

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I²C, SCI, SPI
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	39
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08ll64clk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.© Freescale Semiconductor, Inc. 2012. All rights reserved.

MC9S08LL64AD Rev. 1 08/2012

			< Low	est Priority>	Highest	
80	64	Port Pin	Alt 1	Alt 2	Alt3	Alt4
7	3	PTD7	LCD7			
8	4	PTD6	LCD6			
9	5	PTD5	LCD5			
10	6	PTD4	LCD4			
11	7	PTD3	LCD3			
12	8	PTD2	LCD2			
13	9	PTD1	LCD1			
14	10	PTD0	LCD0			
15	11	V _{CAP1}				
16	12	V _{CAP2}				
17	13	V _{LL1}				
18	14	V _{LL2}				
19	15	V _{LL3}				
20	16	V _{LCD}				
21	17	PTA6	KBIP6	ADP10	ACMP+	
22	18	PTA7	KBIP7	ADP11	ACMP-	
23	19	V _{SSA}				
24	19	V _{REFL}				
25		ADP0				
26		ADP12				
27		VREF01				
28	00	V _{REFH}				
29	20	V _{DDA}				
30	21	PTB0		EXTAL		
31	22	PTB1		XTAL		
32	23	V _{DD}				
33	24	V _{SS}				
34	25	PTB2	RESET			
	26	VREFO2				
35	27	PTB4	MISO	SDA		
36	28	PTB5	MOSI	SCL		
37	29	PTB6	RxD2	SPSCK		
38	30	PTB7	TxD2	SS		
39	31	PTC0	RxD1			
40	32	PTC1	TxD1			
41	33	PTC2	TPM1CH0			
42	34	PTC3	TPM1CH1			
43	35	PTC4	TPM2CH0			

Table 2. Pin Availability by Package Pin-Count (continued)

ESD Protection and Latch-Up Immunity

1

$$\mathbf{T}_{\mathbf{J}} = \mathbf{T}_{\mathbf{A}} + (\mathbf{P}_{\mathbf{D}} \times \boldsymbol{\theta}_{\mathbf{J}\mathbf{A}})$$
 Eqn.

where:

 $T_{A} = \text{Ambient temperature, °C}$ $\theta_{JA} = \text{Package thermal resistance, junction-to-ambient, °C/W}$ $P_{D} = P_{int} + P_{I/O}$ $P_{int} = I_{DD} \times V_{DD}, \text{Watts } - \text{chip internal power}$ $P_{I/O} = \text{Power dissipation on input and output pins} - \text{user determined}$

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2 \qquad \qquad Eqn. 3$$

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be taken to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

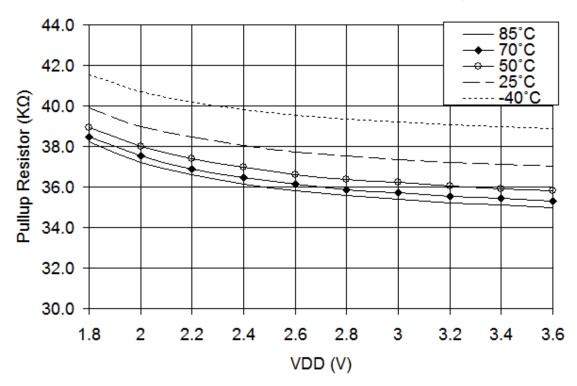
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During the device qualification, ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless instructed otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human body model	Storage capacitance	С	100	pF
,	Number of pulses per pin	—	3	
Charge	Series resistance	R1	0	Ω
device	Storage capacitance	С	200	pF
model	Number of pulses per pin		3	

