E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	37
Program Memory Size	36KB (36K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08ll36clh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Addendum for Revision 7

1 Addendum for Revision 7

Table 1. MC9S08LL64 Data Sheet Rev 7 Addendum

""LPS" to "LP								
sion clock fre	quency:			In the table, for numbers 3 and 4, change "LPS" to "LPR".				
Symb	Min	Тур	Max	Unit				
f _{ADCK}	1.0	_	8	MHz				
	1.0	—	5	1				
	10		2.5	1				
	Abort		1.0 —	1.0 — 5				

2 Revision History

Table 2 provides a revision history for this document.

Table 2. Revision History Table

Rev. Number	Substantive Changes	Date of Release
1.0	 Initial release. Correct errors in the following sections: Section 3.7, "Supply Current Characteristics" Section 3.12, "ADC Characteristics" 	07/2012

Freescale Semiconductor Data Sheet: Technical Data

An Energy Efficient Solution by Freescale

MC9S08LL64 Series

Covers: MC9S08LL64 and MC9S08LL36

- 8-Bit HCS08 Central Processor Unit (CPU)
 - Up to 40 MHz CPU at 3.6 V to 2.1 V across temperature range of –40 °C to 85 °C
 - Up to 20 MHz at 2.1 V to 1.8 V across temperature range of -40 °C to 85 °C
 - HC08 instruction set with added BGND instruction
 - Support for up to 32 interrupt/reset sources
- On-Chip Memory
 - Dual array flash read/program/erase over full operating voltage and temperature
 - Random-access memory (RAM)
 - Security circuitry to prevent unauthorized access to RAM and flash contents
- Power-Saving Modes
 - Two low-power stop modes
 - Reduced-power wait mode
 - Low-power run and wait modes allow peripherals to run while voltage regulator is in standby
 - Peripheral clock gating register can disable clocks to unused modules, thereby reducing currents
 - Very low-power external oscillator that can be used in stop2 or stop3 modes to provide accurate clock source to time-of-day (TOD) module
 - 6 μs typical wakeup time from stop3 mode
- Clock Source Options
 - Oscillator (XOSC) Loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz
 - Internal Clock Source (ICS) Internal clock source module containing a frequency-locked-loop (FLL) controlled by internal or external reference; precision trimming of internal reference allows 0.2% resolution and 2% deviation over temperature and voltage; supporting bus frequencies from 1 MHz to 20 MHz
- System Protection
 - Watchdog computer operating properly (COP) reset with option to run from dedicated 1 kHz internal clock source or bus clock
 - Low-voltage warning with interrupt
 - Low-voltage detection with reset or interrupt
 - Illegal opcode detection with reset; illegal address detection with reset
 - Flash block protection
 - Development Support
 - Single-wire background debug interface
 - Breakpoint capability to allow single breakpoint setting during in-circuit debugging (plus two more breakpoints in on-chip debug module)
 - On-chip in-circuit emulator (ICE) debug module containing three comparators and nine trigger modes

Document Number: MC9S08LL64 Rev. 7, 4/2012

80-LQFP Case 917A

- Peripherals
 - LCD Up to 8×36 or 4×40 LCD driver with internal charge pump and option to provide an internally-regulated LCD reference that can be trimmed for contrast control
 - ADC —10-channel, 12-bit resolution; up to 2.5 μs conversion time; automatic compare function; temperature sensor; operation in stop3; fully functional from 3.6 V to 1.8 V
 - IIC Inter-integrated circuit bus module to operate at up to 100 kbps with maximum bus loading; multi-master operation; programmable slave address; interrupt-driven byte-by-byte data transfer; broadcast mode; 10-bit addressing
 - ACMP Analog comparator with selectable interrupt on rising, falling, or either edge of comparator output; compare option to fixed internal reference voltage; outputs can be optionally routed to TPM module; operation in stop3
 - SCIx Two full-duplex non-return to zero (NRZ) modules (SCI1 and SCI2); LIN master extended break generation; LIN slave extended break detection; wakeup on active edge
 - SPI Full-duplex or single-wire bidirectional; double-buffered transmit and receive; master or slave mode; MSB-first or LSB-first shifting
 - TPMx Two 2-channel (TPM1 and TPM2); selectable input capture, output compare, or buffered edge- or center-aligned PWM on each channel
 - TOD (Time-of-day) 8-bit, quarter second counter with match register; external clock source for precise time base, time-of-day, calendar, or task scheduling functions
 - VREFx Trimmable via an 8-bit register in 0.5 mV steps; automatically loaded with room temperature value upon reset; can be enabled to operate in stop3 mode; trim register is not available in stop modes.
- Input/Output
 - Dedicated accurate voltage reference output pin, 1.15 V output (VREFOx); trimmable with 0.5 mV resolution
 - Up to 39 GPIOs, two output-only pins
 - Hysteresis and configurable pullup device on all input pins; configurable slew rate and drive strength on all output pins
- Package Options
 - 14mm \times 14mm 80-pin LQFP, 10 mm $\,\times$ 10 mm 64-pin LQFP

© Freescale Semiconductor, Inc., 2009-2012. All rights reserved.

