

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	39
Program Memory Size	36KB (36K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08ll36clk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Freescale Semiconductor

Data Sheet Addendum

MC9S08LL64AD Rev. 1, 08/2012

MC9S08LL64 Data Sheet Addendum

by: Automotive and Industrial Solutions Group

This document describes corrections to the *MC9S08LL64 Series Data Sheet*, order number MC9S08LL64. For convenience, the addenda items are grouped by revision. Please check our website at http://www.freescale.com for the latest updates.

The current available version of the *MC9S08LL64 Series Data Sheet* is Revision 7.

Table of Contents

1	Addendum for Revision 7	2
2	Revision History	2

© Freescale Semiconductor, Inc., 2012. All rights reserved.

Contents

1	Devic	es in the MC9S08LL64 Series
2	Pin A	ssignments
3	Elect	rical Characteristics
	3.1	Introduction9
	3.2	Parameter Classification9
	3.3	Absolute Maximum Ratings9
	3.4	Thermal Characteristics
	3.5	ESD Protection and Latch-Up Immunity11
	3.6	DC Characteristics
	3.7	Supply Current Characteristics
	3.8	External Oscillator (XOSCVLP) Characteristics25
	3.9	Internal Clock Source (ICS) Characteristics
	3.10	AC Characteristics
		3.10.1 Control Timing

3.10.2 TPM Module Timing
3.10.3 SPI Timing
3.11 Analog Comparator (ACMP) Electricals
3.12 ADC Characteristics
3.13 VREF Specifications
3.14 LCD Specifications
3.15 Flash Specifications
3.16 EMC Performance
3.16.1 Radiated Emissions
Ordering Information
4.1 Device Numbering System
4.2 Package Information
4.3 Mechanical Drawings

Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

4

http://freescale.com/

The following revision history table summarizes changes contained in this document.

Rev	Date	Description of Changes
3	03/2009	Incorporated revisions for customer release.
4	08/2009	Completed all the TBDs; corrected Pin out in the Figure 2, Figure 3 and Table 2; updated V_{OH} , $II_{In}I$, $II_{OZ}I$, R_{PU} , R_{PD} , added $II_{INT}I$ in the Table 8; updated Table 9; updated ERREFSTEN and added LCD in the Table 10; updated f_{ADACK} , E_{TUE} , DNL, INL, E_{ZS} and E_{FS} in the Table 18. updated V Room Temp in the Table 19.
5	1/2010	Added 80-pin LQFP package information for MC9S08LL36.
6	6/2011	Changed the ERREFSTEN to EREFSTEN, updated the VREFOx to 1.15 V Added LCD specification in the Table 10.
7	4/2012	Updated II _{In} I in the Table 8.

Related Documentation

Find the most current versions of all documents at: http://www.freescale.com

Reference Manual —MC9S08LL64RM

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

© Freescale Semiconductor, Inc., 2009-2012. All rights reserved.

1 Devices in the MC9S08LL64 Series

Table 1 summarizes the feature set available in the MC9S08LL64 series of MCUs.

Table 1. MC9S08LL64 Series Features by MCU and Package

Feature	MC9S0	8LL64	MC9S08LL36		
Package	80-pin LQFP	64-pin LQFP	80-pin LQFP	64-pin LQFP	
FLASH	64 (32,768 and 3		36 KB (24,576 and 12,288 Arrays		
RAM	40	00	400	00	
ACMP	ye	es	ye	S	
ADC	10-ch	8-ch	10-ch	8-ch	
IIC	ye	es	yes		
IRQ	ye	es	yes		
KBI	8	3	8		
SCI1	yes		yes		
SCI2	yes		yes		
SPI	yes yes		S		
TPM1	2-0	ch	2-ch		
TPM2	2-0	2-ch		h	
TOD	ye	es	ye	S	
LCD	8×36 4×40	8×24 4×28	8×36 4×40	8×24 4×28	
VREF01	yes	no	yes	no	
VREFO2	no	yes	no	yes	
I/O pins ¹	39	37	39	37	

¹ The 39 I/O pins include two output-only pins and 18 LCD GPIO.