Table 6. ESD and Latch-up Test Conditions

Num	С		Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
	С	O de de la com	PTA[4:5], PTD[0:7], PTE[0:7], low-drive strength		V _{DD} > 1.8 V I _{Load} = 0.5 mA	_	_	0.5	
6	Ρ	Output low voltage	PTA[4:5], PTD[0:7], PTE[0:7],	V _{OL}	V _{DD} > 2.7 V I _{Load} = 3 mA	—	_	0.5	V
	С	high-drive strength			V _{DD} > 1.8 V I _{Load} = 1 mA	_	_	0.5	
7	D	Output low current	Max total I _{OL} for all ports	I _{OLT}		_	_	100	mA
8	Ρ	Input high	all digital inputs	V _{IH}	$V_{DD} > 2.7 V$	$0.70 \times V_{DD}$	—	—	
0	С	voltage		٩H	V _{DD} > 1.8 V	$0.85 \times V_{DD}$	—	—	v
9	Ρ	Input low	all digital inputs	V _{IL}	$V_{DD} > 2.7 V$	—	—	$0.35 \times V_{DD}$	v
5	С	voltage		۴IL	V _{DD} > 1.8 V	—	—	$0.30 \times V_{DD}$	
10	С	Input hysteresis	all digital inputs	V _{hys}		0.06 x V _{DD}	_	_	mV
			all input only pins except for		$V_{In} = V_{DD}$	—	0.025	1	μA
11	Р	Input leakage	LCD only pins (LCD 8-12, 21-41)	ll _{in} i	V _{In} = V _{SS}	_	0.025	1	μA
		current			$V_{In} = V_{DD}$	—	100	150	μA
			LCD only pins (LCD 8-12, 21-41)		$V_{In} = V_{SS}$	_	0.025	1	μA
12	Ρ	Hi-Z (off-state) leakage current	all input/output (per pin)	I _{OZ}	$V_{In} = V_{DD} \text{ or } V_{SS}$	_	0.025	1	μA
13	Ρ	Total leakage current ³	Total leakage current for all pins	ll _{InT} l	$V_{In} = V_{DD} \text{ or } V_{SS}$	_	_	3	μA
14	Ρ	Pullup, Pulldown resistors	all non-LCD pins when enabled	R _{PU,} R _{PD}		17.5	_	52.5	kΩ
15	Ρ	Pullup, Pulldown resistors	LCD/GPIO pins when enabled	R _{PU,} R _{PD}		35	_	77	kΩ
		DC injection	Single pin limit			-0.2		0.2	mA
16	D	current ^{4, 5,} 6	Total MCU limit, includes sum of all stressed pins	I _{IC}	$V_{IN} < V_{SS}, V_{IN} > V_{DD}$	-5	_	5	mA
17	С	Input Capac	itance, all pins	C _{In}		—		8	pF
18	С	RAM retention	on voltage	V _{RAM}		—	0.6	1.0	V
19	С	POR re-arm	voltage ⁷	V _{POR}		0.9	1.4	2.0	V
20	D	POR re-arm	time	t _{POR}		10	_	—	μS
21	Ρ	Low-voltage d	letection threshold	V _{LVD}	V _{DD} falling V _{DD} rising		1.84 1.92	1.88 1.96	V


Table 8. DC Characteristics (continued)

Num	С	Characteristic	Symbol	Condition	Min	Typ ¹	Max	Unit
22	Ρ	Low-voltage warning threshold	V _{LVW}	V _{DD} falling V _{DD} rising	2.08	2.14	2.2	V
23	Р	Low-voltage inhibit reset/recover hysteresis	V _{hys}			80	_	mV
24	Ρ	Bandgap Voltage Reference ⁸	V _{BG}		1.15	1.17	1.18	V

¹ Typical values are measured at 25°C. Characterized, not tested

- ² All I/O pins except for LCD pins in Open Drain mode.
- ³ Total leakage current is the sum value for all GPIO pins. This leakage current is not distributed evenly across all pins but characterization data shows that individual pin leakage current maximums are less than 250 nA.
- 4 All functional non-supply pins, except for PTB2 are internally clamped to V_{SS} and V_{DD}.
- ⁵ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁶ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If the positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).
- ⁷ POR will occur below the minimum voltage.
- ⁸ Factory trimmed at V_{DD} = 3.0 V, Temp = 25 °C

PULLUP RESISTOR TYPICALS - Non LCD pins

Figure 4. Non LCD pins I/O Pullup Typical Resistor Values

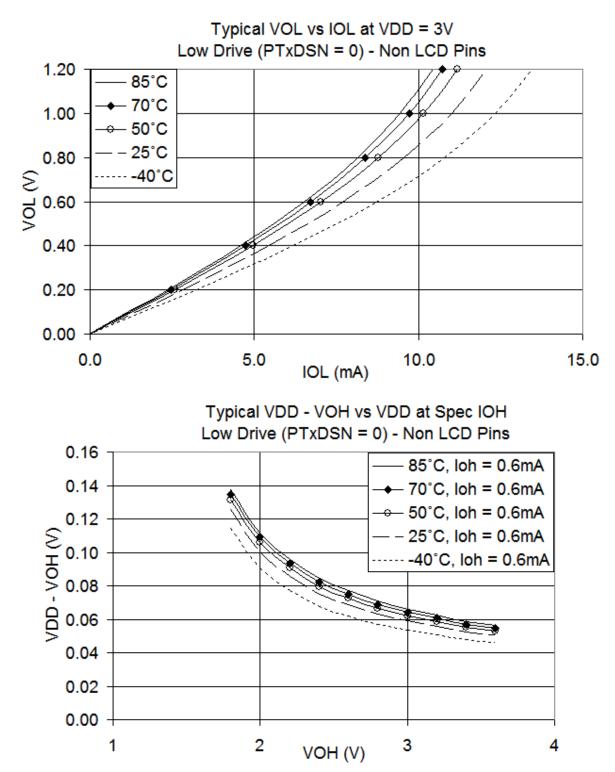


Figure 7. Typical High-Side (Source) Characteristics (Non LCD Pins)— Low Drive (PTxDSn = 0)