Contents

1	Devic	es in the MC9S08LL64 Series
2	Pin A	ssignments
3	Elect	rical Characteristics
	3.1	Introduction9
	3.2	Parameter Classification9
	3.3	Absolute Maximum Ratings9
	3.4	Thermal Characteristics
	3.5	ESD Protection and Latch-Up Immunity11
	3.6	DC Characteristics
	3.7	Supply Current Characteristics
	3.8	External Oscillator (XOSCVLP) Characteristics25
	3.9	Internal Clock Source (ICS) Characteristics
	3.10	AC Characteristics
		3.10.1 Control Timing

3.10.2 TPM Module Timing
3.10.3 SPI Timing
3.11 Analog Comparator (ACMP) Electricals
3.12 ADC Characteristics
3.13 VREF Specifications
3.14 LCD Specifications
3.15 Flash Specifications
3.16 EMC Performance
3.16.1 Radiated Emissions
Ordering Information
4.1 Device Numbering System
4.2 Package Information
4.3 Mechanical Drawings

Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

4

http://freescale.com/

The following revision history table summarizes changes contained in this document.

Rev	Date	Description of Changes
3	03/2009	Incorporated revisions for customer release.
4	08/2009	Completed all the TBDs; corrected Pin out in the Figure 2, Figure 3 and Table 2; updated V_{OH} , $II_{In}I$, $II_{OZ}I$, R_{PU} , R_{PD} , added $II_{INT}I$ in the Table 8; updated Table 9; updated ERREFSTEN and added LCD in the Table 10; updated f_{ADACK} , E_{TUE} , DNL, INL, E_{ZS} and E_{FS} in the Table 18. updated V Room Temp in the Table 19.
5	1/2010	Added 80-pin LQFP package information for MC9S08LL36.
6	6/2011	Changed the ERREFSTEN to EREFSTEN, updated the VREFOx to 1.15 V Added LCD specification in the Table 10.
7	4/2012	Updated II _{In} I in the Table 8.

Related Documentation

Find the most current versions of all documents at: http://www.freescale.com

Reference Manual —MC9S08LL64RM

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

© Freescale Semiconductor, Inc., 2009-2012. All rights reserved.

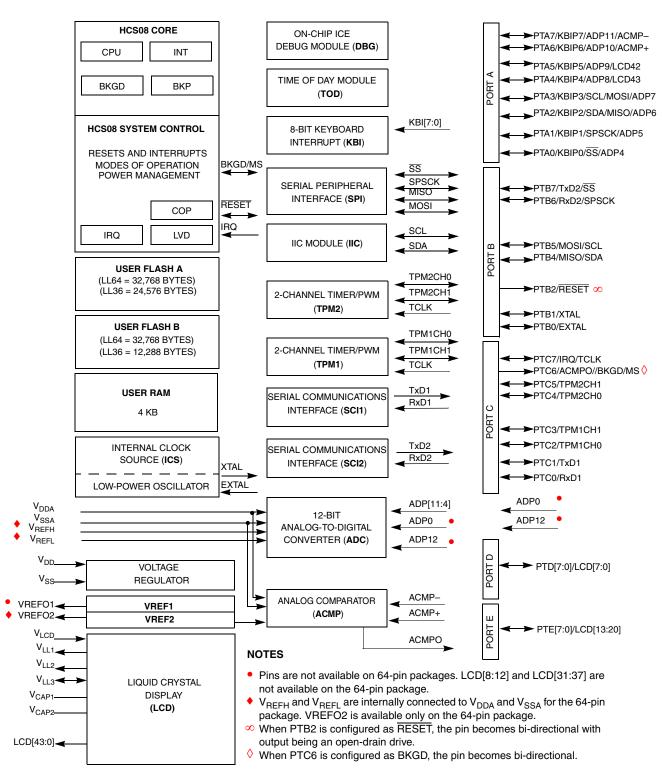


Figure 1. MC9S08LL64 Series Block Diagram

3 Electrical Characteristics

3.1 Introduction

This section contains electrical and timing specifications for the MC9S08LL64 series of microcontrollers available at the time of publication.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 3. Parameter	Classifications
--------------------	-----------------

