Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. #### **Applications of Embedded - CPLDs** | Details | | |---------------------------------|--| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 10 ns | | Voltage Supply - Internal | 4.75V ~ 5.25V | | Number of Logic Elements/Blocks | 20 | | Number of Macrocells | 320 | | Number of Gates | 6000 | | Number of I/O | 60 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 84-LCC (J-Lead) | | Supplier Device Package | 84-PLCC (29.31x29.31) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm9320alc84-10 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # General Description The MAX 9000 family of in-system-programmable, high-density, high-performance EPLDs is based on Altera's third-generation MAX architecture. Fabricated on an advanced CMOS technology, the EEPROM-based MAX 9000 family provides 6,000 to 12,000 usable gates, pin-to-pin delays as fast as 10 ns, and counter speeds of up to 144 MHz. The -10 speed grade of the MAX 9000 family is compliant with the *PCI Local Bus Specification, Revision 2.2.* Table 3 shows the speed grades available for MAX 9000 devices. | Table 3. MAX 9000 Speed Grade Availability | | | | | | |--|-------------|-----|-----|--|--| | Device | Speed Grade | | | | | | | -10 | -15 | -20 | | | | EPM9320 | | ✓ | ✓ | | | | EPM9320A | ✓ | | | | | | EPM9400 | | ✓ | ✓ | | | | EPM9480 | | ✓ | ✓ | | | | EPM9560 | | ✓ | ✓ | | | | EPM9560A | ✓ | | | | | Table 4 shows the performance of MAX 9000 devices for typical functions. | Table 4. MAX 9000 Performance Note (1) | | | | | | | | |--|-----------------|------------|-------------|---------|-----|--|--| | Application | Macrocells Used | | Speed Grade | | | | | | | | -10 | -15 | -20 | | | | | 16-bit loadable counter | 16 | 144 | 118 | 100 | MHz | | | | 16-bit up/down counter | 16 | 144 | 118 | 100 | MHz | | | | 16-bit prescaled counter | 16 | 144 | 118 | 100 | MHz | | | | 16-bit address decode | 1 | 5.6 (10) | 7.9 (15) | 10 (20) | ns | | | | 16-to-1 multiplexer | 1 | 7.7 (12.1) | 10.9 (18) | 16 (26) | ns | | | #### Note: (1) Internal logic array block (LAB) performance is shown. Numbers in parentheses show external delays from row input pin to row I/O pin. The MAX 9000 architecture supports high-density integration of system-level logic functions. It easily integrates multiple programmable logic devices ranging from PALs, GALs, and 22V10s to field-programmable gate array (FPGA) devices and EPLDs. Figure 1. MAX 9000 Device Block Diagram #### Logic Array Blocks The MAX 9000 architecture is based on linking high-performance, flexible logic array modules called logic array blocks (LABs). LABs consist of 16-macrocell arrays that are fed by the LAB local array, as shown in Figure 2 on page 7. Multiple LABs are linked together via the FastTrack Interconnect, a series of fast, continuous channels that run the entire length and width of the device. The I/O pins are supported by I/O cells (IOCs) located at the end of each row (horizontal) and column (vertical) path of the FastTrack Interconnect. Each LAB is fed by 33 inputs from the row interconnect and 16 feedback signals from the macrocells within the LAB. All of these signals are available within the LAB in their true and inverted form. In addition, 16 shared expander product terms ("expanders") are available in their inverted form, for a total of 114 signals that feed each product term in the LAB. Each LAB is also fed by two low-skew global clocks and one global clear that can be used for register control signals in all 16 macrocells. #### Parallel Expanders Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB. Figure 5 shows how parallel expanders can feed the neighboring macrocell. Figure 5. MAX 9000 Parallel Expanders Unused product terms in a macrocell can be allocated to a neighboring macrocell. The MAX+PLUS II Compiler automatically allocates as many as three sets of up to five parallel expanders to macrocells that require additional product terms. Each set of expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$. Two groups of eight macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. #### FastTrack Interconnect In the MAX 9000 architecture, connections between macrocells and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal and vertical routing channels that traverse the entire device. This device-wide routing structure provides predictable performance even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance. Figure 6 shows the interconnection of four adjacent LABs with row and column interconnects. Each row of LABs has a dedicated row interconnect that routes signals both into and out of the LABs in the row. The row interconnect can then drive I/O pins or feed other LABs in the device. Each row interconnect has a total of 96 channels. Figure 7 shows how a macrocell drives the row and column interconnect. 