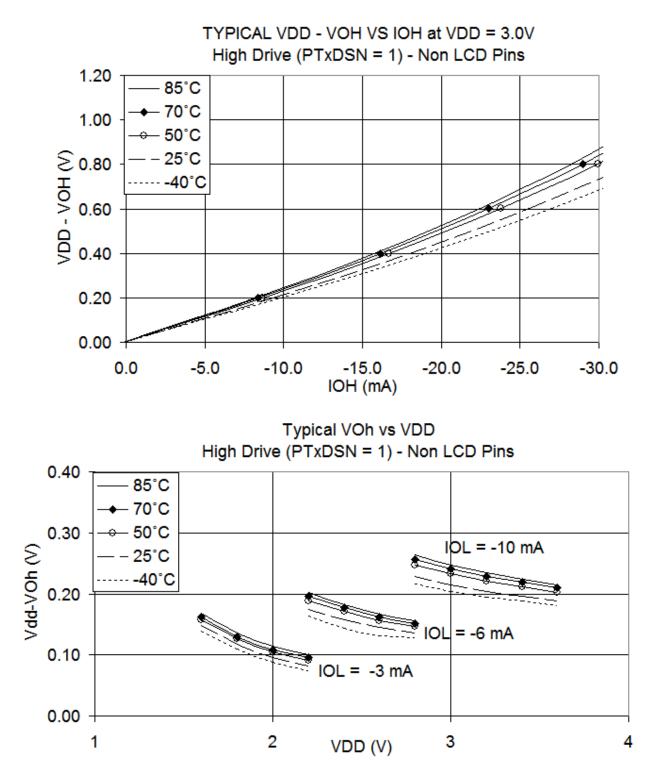


Figure 8. Typical High-Side (Source) Characteristics(Non LCD Pins) — High Drive (PTxDSn = 1)

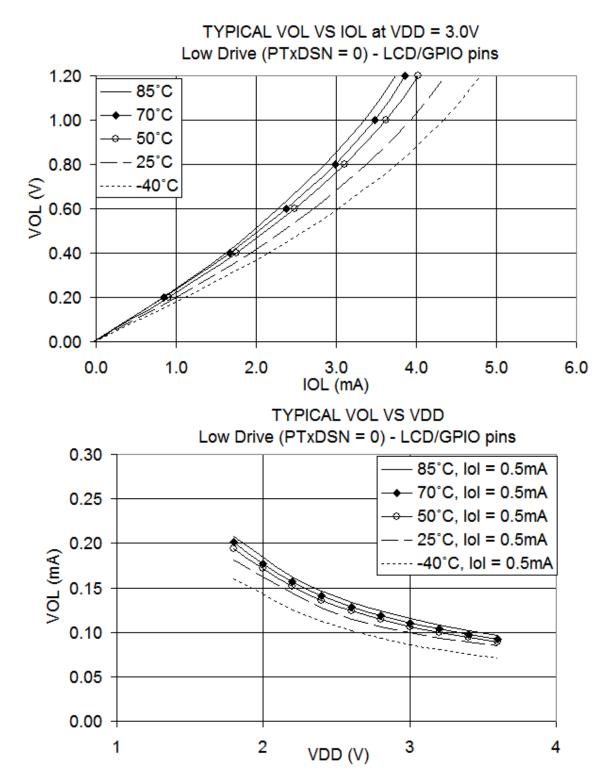


Figure 9. Typical Low-Side Driver (Sink) Characteristics (LCD/GPIO Pins)— Low Drive (PTxDSn = 0)

