2/IO186RSB3
L3	IO182RSB3
14	GND
L5	IO173RSB3
L6	GEC1/IO170RSB3
17	GND
L8	GND
L9	VCC
L10	GND
L11	GND
L12	GDC1/IO99RSB1
L13	GDB1/IO101RSB1
L14	VCCIB1
L15	IO98RSB1
L16	IO92RSB1
L17	IO91RSB1
M1	IO184RSB3
M2	VCCIB3
M3	IO176RSB3
IVIO	10 17 01 (000

CS289		
Pin Number	AGLP125 Function	
M4	IO172RSB3	
M5	GEB0/IO167RSB3	
M6	GEB1/IO168RSB3	
M7	IO159RSB2	
M8	IO161RSB2	
M9	IO135RSB2	
M10	IO128RSB2	
M11	IO121RSB2	
M12	IO113RSB2	
M13	GDA1/IO103RSB1	
M14	GDA0/IO104RSB1	
M15	IO97RSB1	
M16	IO96RSB1	
M17	VCCIB1	
N1	IO180RSB3	
N2	IO178RSB3	
N3	GEC0/IO169RSB3	
N4	GEA0/IO165RSB3	
N5	GND	
N6	IO156RSB2	
N7	IO148RSB2	
N8	IO144RSB2	
N9	IO137RSB2	
N10	VCCIB2	
N11	IO119RSB2	
N12	IO111RSB2	
N13	GDB2/IO106RSB2	
N14	IO109RSB2	
N15	GND	
N16	GDB0/IO102RSB1	
N17	GDC0/IO100RSB1	
P1	IO174RSB3	
P2	IO171RSB3	
P3	GND	
P4	IO160RSB2	
P5	IO157RSB2	
P6	IO154RSB2	
P7	IO152RSB2	

4-24 Revision 17

Datasheet Information

Revision	Changes	Page
Revision 13 (June 2012)	Figure 2-30 • FIFO Read and Figure 2-31 • FIFO Write have been added (SAR 34843).	2-73
	Updated the terminology used in Timing Characteristics in the following tables: Table 2-96 • FIFO and Table 2-97 • FIFO (SAR 38236).	2-76
	The following sentence was removed from the "VMVx I/O Supply Voltage (quiet)" section in the "Pin Descriptions and Packaging" section: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38320). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1
Revision 12 (March 2012)	The "In-System Programming (ISP) and Security" section and "Security" section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 34664).	I, 1-2
	The Y security option and Licensed DPA Logo were added to the "IGLOO PLUS Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 34724).	III
	The "Specifying I/O States During Programming" section is new (SAR 34695).	1-7
	The following sentence was removed from the "Advanced Architecture" section: "In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of IGLOO PLUS devices via an IEEE 1532 JTAG interface" (SAR 34684).	1-3

5-2 Revision 17

Revision	Changes	Page
Revision 12 (continued)	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—P _{CLOCK} " section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>IGLOO PLUS FPGA Fabric User's Guide</i> (SAR 34733).	2-12
	$t_{\mbox{\scriptsize DOUT}}$ was corrected to $t_{\mbox{\scriptsize DIN}}$ in Figure 2-4 • Input Buffer Timing Model and Delays (example) (SAR 37107).	2-16
	The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34887).	2-27
	Minimum pulse width High and Low values were added to the tables in the "Global Tree Timing Characteristics" section. The maximum frequency for global clock parameter was removed from these tables because a frequency on the global is only an indication of what the global network can do. There are other limiters such as the SRAM, I/Os, and PLL. SmartTime software should be used to determine the design frequency (SAR 36963).	2-58
	Table 2-90 • IGLOO PLUS CCC/PLL Specification and Table 2-91 • IGLOO PLUS CCC/PLL Specification were updated. A note was added to both tables indicating that when the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available (SAR 34820).	2-61, 2-62
	The value for serial clock was missing from these tables and has been restored. The value and units for input cycle-to-cycle jitter were incorrect and have been restored. The note to Table 2-90 • IGLOO PLUS CCC/PLL Specification giving specifications for which measurements done was corrected from VCC/VCCPLL = 1.14 V to VCC/VCCPLL = 1.425 V. The Delay Range in Block: Programmable Delay 2 value in Table 2-91 • IGLOO PLUS CCC/PLL Specification was corrected from 0.025 to 0.863 (SAR 37058).	
	Figure 2-28 • Write Access after Read onto Same Address was deleted. Reference was made to a new application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 34868).	2-65,
	The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" tables, Figure 2-32 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SAR 35748).	2-68, 2-74, 2-76
	The "Pin Descriptions and Packaging" chapter has been added (SAR 34769).	3-1
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 34769).	4-1
Revision 11 (July 2010)	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "IGLOO PLUS Device Status" table indicates the status for each device in the family.	N/A
	The "Reprogrammable Flash Technology" section was revised to add "250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System Performance."	I
	The "I/Os with Advanced I/O Standards" section was revised to add definitions for hot-swap and cold-sparing.	1-6
	Conditional statements regarding hot insertion were removed from the description of VI in Table 2-1 • Absolute Maximum Ratings, since all IGLOO PLUS devices are hot insertion enabled.	2-1