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 4 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

ESD Protection and Latch-Up Immunity

1

$$\mathbf{T}_{\mathbf{J}} = \mathbf{T}_{\mathbf{A}} + (\mathbf{P}_{\mathbf{D}} \times \boldsymbol{\theta}_{\mathbf{J}\mathbf{A}})$$
 Eqn.

where:

 $T_{A} = \text{Ambient temperature, °C}$ $\theta_{JA} = \text{Package thermal resistance, junction-to-ambient, °C/W}$ $P_{D} = P_{int} + P_{I/O}$ $P_{int} = I_{DD} \times V_{DD}, \text{Watts } - \text{chip internal power}$ $P_{I/O} = \text{Power dissipation on input and output pins} - \text{user determined}$

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2 \qquad \qquad Eqn. 3$$

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be taken to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification, ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless instructed otherwise in the device specification.

Model	Description	Symbol	Value	Unit
Human body model	Series resistance	R1	1500	Ω
	Storage capacitance	С	100	pF
	Number of pulses per pin	—	3	
Charge device model	Series resistance	R1	0	Ω
	Storage capacitance	С	200	pF
	Number of pulses per pin		3	

Table 6. ESD and Latch-up Test Conditions

DC Characteristics

Model	Description	Symbol	Value	Unit
Latch-up	Minimum input voltage limit		-2.5	V
	Maximum input voltage limit		7.5	V

Table 7. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	_	V
2	Charge device model (CDM)	V _{CDM}	±500	_	V
3	Latch-up current at $T_A = 85^{\circ}C$	I _{LAT}	±100		mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Num	С	CI	haracteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
1		Operating Volta	age			1.8		3.6	V
	С	Output high	PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7] ² , low-drive strength		V _{DD} >1.8 V I _{Load} = -0.6 mA	V _{DD} – 0.5		_	
2	Ρ	Output high — voltage	PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7] ² ,	V _{OH}	V _{DD} > 2.7 V I _{Load} = -10 mA	V _{DD} – 0.5	_	_	V
	С		high-drive strength		V _{DD} > 1.8 V I _{Load} = -3 mA	V _{DD} – 0.5			
	С	Output high	PTA[4:5], PTD[0:7], PTE[0:7], low-drive strength		V_{DD} > 1.8 V I _{Load} = -0.5 mA	V _{DD} – 0.5	_	_	
3	Ρ	Output high — voltage	PTA[4:5], PTD[0:7], PTE[0:7],	V _{OH}	V _{DD} > 2.7 V I _{Load} = -2.5 mA	V _{DD} – 0.5	_	_	V
	С		high-drive strength		V _{DD} > 1.8 V I _{Load} = -1 mA	V _{DD} – 0.5			
4	D	Output high current	Max total I_{OH} for all ports	I _{OHT}		—		100	mA
	С	Outeut law	PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7], low-drive strength		V _{DD} >1.8 V I _{Load} = 0.6 mA	—	_	0.5	
5	Ρ	Output low — voltage	PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7],	V _{OL}	$V_{DD} > 2.7 V$ $I_{Load} = 10 mA$	—	_	0.5	V
	С		high-drive strength		V _{DD} > 1.8 V I _{Load} = 3 mA		_	0.5	