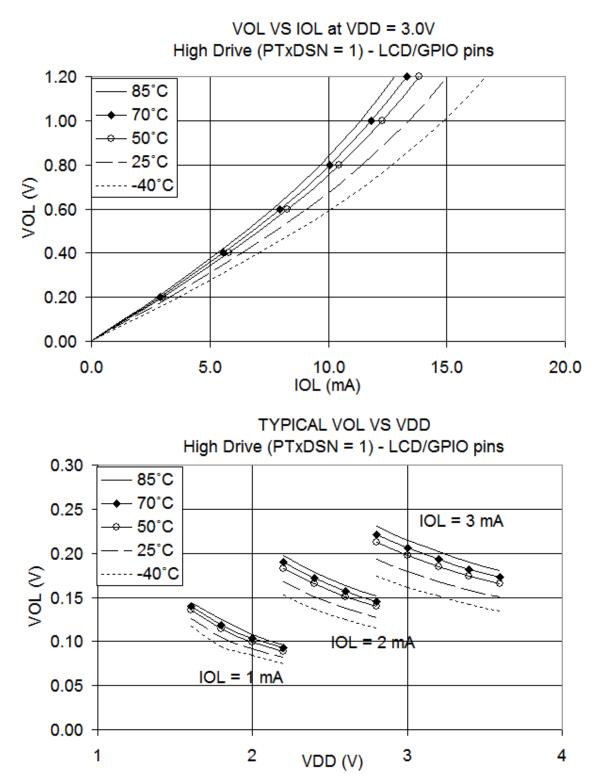


Figure 10. Typical Low-Side Driver (Sink) Characteristics (LCD/GPIO Pins) — High Drive (PTxDSn = 1)

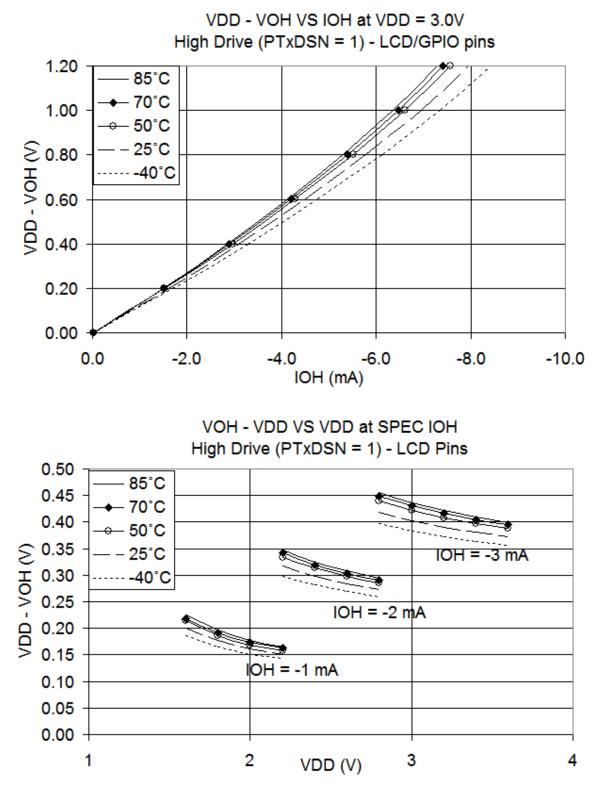


Figure 12. Typical High-Side (Source) Characteristics (LCD/GPIO Pins) — High Drive (PTxDSn = 1)

3.7 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

Num	с	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typ ¹	Мах	Unit	Temp (°C)
	Т			20 MHz		13.75	17.9		
1	Т	Run supply current FEI mode, all modules on	RI_{DD}	10 MHz	3	7		mA	-40 to 85
	Т			1 MHz		2	_		
	Т	Run supply current		20 MHz		8.9			
2	Т	FEI mode, all modules off	RI_DD	10 MHz	3	5.5	_	mA	-40 to 85
-	Т			1 MHz		0.9	_		
3	Т	Run supply current	RI _{DD}	16 kHz FBILP	- 3	185	_	μA	40 to 85
3	Т	LPS=0, all modules on	DD	16 kHz FBELP	5	115	_	μΑ	40 10 85
	_	Run supply current LPS=1, all modules off, running from Flash							0 to 70
4	Т		DI	16 kHz	3	25		μA	-40 to 85
4	т	Run supply current	– RI _{DD}	FBELP	3	= 0	_	μΑ	0 to 70
	Т	LPS=1, all modules off, running from RAM				7.3			-40 to 85
	Т	Wait mode supply current FEI mode, all modules off	WI _{DD}	20 MHz		4.57	6		
5	Т			8 MHz 3	2	_	mA	-40 to 85	
	Т	· _· ·····		1 MHz		0.73	_		
	Ρ					0.4	1.3		-40 to 25
	С				3	4	6		70
6	Ρ	Stop2 mode supply current	S2I _{DD}	n/a		8.5	13	μA	85
U	С		OZ'DD	17a		0.35	1	μ	-40 to 25
	С				2	3.9	5		70
	С					7.7	10		85
	Р					0.65	1.8		-40 to 25
	С				3	5.7	8		70
7	Р	Stop3 mode supply current No clocks active	S3I _{DD}	n/a		12.2	20	μA	85
/	С		DD			0.6	1.5	P., (-40 to 25
	С				2	5	6.8		70
	С					11.5	14		85

Table 9. Supply Current Characteristics

¹ Typical values are measured at 25 °C. Characterized, not tested

3.8 External Oscillator (XOSCVLP) Characteristics

Reference Figure 14 and Figure 15 for crystal or resonator circuits.