The block diagram in Figure 1 shows the structure of the MC9S08LL64 series MCU.

2 Pin Assignments

This section shows the pin assignments for the This section shows the pin assignments for the MC9S08LL64 series devices.

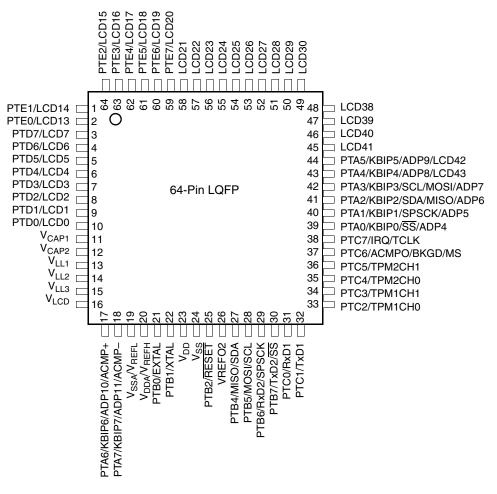


Figure 2. 64-Pin LQFP

			< Low	est Priority >	Highest	
80	64	Port Pin	Alt 1	Alt 2	Alt3	Alt4
44	36	PTC5	TPM2CH1			
45	37	PTC6	ACMPO	BKGD	MS	
46	38	PTC7	IRQ	TCLK		
47	39	PTA0	KBIP0		SS	ADP4
48	40	PTA1	KBIP1		SPSCK	ADP5
49	41	PTA2	KBIP2	SDA	MISO	ADP6
50	42	PTA3	KBIP3	SCL	MOSI	ADP7
51	43	PTA4	KBIP4	ADP8	LCD43	
52	44	PTA5	KBIP5	ADP9	LCD42	
53	45	LCD41				
54	46	LCD40				
55	47	LCD39				
56	48	LCD38				
57		LCD37				
58		LCD36				
59		LCD35				
60		LCD34				
61		LCD33				
62		LCD32				
63		LCD31				
64	49	LCD30				
65	50	LCD29				
66	51	LCD28				
67	52	LCD27				
68	53	LCD26				
69	54	LCD25				
70	55	LCD24				
71	56	LCD23				
72	57	LCD22				
73	58	LCD21				
74	59	PTE7	LCD20			
75	60	PTE6	LCD19			
76	61	PTE5	LCD18			
77	62	PTE4	LCD17			
78	63	PTE3	LCD16			
79	64	PTE2	LCD15			
80	1	PTE1	LCD14			

Table 2. Pin	Availability b	v Package	Pin-Count	(continued)
	Availability S	y i uonuge		(continueu)

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +3.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	-0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	۱ _D	± 25	mA
Storage temperature range	T _{stg}	–55 to 150	°C

Table 4. Absolute Maximum Ratings

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2\,$ All functional non-supply pins, except for PTB2 are internally clamped to V_{SS} and V_{DD}.

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H 40 to 85	°C
Maximum junction temperature	Τ _J	95	°C
Thermal resistance Single-layer board			
80-pin LQFP	θ	55	°C/W
64-pin LQFP	θ_{JA}	73	0/00
Thermal resistance Four-layer board			
80-pin LQFP	θ	42	°C/W
64-pin LQFP	θ_{JA}	54	0/11

The average chip-junction temperature (T_J) in °C can be obtained from:

Model	Description	Symbol	Value	Unit
Latch-up	Minimum input voltage limit		-2.5	V
	Maximum input voltage limit		7.5	V

Table 7. ESD and Latch-Up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	_	V
2	Charge device model (CDM)	V _{CDM}	±500	_	V
3	3 Latch-up current at $T_A = 85^{\circ}C$		±100		mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