 Table 8. DC Characteristics

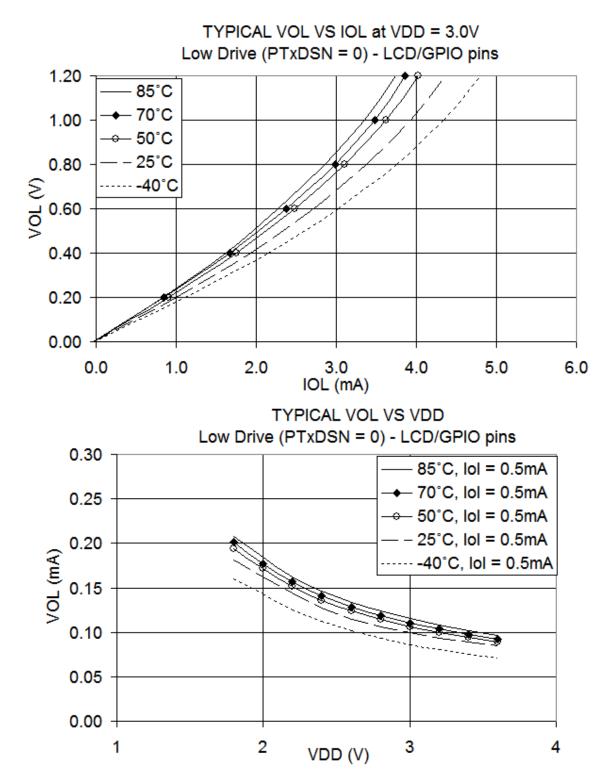


Figure 9. Typical Low-Side Driver (Sink) Characteristics (LCD/GPIO Pins)— Low Drive (PTxDSn = 0)

MC9S08LL64 Series MCU Data Sheet, Rev. 7

DC Characteristics

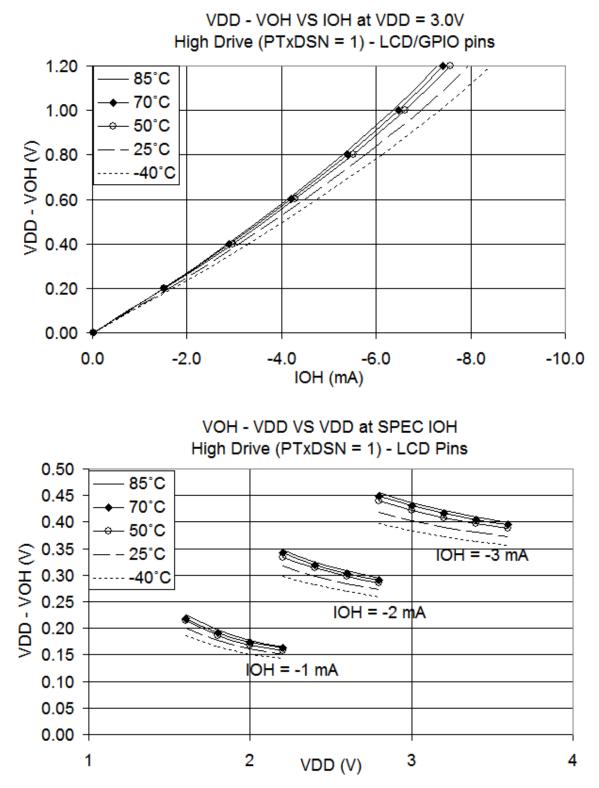


Figure 12. Typical High-Side (Source) Characteristics (LCD/GPIO Pins) — High Drive (PTxDSn = 1)

MC9S08LL64 Series MCU Data Sheet, Rev. 7

3.7 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

Num	с	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Мах	Unit	Temp (°C)
	Т			20 MHz		13.75	17.9		
1	Т	Run supply current FEI mode, all modules on	RI_{DD}	10 MHz	3	7		mA	-40 to 85
	Т			1 MHz		2	_		
	Т	Run supply current		20 MHz		8.9			
2	Т	FEI mode, all modules off	RI_{DD}	10 MHz	3	5.5	_	mA	-40 to 85
	Т			1 MHz		0.9	_		
3	Т	Run supply current	RI _{DD}	16 kHz FBILP	- 3	185	_	μA	40 to 85
3	Т	LPS=0, all modules on	DD	16 kHz FBELP	5	115	_	μΑ	40 10 85
	_	Run supply current							0 to 70
4	Т	LPS=1, all modules off, running from Flash	DI	16 kHz	3	25		μA	-40 to 85
7	Ŧ	Run supply current	– RI _{DD}	FBELP	3	= 0	_	μΑ	0 to 70
	Т	LPS=1, all modules off, running from RAM				7.3			-40 to 85
	Т			20 MHz	3	4.57	6		
5	Т	Wait mode supply current FEI mode, all modules off	WI _{DD}	8 MHz		2	_	mA	-40 to 85
	Т	· _· ·····		1 MHz		0.73	_		
	Ρ					0.4	1.3		-40 to 25
	С				3	4	6		70
6	Р	Stop2 mode supply current	S2I _{DD}	n/a		8.5	13	μA	85
U	С		OZ'DD	17a		0.35	1	μ	-40 to 25
	С				2	3.9	5		70
	С					7.7	10		85
	Ρ					0.65	1.8		-40 to 25
	С				3	5.7	8		70
	Р	Stop3 mode supply current	S3I _{DD}	n/a		12.2	20	μA	85
	С	No clocks active	DD			0.6	1.5		-40 to 25
	С				2	5	6.8		70
	С					11.5	14		85