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1) High range (RANGE = 1), low power (HGO = 0)	f _{lo} f _{hi} f _{hi}	32 1 1		38.4 16 8	kHz MHz MHz
2	D	Load capacitors Low range (RANGE=0), low power (HGO=0) Other oscillator settings	C _{1,} C ₂		See No See No		
3	D	Feedback resistor Low range, low power (RANGE=0, HGO=0) ² Low range, high gain (RANGE=0, HGO=1) High range (RANGE=1, HGO=X)	R _F		— 10 1		MΩ
4	D	Series resistor — Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S		 100 0 0 0 0	 10 20	kΩ
5	С	Crystal start-up time ⁴ Low range, low power Low range, high gain High range, low power High range, high gain	^t CSTL ^t CSTH		600 400 5 15		ms
6	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE mode FBE or FBELP mode	f _{extal}	0.03125 0		20 20	MHz MHz

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

² Load capacitors (C_1, C_2), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.

³ See crystal or resonator manufacturer's recommendation.

⁴ Proper PC board layout procedures must be followed to achieve specifications.

Internal Clock Source (ICS) Characteristics

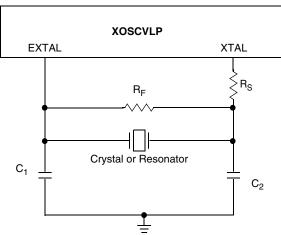
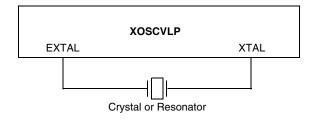



Figure 14. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain

Figure 15. Typical Crystal or Resonator Circuit: Low Range/Low Power

3.9 Internal Clock Source (ICS) Characteristics

Num	С	Chara	Symbol	Min	Typ ¹	Max	Unit	
1	С	Average internal reference f	requency — untrimmed	f _{int_ut}	25	32.7	41.66	kHz
2	Ρ	Average internal reference f	requency — user-trimmed	f _{int_t}	31.25	_	39.06	kHz
3	Ρ	Average internal reference f	requency — factory-trimmed	f _{int_t}	_	32.7	—	kHz
4	Т	Internal reference start-up ti	Internal reference start-up time		_	60	100	μS
5	Ρ	DCO output frequency	Low range (DFR = 00)	f	12.8	16.8	21.33	MHz
5	С	range — untrimmed	Mid range (DFR = 01)	f _{dco_ut}	25.6	33.6	42.67	
6	Ρ	DCO output frequency	Low range (DFR = 00)	4	16	_	20	MHz
0	Ρ	range — trimmed	Mid range (DFR = 01)	f _{dco_t}	32	_	40	
7	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM)		$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}
8	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature (not using FTRIM)		$\Delta f_{dco_res_t}$	_	± 0.2	±0.4	%f _{dco}

Table 12. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient)

Internal Clock Source (ICS) Characteristics

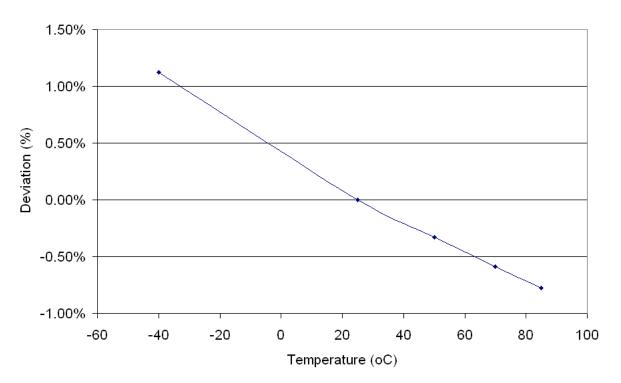

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
9	С	Total deviation of trimmed DCO output frequency over voltage and temperature	Δf_{dco_t}	_	+ 0.5 -1.0	±2	%f _{dco}
10	С	Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0 °C to 70 °C	Δf_{dco_t}	_	± 0.5	±1	%f _{dco}
11	С	FLL acquisition time ²	t _{Acquire}	_	—	1	ms
12	С	Long term jitter of DCO output clock (averaged over 2 ms interval) ³	C _{Jitter}	_	0.02	0.2	%f _{dco}