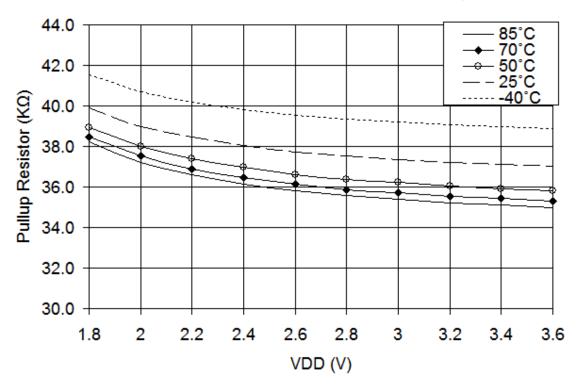
3.6 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Num	С	Characteristic		Symbol	Condition	Min	Typ ¹	Max	Unit	
1		Operating Voltage				1.8		3.6	V	
	С		PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7] ² , low-drive strength		V _{DD} >1.8 V I _{Load} = -0.6 mA	V _{DD} – 0.5		_		
2	Ρ	Output high — voltage	PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7] ² ,	V _{OH}	V _{DD} > 2.7 V I _{Load} = -10 mA	V _{DD} – 0.5	_	_	V	
	С		high-drive strength		V _{DD} > 1.8 V I _{Load} = -3 mA	V _{DD} – 0.5				
	С	Output high	PTA[4:5], PTD[0:7], PTE[0:7], low-drive strength		V_{DD} > 1.8 V I _{Load} = -0.5 mA	V _{DD} – 0.5	_	_		
3	Ρ	Output high voltage		V _{OH}	V _{DD} > 2.7 V I _{Load} = -2.5 mA	V _{DD} – 0.5	_	_	V	
	С		high-drive strength		V _{DD} > 1.8 V I _{Load} = -1 mA	V _{DD} – 0.5				
4	D	Output high current Max total I _{OH} for all ports		I _{OHT}		—		100	mA	
	С		PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7], low-drive strength		V _{DD} >1.8 V I _{Load} = 0.6 mA	—	_	0.5		
5	Ρ	Output low — voltage	PTA[0:3], PTA[6:7], PTB[0:7], PTC[0:7],	V _{OL}	$V_{DD} > 2.7 V$ $I_{Load} = 10 mA$	—	_	0.5	V	
	С		high-drive strength		V _{DD} > 1.8 V I _{Load} = 3 mA		_	0.5		

 Table 8. DC Characteristics

Num	С		Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
	С	O de de la com	PTA[4:5], PTD[0:7], PTE[0:7], low-drive strength		V _{DD} > 1.8 V I _{Load} = 0.5 mA	_	_	0.5	
6	Ρ	Output low voltage	PTA[4:5], PTD[0:7], PTE[0:7],	V _{OL}	V _{DD} > 2.7 V I _{Load} = 3 mA	—	_	0.5	V
	С		high-drive strength		V _{DD} > 1.8 V I _{Load} = 1 mA	_	_	0.5	
7	D	Output low current	Max total I _{OL} for all ports	I _{OLT}		_	_	100	mA
8	Ρ	Input high	all digital inputs	V _{IH}	$V_{DD} > 2.7 V$	$0.70 \times V_{DD}$	—	—	
0	С	voltage		٩H	V _{DD} > 1.8 V	$0.85 \times V_{DD}$	—	—	v
9	Ρ	Input low	all digital inputs	V _{IL}	$V_{DD} > 2.7 V$	—	—	$0.35 \times V_{DD}$	v
5	С	voltage		۴IL	V _{DD} > 1.8 V	—	—	$0.30 \times V_{DD}$	
10	С	Input hysteresis	all digital inputs	V _{hys}		0.06 x V _{DD}	_	_	mV
			all input only pins except for		$V_{In} = V_{DD}$	—	0.025	1	μA
11	Р	Input leakage	LCD only pins (LCD 8-12, 21-41)	_{In}	V _{In} = V _{SS}	_	0.025	1	μA
		current			$V_{In} = V_{DD}$	—	100	150	μA
			LCD only pins (LCD 8-12, 21-41)		$V_{In} = V_{SS}$	_	0.025	1	μA
12	Ρ	Hi-Z (off-state) leakage current	all input/output (per pin)	I _{OZ}	$V_{In} = V_{DD} \text{ or } V_{SS}$	_	0.025	1	μA
13	Ρ	Total leakage current ³	Total leakage current for all pins	ll _{InT} l	$V_{In} = V_{DD} \text{ or } V_{SS}$	_	_	3	μA
14	Ρ	Pullup, Pulldown resistors	all non-LCD pins when enabled	R _{PU,} R _{PD}		17.5	_	52.5	kΩ
15	Ρ	Pullup, Pulldown resistors	LCD/GPIO pins when enabled	R _{PU,} R _{PD}		35	_	77	kΩ
		DC injection	Single pin limit			-0.2		0.2	mA
16	D	current ^{4, 5,} 6	Total MCU limit, includes sum of all stressed pins	I _{IC}	$V_{IN} < V_{SS}, V_{IN} > V_{DD}$	-5	_	5	mA
17	С	Input Capac	itance, all pins	C _{In}		—		8	pF
18	С	RAM retention	on voltage	V _{RAM}		—	0.6	1.0	V
19	С	POR re-arm voltage ⁷		V _{POR}		0.9	1.4	2.0	V
20	D	POR re-arm	time	t _{POR}		10	_	—	μS
21	Ρ	Low-voltage d	letection threshold	V _{LVD}	V _{DD} falling V _{DD} rising		1.84 1.92	1.88 1.96	V