Table 9. Supply Current Characteristics

¹ Typical values are measured at 25 °C. Characterized, not tested

Internal Clock Source (ICS) Characteristics

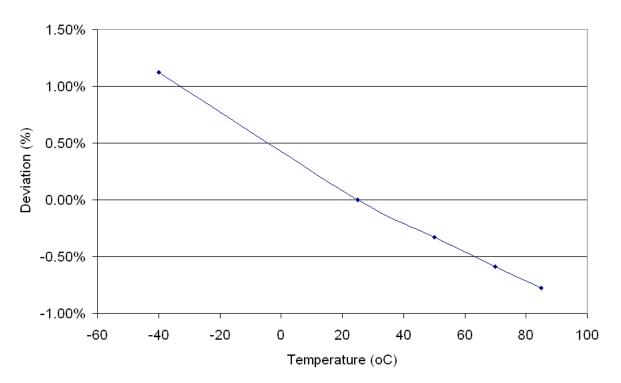

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
9	С	Total deviation of trimmed DCO output frequency over voltage and temperature	Δf_{dco_t}	_	+ 0.5 -1.0	±2	%f _{dco}
10	С	Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0 °C to 70 °C	Δf_{dco_t}	_	± 0.5	±1	%f _{dco}
11	С	FLL acquisition time ²	t _{Acquire}	_	—	1	ms
12	С	Long term jitter of DCO output clock (averaged over 2 ms interval) ³	C _{Jitter}	_	0.02	0.2	%f _{dco}

Table 12. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient) (continued)

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

² This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

³ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

Deviation of DCO Output from Trimmed Frequency

Figure 16. Deviation of DCO Output from Trimmed Frequency (20 MHz, 3.0 V)

MC9S08LL64 Series MCU Data Sheet, Rev. 7

AC Characteristics

3.10 AC Characteristics

This section describes timing characteristics for each peripheral system.

3.10.1 Control Timing

Num	С	Rating	Symbol	Min	Typ ¹	Max	Unit
1	D	Bus frequency ($t_{cyc} = 1/f_{Bus}$) $V_{DD} \le 2.1V$ $V_{DD} > 2.1V$	f _{Bus}	dc dc	_	10 20	MHz
2	D	Internal low power oscillator period	t _{LPO}	700	_	1300	μS
3	D	External reset pulse width ²	t _{extrst}	100		_	ns
4	D	Reset low drive	t _{rstdrv}	$34 \times t_{\text{cyc}}$	_	_	ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU}	500	_	_	ns
6	D	BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ³	t _{MSH}	100	_	_	μS
7	D	IRQ pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH} , t _{IHIL}	100 1.5 × t _{cyc}		_	ns
8	D	Keyboard interrupt pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH} , t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
9	с	Port rise and fall time — Low output drive (PTxDS = 0) (load = 50 pF) ^{5, 6} Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		16 23		ns
9		Port rise and fall time — High output drive (PTxDS = 1) (load = 50 pF) ^{5, 6} Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		5 9		ns

Table 13. Control Timing

¹ Typical values are based on characterization data at V_{DD} = 3.0 V, 25 °C unless otherwise stated.

 2 This is the shortest pulse that is guaranteed to be recognized as a reset pin request.

 3 To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.

⁴ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.

 $^5\,$ Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40 °C to 85 °C.

⁶ Except for LCD pins in open drain mode.

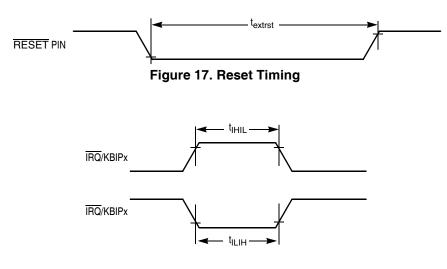


Figure 18. IRQ/KBIPx Timing

3.10.2 TPM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	-	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5		t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5		t _{cyc}