Table 12. ICS Frequency Specifications (Temperature Range = -40 to 85°C Ambient) (continued)

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

² This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

³ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

Deviation of DCO Output from Trimmed Frequency

Figure 16. Deviation of DCO Output from Trimmed Frequency (20 MHz, 3.0 V)

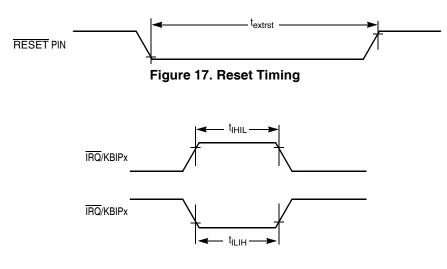


Figure 18. IRQ/KBIPx Timing

3.10.2 TPM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

No.	С	Function	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TCLK}	0	f _{Bus} /4	Hz
2	D	External clock period	t _{TCLK}	4	-	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	-	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5		t _{cyc}

Table 14. TPM Input Timing

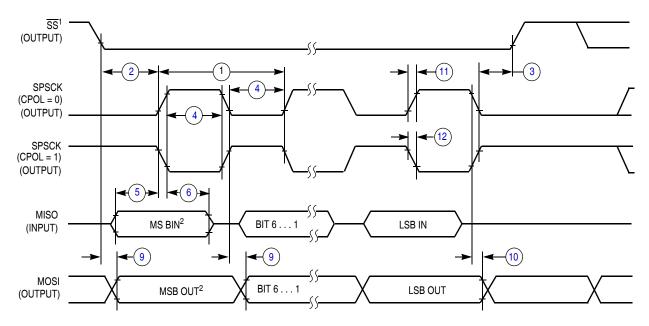
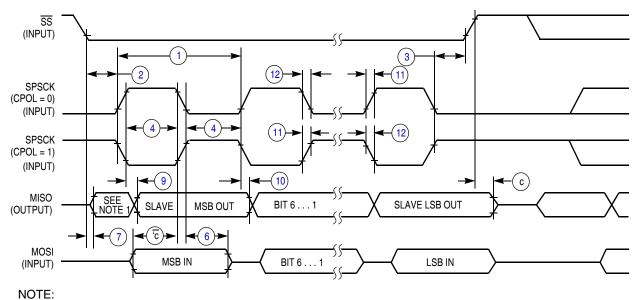


Figure 19. Timer External Clock

No.	С	Function	Symbol	Min	Max	Unit
(10)	D	Data hold time (outputs) Master Slave	t _{HO}	0 0		ns ns
(1)	D	Rise time Input Output	t _{RI} t _{RO}		t _{cyc} – 25 25	ns ns
(12)	D	Fall time Input Output	t _{FI} t _{FO}		t _{cyc} – 25 25	ns ns

Table 15. SPI Timing (continued)

NOTES:


1. SS output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 21. SPI Master Timing (CPHA = 0)

Analog Comparator (ACMP) Electricals

1. Not defined but normally LSB of character just received

3.11 Analog Comparator (ACMP) Electricals

Table 16. Analog Comparator Electrical Specifications

No	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	D	Supply voltage	V _{DD}	1.8	_	3.6	V
2	Ρ	Supply current (active)	I _{DDAC}	—	20	35	μA
3	D	Analog input voltage	V _{AIN}	V _{SS} – 0.3	_	V _{DD}	V
4	Р	Analog input offset voltage	V _{AIO}	_	20	40	mV
5	С	Analog comparator hysteresis	V _H	3.0	9.0	15.0	mV
6	Ρ	Analog input leakage current	I _{ALKG}	—	—	1.0	μA
7	С	Analog comparator initialization delay	t _{AINIT}	—		1.0	μS

3.12 ADC Characteristics

Table 17. 12-Bit ADC Operating Conditions

No. Characteristic		Conditions	Symb	Min	Typ ¹	Max	Unit
1	Supply voltage	Absolute	V _{DDA}	1.8	_	3.6	V
		Delta to V _{DD} (V _{DD} – V _{DDA}) ²	ΔV_{DDA}	-100	0	100	mV

Figure 24. SPI Slave Timing (CPHA = 1)