Table 8. DC Characteristics (continued)

Num	С	Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
22	Ρ	Low-voltage warning threshold	V _{LVW}	V _{DD} falling V _{DD} rising	2.08	2.14	2.2	V
23	Р	Low-voltage inhibit reset/recover hysteresis	V _{hys}			80	_	mV
24	Ρ	Bandgap Voltage Reference ⁸	V _{BG}		1.15	1.17	1.18	V

¹ Typical values are measured at 25°C. Characterized, not tested

- ² All I/O pins except for LCD pins in Open Drain mode.
- ³ Total leakage current is the sum value for all GPIO pins. This leakage current is not distributed evenly across all pins but characterization data shows that individual pin leakage current maximums are less than 250 nA.
- 4 All functional non-supply pins, except for PTB2 are internally clamped to V_{SS} and V_{DD}.
- ⁵ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁶ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).
- ⁷ POR will occur below the minimum voltage.
- ⁸ Factory trimmed at V_{DD} = 3.0 V, Temp = 25 °C

PULLUP RESISTOR TYPICALS - Non LCD pins

Figure 4. Non LCD pins I/O Pullup Typical Resistor Values

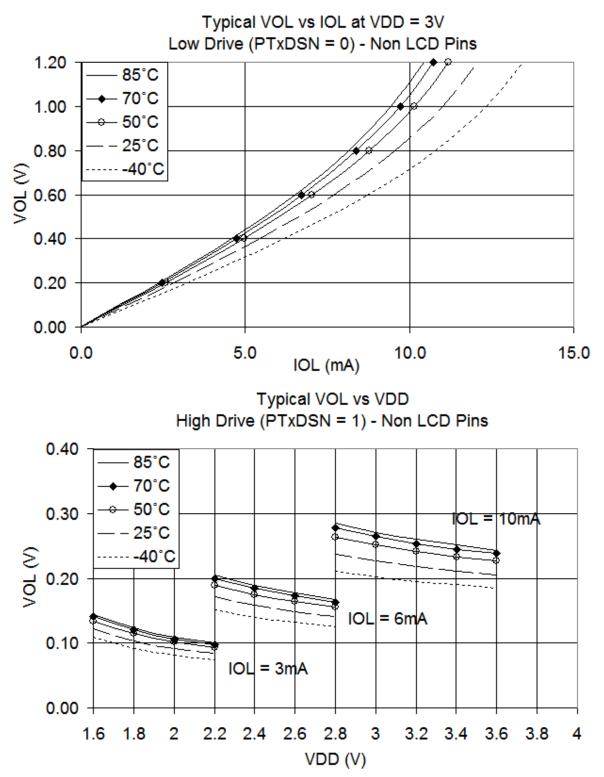


Figure 6. Typical Low-Side Driver (Sink) Characteristics(Non LCD Pins) — High Drive (PTxDSn = 1)