Table 14. TPM Input Timing

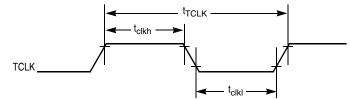


Figure 19. Timer External Clock

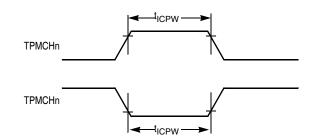


Figure 20. Timer Input Capture Pulse

3.10.3 SPI Timing

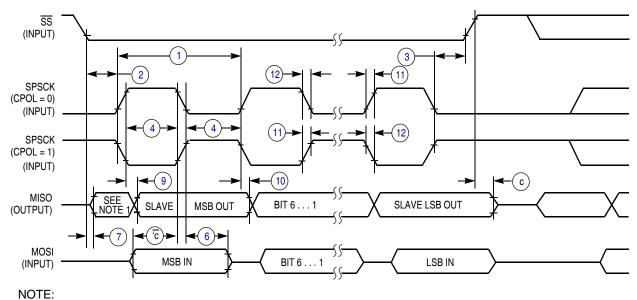

Table 15 and Figure 21 through Figure 24 describe the timing requirements for the SPI system.

Table 15. SPI Timing

No.	С	Function	Symbol	Min	Мах	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
1	D	SPSCK period Master Slave	tSPSCK	2 4	2048 —	t _{cyc} t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1		t _{SPSCK} t _{cyc}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK} t _{cyc}
4	D	Clock (SPSCK) high or low time Master Slave	twspsck	$t_{cyc} - 30$ $t_{cyc} - 30$	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	15 15		ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	0 25		ns ns
7	D	Slave access time	t _a	_	1	t _{cyc}
8	D	Slave MISO disable time	t _{dis}	_	1	t _{cyc}
9	D	Data valid (after SPSCK edge) Master Slave	t _v		25 25	ns ns

Analog Comparator (ACMP) Electricals

1. Not defined but normally LSB of character just received

3.11 Analog Comparator (ACMP) Electricals

Table 16. Analog Comparator Electrical Specifications

No	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	D	Supply voltage	V _{DD}	1.8	_	3.6	V
2	Ρ	Supply current (active)	I _{DDAC}	—	20	35	μA
3	D	Analog input voltage	V _{AIN}	$V_{SS} - 0.3$	_	V _{DD}	V
4	Р	Analog input offset voltage	V _{AIO}	—	20	40	mV
5	С	Analog comparator hysteresis	V _H	3.0	9.0	15.0	mV
6	Ρ	Analog input leakage current	I _{ALKG}	—	_	1.0	μA
7	С	Analog comparator initialization delay	t _{AINIT}	—	_	1.0	μS

3.12 ADC Characteristics

Table 17. 12-Bit ADC Operating Conditions

No.	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit
		Absolute	V _{DDA}	1.8	_	3.6	V
1	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA}) ²	ΔV_{DDA}	-100	0	100	mV

Figure 24. SPI Slave Timing (CPHA = 1)

	Table 18. 12-Bit ADC Characteristics ($v_{REFH} = v_{DDA}$, $v_{REFL} = v_{SSA}$)											
#	Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment			
1	Supply current	ADLPC = 1 ADHSC = 0 ADLSMP = 0 ADCO = 1	т	I _{DDA}	_	200	_	μA				
2	Supply current	ADLPC = 1 ADHSC = 1 ADLSMP = 0 ADCO = 1	т	I _{DDA}	_	280	_	μA				
3	Supply current	ADLPC = 0 ADHSC = 0 ADLSMP = 0 ADCO = 1	т	I _{DDA}	_	370	_	μA				
4	Supply current	ADLPC = 0 ADHSC = 1 ADLSMP = 0 ADCO = 1	т	I _{DDA}	_	0.61	_	mA				
5	Supply current	Stop, reset, module off		I _{DDA}	_	0.01	0.8	μA				
6	ADC	High speed (ADLPC = 0)	Р	4	2	3.3	5	N 41 1-	t _{ADACK} =			
6	asynchronous clock source	Low power (ADLPC = 1)	Р	f _{ADACK}	1.25	2	3.3	MHz	1/f _{ADACK}			
		Single/first continuous ADLSMP = 0										
7	Sample time	ADHSC = 0 ADLSMP = 0 ADLSTS = XX	С	ts	_	6	_	ADCK				
		ADHSC = 1 ADLSMP = 0 ADLSTS = XX	С	ts		10	_					
		Subsequent continuous ADLSMP = 0										
8	Sample time	ADHSC = 0 ADLSMP = 0 ADLSTS = XX	С	ts	_	4	_	ADCK				
		ADHSC = 1 ADLSMP = 0 ADLSTS = XX	С	ts	_	8	_					