Revision 17 5-3

Revision	Changes	Page
Revision 11 (continued)	The tables in the "Single-Ended I/O Characteristics" section were updated. Notes clarifying IIL and IIH were added.	2-27
	Tables for 3.3 V LVCMOS and 1.2 V LVCMOS wide range were added (SAR 79370, SAR 79353, and SAR 79366).	
	Notes in the wide range tables state that the minimum drive strength for any LVCMOS 3.3 V (or LVCMOS 1.2 V) software configuration when run in wide range is $\pm 100~\mu A$. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 25700).	
	The following sentence was deleted from the "2.5 V LVCMOS" section: It uses a 5 V-tolerant input buffer and push-pull output buffer (SAR 24916).	2-32
	The tables in the "Input Register" section, "Output Register" section, and "Output Enable Register" section were updated. The tables in the "VersaTile Characteristics" section were updated.	2-45 through 2-56
	The following tables were updated in the "Global Tree Timing Characteristics" section:	2-58
	Table 2-85 • AGLP060 Global Resource (1.5 V)	
	Table 2-86 • AGLP125 Global Resource (1.5 V)	
	Table 2-88 • AGLP060 Global Resource (1.2 V)	
	Table 2-90 • IGLOO PLUS CCC/PLL Specification and Table 2-91 • IGLOO PLUS CCC/PLL Specification were revised (SAR 79388). VCO output jitter and maximum peak-to-peak jitter data were changed. Three notes were added to the table in connection with these changes.	2-61
	Figure 2-28 • Write Access after Write onto Same Address and Figure 2-29 • Write Access after Read onto Same Address were deleted.	N/A
	The tables in the "SRAM", "FIFO" and "Embedded FlashROM Characteristics" sections were updated.	2-68, 2-78

Revision 17 5-5

Datasheet Information

Revision	Changes	Page
Revision 10 (Apr 2009) Product Brief v1.5 DC and Switching Characteristics Advance v0.5	The –F speed grade is no longer offered for IGLOO PLUS devices. References to it have been removed from the document. The speed grade column and not regarding –F speed grade were removed from "IGLOO PLUS Ordering Information". The "Speed Grade and Temperature Grade Matrix" section was removed.	
Revision 9 (Feb 2009) Product Brief v1.4	The "Advanced I/O" section was revised to add two bullets regarding support of wide range power supply voltage.	I
	The "I/Os with Advanced I/O Standards" section was revised to add 3.0 V wide range to the list of supported voltages. The "Wide Range I/O Support" section is new.	1-7
Revision 8 (Jan 2009) Packaging v1.5	The "CS201" pin table was revised to add a note regarding pins G1 and H1.	4-8
Revision 7 (Dec 2008) Product Brief v1.3	A note was added to IGLOO PLUS Devices: "AGLP060 in CS201 does not support the PLL."	_
	Table 2 • IGLOO PLUS FPGAs Package Size Dimensions was updated to change the nominal size of VQ176 from 100 to 400 mm ² .	II
Revision 6 (Oct 2008) DC and Switching Characteristics Advance v0.4	Data was revised significantly in the following tables: Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings, STD Speed Grade, Commercial-Case Conditions: T _J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V	2-22, 2-33
	Table 2-26 • Summary of I/O Timing Characteristics—Software Default Settings, STD Speed Grade Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Table 2-50 • 2.5 LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Table 2-51 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage	
Revision 5 (Aug 2008) Product Brief v1.2	The VQ128 and VQ176 packages were added to Table 1 • IGLOO PLUS Product Family, the "I/Os Per Package ¹ " table, Table 2 • IGLOO PLUS FPGAs Package Size Dimensions, "IGLOO PLUS Ordering Information", and the "Temperature Grade Offerings" table.	I to IV
Packaging v1.4	The "VQ128" package drawing and pin table are new.	4-2
	The "VQ176" package drawing and pin table are new.	4-5
Revision 4 (Jul 2008) Product Brief v1.1 DC and Switching Characteristics Advance v0.3	As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core voltage support. The document was updated to change 1.2 V / 1.5 V to 1.2 V to 1.5 V.	N/A
Revision 3 (Jun 2008) DC and Switching Characteristics Advance v0.2	Tables have been updated to reflect default values in the software. The default I/O capacitance is 5 pF. Tables have been updated to include the LVCMOS 1.2 V I/O set.	N/A
	Table note 3 was updated in Table 2-2 • Recommended Operating Conditions ^{1,2} to add the sentence, "VCCI should be at the same voltage within a given I/O bank." References to table notes 5, 6, 7, and 8 were added. Reference to table note 3 was removed from VPUMP Operation and placed next to VCC.	2-2
	Table 2-4 • Overshoot and Undershoot Limits ¹ was revised to remove "as measured on quiet I/Os" from the title. Table note 2 was revised to remove "estimated SSO density over cycles." Table note 3 was deleted.	2-3

5-6 Revision 17