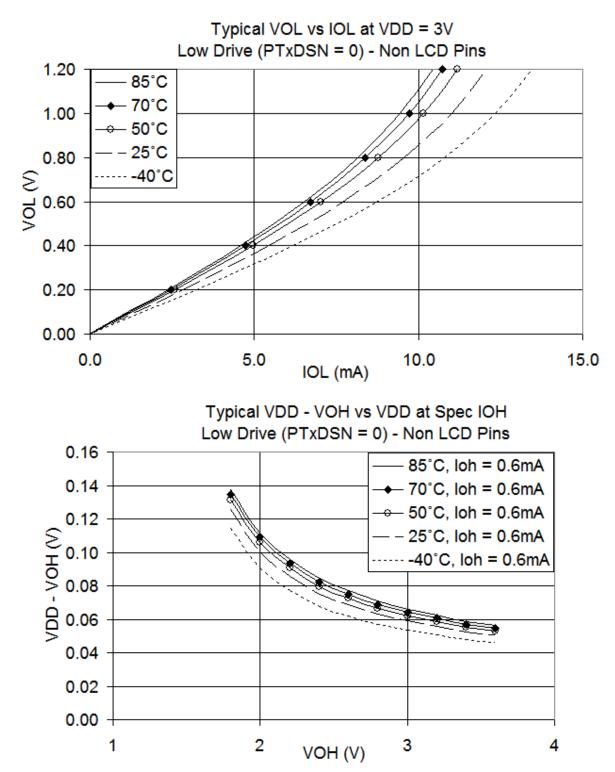


Figure 7. Typical High-Side (Source) Characteristics (Non LCD Pins)— Low Drive (PTxDSn = 0)

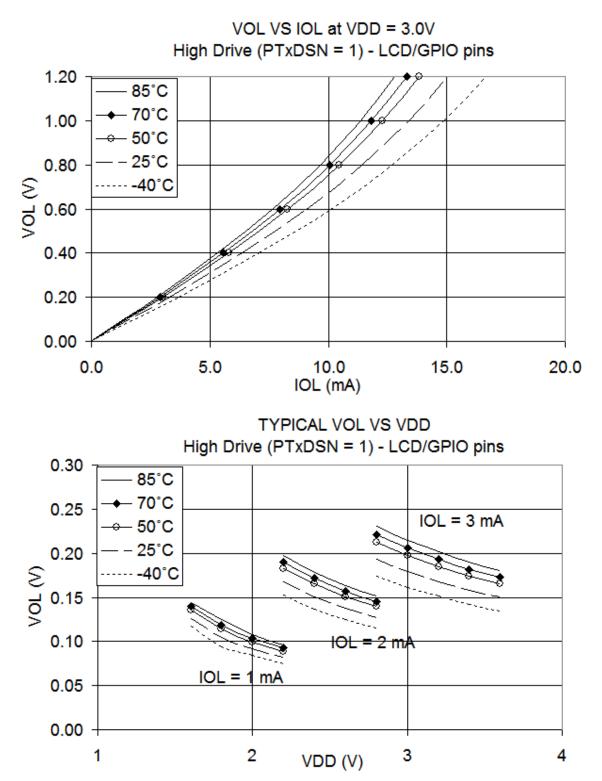


Figure 10. Typical Low-Side Driver (Sink) Characteristics (LCD/GPIO Pins) — High Drive (PTxDSn = 1)