# Characteristic Conditions C Symb Min Typ ¹ Max Unit Comment B Subsequent Continuous or Single/First ADLSMP = 1 Subsequent ADLSMP = 1 Subseqten						1				
$\begin{array}{ c c c c c c } \label{eq:scalar} & \begin{array}{c} \mbox{Continuous or Supple/First Continuous ADLSMP = 1 \\ \mbox{ADLSMP = 1 \\ ADLSMP = 1 \\ ADLSMP = 1 \\ ADLST = 00 \\ ADLSMP = 1 \\ ADLST = 01 \end{array} & \begin{array}{c} \mbox{C} & \mbox{ts} & $	#	Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Continuous or Single/First Continuous							
$\begin{array}{ c c c c c c c c } & ADLSMP = 1 & C & 1s & - & 16 & - & & & \\ & ADLSMP = 1 & C & 1s & - & 10 & - & & & \\ & ADLSMP = 1 & C & 1s & - & 66 & - & & & \\ & ADLSMP = 1 & C & 1s & - & 66 & - & & & & \\ & ADLSMP = 1 & C & 1s & - & 28 & - & & & \\ & ADLSMP = 1 & C & 1s & - & 28 & - & & & & \\ & ADLSMP = 1 & C & 1s & - & 20 & - & & & & \\ & ADLSMP = 1 & C & 1s & - & 20 & - & & & & \\ & ADLSMP = 1 & C & 1s & - & 14 & - & & & \\ & ADLSMP = 1 & C & 1s & - & 14 & - & & & & \\ & ADLSMP = 1 & C & 1s & - & 10 & - & & & & \\ & ADLSMP = 1 & C & 1s & - & 10 & - & & & & \\ & ADLSMP = 1 & C & 1s & - & 10 & - & & & & \\ & ADLSMP = 1 & C & 1s & - & 10 & - & & & & \\ & ADLSMP = 1 & C & 1s & - & 10 & - & & & & \\ & ADLSMP = 1 & C & 1s & - & 10 & - & & & & \\ & ADLSMP = 1 & C & 1s & - & 10 & - & & & & \\ & ADLSMP = 1 & C & 1s & - & 10 & - & & & & \\ & ADLSMP = 1 & C & 1s & - & 10 & - & & & & \\ & ADLSMP = 1 & C & 1s & - & 10 & - & & & & \\ & ADLSMP = 1 & C & 1s & - & 10 & - & & & & \\ & ADLSMP = 1 & C & 1s & - & 10 & - & & & & \\ & ADLSMP = 1 & C & 1s & - & 10 & - & & & & \\ & ADLSMP = 1 & ADLSMP = 1 & C & 1s & - & & & & & \\ & ADLSMP = 1 & C & 1s & - & & & & & & & & \\ & ADLSMP = 1 & C & 1s & - & & & & & & & & \\ & ADLSMP = 1 & ADLSMP = 1 & C & 1s & - & & & & & & & \\ & ADLSMP = 1 & ADLSMP = 1 & C & 1s & - & & & & & & & & & \\ & ADLSMP = 1 & ADLSMP = 1 & C & 1s & - & & & & & & & & & & & \\ & ADLSMP = 1 & ADLSMP = 1 & C & 1s & - & & & & & & & & & & & & & & & \\ & ADLSMP = 1 & ADLSMP = 1 & C & 1 & & & & & & & & & & & & & & &$			ADLSMP = 1	С	ts	_	24	_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			ADLSMP = 1	С	ts	_	16	_		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			ADLSMP = 1	С	ts	_	10	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	Sample time	ADLSMP = 1	С	ts	_	6	_		
$ \begin{array}{ c c c c c c c c } & & ADLSMP = 1 \\ ADLSTS = 01 & C & ts & - & 20 & - & & & \\ \hline ADLSTS = 01 & C & ts & - & 14 & - & \\ \hline ADLSMP = 1 \\ ADLSTS = 10 & C & ts & - & 14 & - & \\ \hline ADLSTS = 10 & C & ts & - & 10 & - & \\ \hline ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline ADLSTS = 11 & C & T & \\ \hline 12-bit mode & T & - & -2.5 to & 1.0 & \\ \hline 10-bit mode & T & - & 10.5 & 1.0 & \\ \hline - & 10-5 & 1.0 & - & \\ \hline - & 10-5 & 1.0 & - & \\ \hline \\ \hline 10-bit mode^3 & T & DNL & - & 1.5 to & \\ \hline - & 10.5 & 1.0 & \\ \hline \end{array} $			ADLSMP = 1	С	ts	_	28	_		
$\begin{array}{ c c c c c c } & ADLSMP = 1 \\ ADLSTS = 10 & C & ts & - & 14 & - & \\ \hline ADLSTS = 10 & C & ts & - & 10 & - & \\ \hline ADHSC = 1 \\ ADLSMP = 1 \\ ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline ADLSTS = 11 & C & T & \\ \hline ADLSTS = 11 & T & & \\ \hline 12-bit mode & T & & \\ \hline 12-bit mode, & T & & \\ \hline 12-bit mode, & T & & \\ \hline 12-bit mode, & T & & \\ \hline 12-bit mode & T & & \\ \hline 12-bit mode & T & & \\ \hline 10-bit mode & T & & \\ \hline 10-bit mode & T & & \\ \hline 10-bit mode & T & & \\ \hline 12-bit mode & T & & \\ \hline 10-bit mode & T & & \\ \hline 10-bit mode & T & & \\ \hline 12-bit mode & & \\ \hline 12$			ADLSMP = 1	С	ts	_	20	_		
$\begin{array}{ c c c c c c }\hline & ADLSMP = 1 \\ ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline & ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline & ADLSTS = 11 & C & ts & - & 10 & - & \\ \hline & ADLSTS = 11 & T & \\ \hline & & ADLSTS = 11 & T & \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$			ADLSMP = 1	С	ts	_	14	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			ADLSMP = 1	с	ts		10			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Т				±4		
$10-bit mode \qquad T \qquad \qquad \qquad \pm 1 \qquad \pm 2.5 \\ \hline 8-bit mode \qquad T \qquad \qquad \qquad \pm 0.5 \qquad \pm 1.0 \\ \hline 12-bit mode \qquad T \qquad \qquad \qquad \pm 0.5 \qquad \pm 1.0 \\ \hline 12-bit mode \qquad T \qquad \qquad \qquad \pm 0.5 \qquad \pm 1.0 \\ \hline 10-bit mode^3 \qquad T \qquad DNL \qquad \qquad \pm 0.5 \qquad \pm 1.0 \\ \hline \qquad \pm 0.5 \qquad \pm 1.0 \\ \hline \qquad \qquad \pm 0.5 \qquad \pm 1.0 \\ \hline \qquad \qquad \qquad \\ \hline \qquad \qquad$	10	unadjusted		т	E _{TUE}		±3.25		LSB ²	
11 Differential non-linearity 12 -bit mode T DNL $ 1.5 to 2.5 LSB^2 LSB^2$			10-bit mode	Т			±1	±2.5		
11 Differential non-linearity $10-bit \mod e^3$ T DNL $- \pm 0.5 \pm 1.0$ LSB ²			8-bit mode	Т		_	±0.5	±1.0		
non-linearity 10-bit mode ³ T DNL — ± 0.5 ± 1.0 LSB ²	11		12-bit mode	Т	DNL	_			LSB ²	
8-bit mode ³ T — ±0.3 ±0.5			10-bit mode ³	Т		_	±0.5	±1.0		
			8-bit mode ³	Т		_	±0.3	±0.5		