48 Column Channels 96 Row Channels Each macrocell drives one row channel. LAB Dual-output -Macrocell 1 macrocell feeds both FastTrack Interconnect and LAB local array. Macrocell 2 To LAB Each macrocell drives one Local Array of three column channels. Additional multiplexer provides column-to-row path if macrocell drives row channel. Figure 7. MAX 9000 LAB Connections to Row & Column Interconnect Each macrocell in the LAB can drive one of three separate column interconnect channels. The column channels run vertically across the entire device, and are shared by the macrocells in the same column. The MAX+PLUS II Compiler optimizes connections to a column channel automatically. A row interconnect channel can be fed by the output of the macrocell through a 4-to-1 multiplexer that the macrocell shares with three column channels. If the multiplexer is used for a macrocell-to-row connection, the three column signals can access another row channel via an additional 3-to-1 multiplexer. Within any LAB, the multiplexers provide all 48 column channels with access to 32 row channels. #### Row-to-I/O Cell Connections Figure 8 illustrates the connections between row interconnect channels and IOCs. An input signal from an IOC can drive two separate row channels. When an IOC is used as an output, the signal is driven by a 10-to-1 multiplexer that selects the row channels. Each end of the row channel feeds up to eight IOCs on the periphery of the device. Figure 8. MAX 9000 Row-to-IOC Connections #### Column-to-I/O Cell Connections Each end of a column channel has up to 10 IOCs (see Figure 9). An input signal from an IOC can drive two separate column channels. When an IOC is used as an output, the signal is driven by a 17-to-1 multiplexer that selects the column channels. #### **Programming Sequence** During in-system programming, instructions, addresses, and data are shifted into the MAX 9000 device through the \mathtt{TDI} input pin. Data is shifted out through the \mathtt{TDO} output pin and compared against the expected data. Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6. - Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms. - Check ID. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time. - Bulk Erase. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms. - Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address. - Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address. - Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms. ### **Programming Times** The time required to implement each of the six programming stages can be broken into the following two elements: - A pulse time to erase, program, or read the EEPROM cells. - A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device. The programming times described in Tables 7 through 9 are associated with the worst-case method using the ISP algorithm. | Table 7. MAX 9000 t _{PULSE} & Cycle _{TCK} Values | | | | | | | |--|-------------------------|-----------------------|--------------------------|-----------------------|--|--| | Device | Progra | ımming | Stand-Alone Verification | | | | | | t _{PPULSE} (s) | Cycle _{PTCK} | t _{VPULSE} (s) | Cycle _{VTCK} | | | | EPM9320
EPM9320A | 11.79 | 2,966,000 | 0.15 | 1,806,000 | | | | EPM9400 | 12.00 | 3,365,000 | 0.15 | 2,090,000 | | | | EPM9480 | 12.21 | 3,764,000 | 0.15 | 2,374,000 | | | | EPM9560
EPM9560A | 12.42 | 4,164,000 | 0.15 | 2,658,000 | | | Tables 8 and 9 show the in-system programming and stand alone verification times for several common test clock frequencies. | Table 8. MAX 9000 In-System Programming Times for Different Test Clock Frequencies | | | | | | | | | | |--|--------|------------------|-------|-------|---------|---------|---------|--------|---| | Device | | f _{TCK} | | | | | | Units | | | | 10 MHz | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz | | | EPM9320