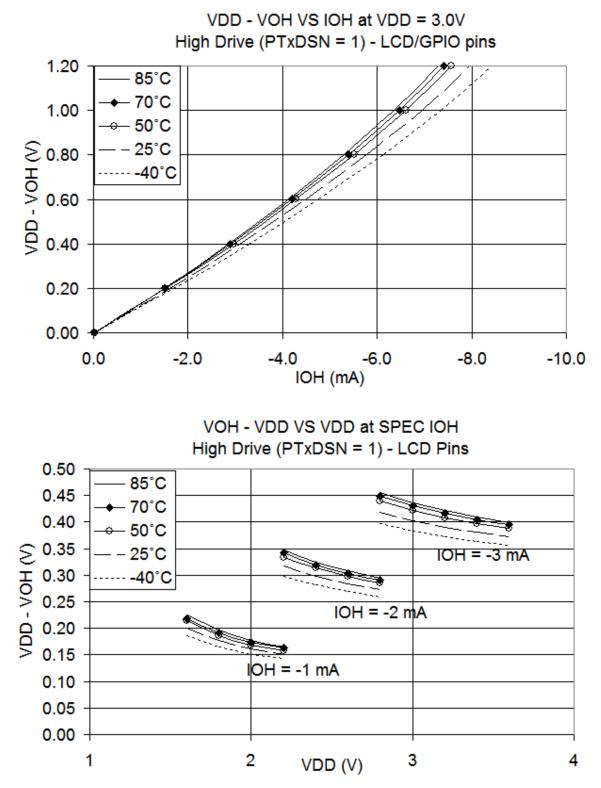


Figure 12. Typical High-Side (Source) Characteristics (LCD/GPIO Pins) — High Drive (PTxDSn = 1)

3.8 External Oscillator (XOSCVLP) Characteristics

Reference Figure 14 and Figure 15 for crystal or resonator circuits.

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit	
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1) High range (RANGE = 1), low power (HGO = 0)	f _{lo} f _{hi} f _{hi}	32 1 1		38.4 16 8	kHz MHz MHz	
2	D	Load capacitors Low range (RANGE=0), low power (HGO=0) Other oscillator settings	C _{1,} C ₂		See Note ² See Note ³			
3	D	Feedback resistor Low range, low power (RANGE=0, HGO=0) ² Low range, high gain (RANGE=0, HGO=1) High range (RANGE=1, HGO=X)	R _F		— 10 1		MΩ	
4	D	Series resistor — Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S		 100 0 0 0 0	 10 20	kΩ	
5	С	Crystal start-up time ⁴ Low range, low power Low range, high gain High range, low power High range, high gain	^t CSTL ^t CSTH		600 400 5 15		ms	
6	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE mode FBE or FBELP mode	f _{extal}	0.03125 0		20 20	MHz MHz	

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

² Load capacitors (C_1, C_2), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.

³ See crystal or resonator manufacturer's recommendation.

⁴ Proper PC board layout procedures must be followed to achieve specifications.

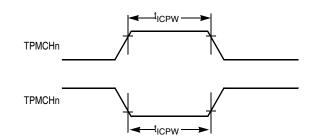


Figure 20. Timer Input Capture Pulse

3.10.3 SPI Timing

Table 15 and Figure 21 through Figure 24 describe the timing requirements for the SPI system.

Table 15. SPI Timing

No.	С	Function	Symbol	Min	Мах	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
1	D	SPSCK period Master Slave	tSPSCK	2 4	2048 —	t _{cyc} t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1		t _{SPSCK} t _{cyc}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK} t _{cyc}
4	D	Clock (SPSCK) high or low time Master Slave	twspsck	$t_{cyc} - 30$ $t_{cyc} - 30$	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	15 15		ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	0 25		ns ns
7	D	Slave access time	t _a	_	1	t _{cyc}
8	D	Slave MISO disable time	t _{dis}	_	1	t _{cyc}
9	D	Data valid (after SPSCK edge) Master Slave	t _v		25 25	ns ns

No.	Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit
2	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA}) ²	ΔV_{SSA}	-100	0	100	mV
3	Reference voltage high	—	V _{REFH}	1.8	V _{DDA}	V _{DDA}	V
4	Reference voltage low	—	V _{REFL}	V_{SSA}	V_{SSA}	V_{SSA}	V
5	Input voltage	—	V _{ADIN}	V _{REFL}	—	V_{REFH}	V
6	Input capacitance	8/10/12-bit modes	C _{ADIN}	—	4	5	pF
7	Input resistance	_	R _{ADIN}	_	5	7	kΩ

Table 17. 12-Bit ADC Operating Conditions (continued)