Table 18. 12-Bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

#	Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
12	Integral non-linearity	12-bit mode	Т	INL	_	-1.5 to 2.25	±2.75	LSB ²	
		10-bit mode	Т		_	±0.5	±1.0		
		8-bit mode	Т			±0.3	±0.5		
	Zero-scale	12-bit mode	Т		Ι	±1	-1.25 to 1		V _{ADIN} = V _{SSA}
13	error	10-bit mode	Т	E _{ZS}		±0.5	±1	LSB ²	
		8-bit mode	Т	1	—	±0.5	±0.5		
	Full-scale error	12-bit mode	Т			±1.0	–3.5 to 2.25	LSB ²	V _{ADIN} = V _{DDA}
14		10-bit mode	Т	E _{FS}	_	±0.5	±1		
		8-bit mode	Т		_	±0.5	±0.5		
	Quantization error	12-bit mode	D	EQ	_	-1 to 0	—	LSB ²	
15		10-bit mode					±0.5		
		8-bit mode					±0.5		
		12-bit mode		E _{IL}	_	±2	—		Pad leakage ⁴ * R _{AS}
16	Input leakage error	10-bit mode	D			±0.2	±4	LSB ²	
		8-bit mode				±0.1	±1.2		
17	Temp sensor slope	–40 °C− 25 °C	D		_	1.646	_	mV/°C	
17		25 °C– 125 °C		m	_	1.769	—		
18	Temp sensor voltage	25°C	D	V _{TEMP25}	_	701.2	_	mV	

Table 18. 12-Bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

¹ Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^{N}$

³ Monotonicity and No-Missing-Codes guaranteed in 10-bit and 8-bit modes.

⁴ Based on input pad leakage current. Refer to pad electricals.

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

MC9S08LL64 Rev. 7, 4/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2009-2012. All rights reserved.