# Characteristic Conditions C Symb Min Typ ¹ Max Unit Comment B Subsequent Continuous or Single/First ADLSMP = 1 Subsequent ADLSMP = 1 Subsequen										
$\begin{array}{c c c c c c c } & \begin{tabular}{ c c c c } & \begin{tabular}{ c c c c } Continuous or & \\ ADLSMP = 1 & \\ ADLSMP = 1 & \\ ADLSMP = 1 & \\ ADLSTS = 00 & \\ ADLSTS = 0 & \\ ADLSTS = 01 & \\ ADLSTS = 10 & \\ ADLSTS = 11 & \\ AD$	#	Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Continuous or Single/First Continuous							
$\begin{array}{ c c c c c c c c } & ADLSMP = 1 & C & 1s & - & 16 & - & & & & & \\ & ADLSC = 0 & & & & & & & & & & & & & & & & & &$			ADLSMP = 1	С	ts	_	24	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			ADLSMP = 1	С	ts	_	16	_		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			ADLSMP = 1	С	ts	_	10	_		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9	Sample time	ADLSMP = 1	С	ts	_	6	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			ADLSMP = 1	С	ts	_	28	_		
$\begin{array}{ c c c c c c c } & ADLSMP = 1 \\ ADLSTS = 10 & C & ts & & 14 & & \\ \hline ADLSTS = 10 & C & ts & & 10 & & \\ \hline ADLSMP = 1 \\ ADLSTS = 11 & C & ts & & 10 & & \\ \hline ADLSTS = 11 & C & ts & & 10 & & \\ \hline ADLSTS = 11 & T & & \\ \hline ADLSTS = 11 & T & & \\ \hline ADLSTS = 11 & T & & \\ \hline 12-bit mode & T & & \\ \hline 12-bit mode, & 2.7V & T & \\ \hline 12-bit mode, & T & & \\ \hline 12-bit mode, & T & & \\ \hline 12-bit mode & T & & \\ \hline 10-bit mode & T & & \\ \hline 10-bit mode & T & & \\ \hline 10-bit mode & T & & \\ \hline 12-bit mode & T & & \\ \hline 10-bit mode & T & & \\ \hline 10-bit mode & T & & \\ \hline 12-bit mode & T & & \\ \hline 10-bit mode & T & & \\ \hline 12-bit mode & T & & \\ \hline 12-bit mode & T & & \\ \hline 10-bit mode & T & & \\ \hline 10-bit mode & T & & \\ \hline 12-bit mode & & \\ \hline 12-bit mo$			ADLSMP = 1	С	ts	_	20	_		
$\begin{array}{ c c c c c c }\hline & ADLSMP = 1 \\ ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline & ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline & ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline & ADLSTS = 11 & C & T & \\ \hline & 12-bit mode & 7 & & \\ \hline & 12-bit mode, & 7 & & \\ \hline & 12-bit mode, & 7 & & \\ \hline & 10-bit mode & T & & \\ \hline & 10-bit mode & T & & \\ \hline & 8-bit mode & T & & \\ \hline & 8-bit mode & T & & \\ \hline & 11 & Differential \\ non-linearity & \hline & 12-bit mode & T & \\ \hline & 10-bit mode & T & & \\ \hline & 10-bit mode & T & & \\ \hline & 11 & Differential \\ \hline & 10-bit mode & T & \\ \hline & 11 & Differential \\ \hline & 10-bit mode & T & \\ \hline & 10-bit mode & T & \\ \hline & 0NL & \hline & - & 100 & \\ \hline & - & 10.5 & 10. & \\ \hline & - & 10.5 & 10. & \\ \hline & LSB^2 &$			ADLSMP = 1	С	ts	_	14	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			ADLSMP = 1	с	ts		10			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Т		_		±4		
$10-bit mode \qquad T \qquad \qquad \qquad \pm 1 \qquad \pm 2.5 \\ \hline 8-bit mode \qquad T \qquad \qquad \qquad \pm 0.5 \qquad \pm 1.0 \\ \hline 12-bit mode \qquad T \qquad T \qquad \qquad \qquad \pm 0.5 \qquad \pm 1.0 \\ \hline 12-bit mode \qquad T \qquad T \qquad DNL \qquad \qquad -1 to \\ \hline 1.75 \qquad 2.5 \qquad \\ \hline 10-bit mode^3 \qquad T \qquad DNL \qquad \qquad \pm 0.5 \qquad \pm 1.0 \\ \hline LSB^2$	10	unadjusted		Т	E _{TUE}		±3.25		LSB ²	
11 Differential non-linearity 12 -bit mode T DNL $ 1.75$ 2.5 LSB^2 LSB^2			10-bit mode	Т			±1	±2.5		
11 Differential non-linearity 10 -bit mode ³ T DNL $ \pm 0.5$ ± 1.0 LSB ²			8-bit mode	Т		_	±0.5	±1.0		
11 non-linearity 10-bit mode ³ T DNL — ± 0.5 ± 1.0 LSB ²		Differential	12-bit mode	Т		_				
8-bit mode ³ T — ±0.3 ±0.5	11		10-bit mode ³	Т	DNL	_	±0.5	±1.0	LSB ²	
			8-bit mode ³	Т		_	±0.3	±0.5		