¹ Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

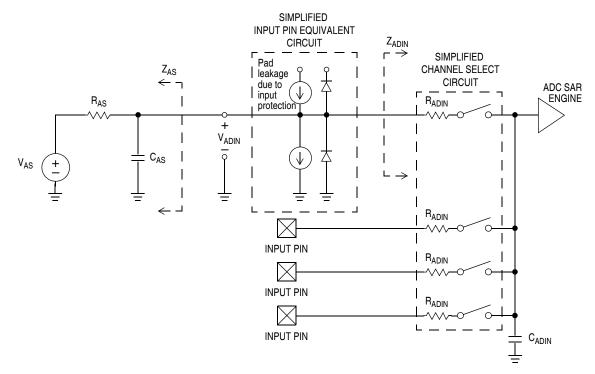


Figure 25. ADC Input Impedance Equivalency Diagram

	Table 18. 12-Bit ADC Characteristics (V _{REFH} = V _{DDA} , V _{REFL} = V _{SSA})									
#	Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment	
1	Supply current	ADLPC = 1 ADHSC = 0 ADLSMP = 0 ADCO = 1	т	I _{DDA}	_	200	_	μA		
2	Supply current	ADLPC = 1 ADHSC = 1 ADLSMP = 0 ADCO = 1	т	I _{DDA}	_	280	_	μA		
3	Supply current	ADLPC = 0 ADHSC = 0 ADLSMP = 0 ADCO = 1	т	I _{DDA}	_	370	_	μA		
4	Supply current	ADLPC = 0 ADHSC = 1 ADLSMP = 0 ADCO = 1	т	I _{DDA}	_	0.61	_	mA		
5	Supply current	Stop, reset, module off		I _{DDA}	_	0.01	0.8	μA		
6	ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{adack}	2	3.3	5	N 41 1-	t _{ADACK} =	
6		Low power (ADLPC = 1)			1.25	2	3.3	MHz	1/f _{ADACK}	
		Single/first continuous ADLSMP = 0								
7	Sample time	ADHSC = 0 ADLSMP = 0 ADLSTS = XX	С	ts	_	6	_	ADCK		
		ADHSC = 1 ADLSMP = 0 ADLSTS = XX	С	ts		10	_			
		Subsequent continuous ADLSMP = 0								
8	Sample time	ADHSC = 0 ADLSMP = 0 ADLSTS = XX	С	ts	_	4	_	ADCK		
		ADHSC = 1 ADLSMP = 0 ADLSTS = XX	С	ts	_	8	_			

#	Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
12	Integral non-linearity	12-bit mode	Т	INL	_	-1.5 to 2.25	±2.75	LSB ²	
		10-bit mode	Т		_	±0.5	±1.0		
		8-bit mode	Т			±0.3	±0.5		
13	Zero-scale error	12-bit mode	Т	E _{ZS}	Ι	±1	-1.25 to 1	LSB ²	V _{ADIN} = V _{SSA}
		10-bit mode	Т			±0.5	±1		
		8-bit mode	Т		—	±0.5	±0.5		
14	Full-scale error	12-bit mode	Т		_	±1.0	–3.5 to 2.25	LSB ²	V _{ADIN} = V _{DDA}
		10-bit mode	Т	E _{FS}	_	±0.5	±1		
		8-bit mode	Т		_	±0.5	±0.5		
15	Quantization error	12-bit mode	D	EQ	_	-1 to 0	—	LSB ²	
		10-bit mode					±0.5		
		8-bit mode					±0.5		
16	Input leakage error	12-bit mode	D	E _{IL}	_	±2	—	LSB ²	Pad leakage ⁴ * R _{AS}
		10-bit mode				±0.2	±4		
		8-bit mode			_	±0.1	±1.2		
17	Temp sensor slope	–40 °C− 25 °C	D	m		1.646	—	mV/°C	
		25 °C– 125 °C			_	1.769	—		
18	Temp sensor voltage	25°C	D	V _{TEMP25}	_	701.2	_	mV	

Table 18. 12-Bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

¹ Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^{N}$

³ Monotonicity and No-Missing-Codes guaranteed in 10-bit and 8-bit modes.

⁴ Based on input pad leakage current. Refer to pad electricals.

Mechanical Drawings

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

MC9S08LL64 Rev. 7, 4/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2009-2012. All rights reserved.