Table 18. 12-Bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

LCD Specifications 3.14

No.	С	Characteristic		Symbol	Min	Тур	Max	Unit
1	D	LCD supply voltage		V _{LCD}	.9	1.5	1.8	V
2	D	LCD frame frequency		f _{Frame}	28	30	58	Hz
3	D	LCD charge pump capacitance		C _{LCD}	—	100	100	nF
4	D	LCD bypass capacitance		C _{BYLCD}	—	100	100	nF
5	D	LCD glass capacitance		C _{glass}	—	2000	8000	pF
6	D	M	HRefSel = 0	V _{IREG}	.89	1.00	1.15	V
7	D	V _{IREG}	HRefSel = 1		1.49	1.67	1.85 ¹	v
8	D	V _{IREG} trim resolution		$\Delta_{\rm RTRIM}$	1.5	_	—	% V _{IREG}
9	D	V _{IBEG} ripple	HRefSel = 0	_	—	_	.1	V
10	U	IREG UPPIC	HRefSel = 1		—	_	.15	v
11	D	V _{LCD} buffered adder ²		I _{Buff}	_	1		μA

Table 20. LCD Electricals, 3-V Glass

¹ V_{IREG} Max can not exceed V_{DD} – .15 V ² VSUPPLY = 10, BYPASS = 0

3.15 **Flash Specifications**

This section provides details about program/erase times and program-erase endurance for the Flash memory.

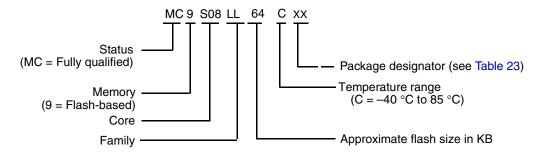
Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

No.	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	D	Supply voltage for program/erase -40 °C to 85 °C	V _{prog/erase}	1.8	_	3.6	V
2	D	Supply voltage for read operation	V _{Read}	1.8	_	3.6	V
3	D	Internal FCLK frequency ¹	f _{FCLK}	150	_	200	kHz
4	D	Internal FCLK period (1/FCLK)	t _{Fcyc}	5	_	6.67	μS
5	Р	Byte program time (random location) ²	t _{prog}	9			t _{Fcyc}
6	Р	Byte program time (burst mode) ²	t _{Burst}	4			t _{Fcyc}
7	Р	Page erase time ²	t _{Page}	4000			t _{Fcyc}
8	Р	Mass erase time ²	t _{Mass}	20,000		t _{Fcyc}	
9	D	Byte program current ³	R _{IDDBP}	—	4	_	mA

Table 21. Flash Characteristics

Device Number ¹	Men	nory	Available Packages ²	
Device Number	Flash	RAM	Available Fackages	
MC9S08LL64	64 KB	4000	80 LQFP	
WC9306LL04	64 KB	4000	64 LQFP	
MC9S08LL36	36 KB	4000	80 LQFP	
WC9308LL30	36 KB	4000	64 LQFP	

Table 22. Device Numbering System


¹ See Table 1 for a complete description of modules included on each device.

See Table 23 for package information.

4.1 Device Numbering System

Example of the device numbering system:

2

4.2 Package Information

Table 23. Package Descriptions

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
80	Low Quad Flat Package	LQFP	LK	917A	98ASS23237W
64	Low Quad Flat Package	LQFP	LH	840F	98ASS23234W

4.3 Mechanical Drawings

Table 23 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MC9S08LL64 series Product Summary pages at http://www.freescale.com.

To view the latest drawing, either:

- Click on the appropriate link in Table 23, or
- Open a browser to the Freescale website (http://www.freescale.com), and enter the appropriate document number (from Table 23) in the "Enter Keyword" search box at the top of the page.

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

MC9S08LL64 Rev. 7, 4/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2009-2012. All rights reserved.