EPM9320A | 12.09 | 12.38 | 13.27 | 14.76 | 17.72 | 26.62 | 41.45 | 71.11 | S | | EPM9400 | 12.34 | 12.67 | 13.68 | 15.37 | 18.73 | 28.83 | 45.65 | 79.30 | S | | EPM9480 | 12.59 | 12.96 | 14.09 | 15.98 | 19.74 | 31.03 | 49.85 | 87.49 | S | | EPM9560
EPM9560A | 12.84 | 13.26 | 14.50 | 16.59 | 20.75 | 33.24 | 54.06 | 95.70 | S | | Table 9. MAX 9000 Stand-Alone Verification Times for Different Test Clock Frequencies | | | | | | | | | | |---|--------|------------------|-------|-------|---------|---------|---------|--------|---| | Device | | f _{TCK} | | | | | | Units | | | | 10 MHz | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz | | | EPM9320
EPM9320A | 0.33 | 0.52 | 1.06 | 1.96 | 3.77 | 9.18 | 18.21 | 36.27 | S | | EPM9400 | 0.36 | 0.57 | 1.20 | 2.24 | 4.33 | 10.60 | 21.05 | 41.95 | S | | EPM9480 | 0.39 | 0.63 | 1.34 | 2.53 | 4.90 | 12.02 | 23.89 | 47.63 | S | | EPM9560
EPM9560A | 0.42 | 0.69 | 1.48 | 2.81 | 5.47 | 13.44 | 26.73 | 53.31 | S | # Programming with External Hardware MAX 9000 devices can be programmed on Windows-based PCs with an Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs continuity checking to ensure adequate electrical contact between the adapter and the device. For more information, see the Altera Programming Hardware Data Sheet. The MAX+PLUS II software can use text- or waveform-format test vectors created with the MAX+PLUS II Text Editor or Waveform Editor to test a programmed device. For added design verification, designers can perform functional testing to compare the functional behavior of a MAX 9000 device with the results of simulation. Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices. For more information, see Programming Hardware Manufacturers. ## IEEE Std. 1149.1 (JTAG) Boundary-Scan Support MAX 9000 devices support JTAG BST circuitry as specified by IEEE Std. 1149.1-1990. Table 10 describes the JTAG instructions supported by the MAX 9000 family. The pin-out tables starting on page 38 show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins. | Table 10. MAX 9000 JTAG Instructions | | | | | |--------------------------------------|---|--|--|--| | JTAG Instruction | Description | | | | | SAMPLE/PRELOAD | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins. | | | | | EXTEST | Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. | | | | | BYPASS | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation. | | | | | IDCODE | Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be shifted out of TDO. Supported by the EPM9320A, EPM9400, EPM9480, and EPM9560A devices only. | | | | | UESCODE | Selects the user electronic signature (UESCODE) register and allows the UESCODE to be shifted out of TDO serially. This instruction is supported by MAX 9000A devices only. | | | | | ISP Instructions | These instructions are used when programming MAX 9000 devices via the JTAG ports with the BitBlaster or ByteBlasterMV download cable, or using a Jam File (.jam), Jam Byte-Code File (.jbc), or Serial Vector Format (.svf) File via an embedded processor or test equipment. | | | | The instruction register length for MAX 9000 devices is 10 bits. EPM9320A and EPM9560A devices support a 16-bit UESCODE register. Tables 11 and 12 show the boundary-scan register length and device IDCODE information for MAX 9000 devices. | Table 11. MAX 9000 Boundary-Scan Register Length | | | | | |--|-----|--|--|--| | Device Boundary-Scan Register Length | | | | | | EPM9320, EPM9320A | 504 | | | | | EPM9400 | 552 | | | | | EPM9480 | 600 | | | | | EPM9560, EPM9560A | 648 | | | | | Table 12. 32-Bit MAX 9000 Device IDCODE Note (1) | | | | | | | | |--|---------------------|------------------------------|-----------------------------------|--------------|--|--|--| | Device | | IDCODE (32 Bits) | | | | | | | | Version
(4 Bits) | Part Number
(16 Bits) (2) | Manufacturer's Identity (11 Bits) | 1
(1 Bit) | | | | | EPM9320A (3) | 0000 | 1001 0011 0010 0000 | 00001101110 | 1 | | | | | EPM9400 | 0000 | 1001 0100 0000 0000 | 00001101110 | 1 | | | | | EPM9480 | 0000 | 1001 0100 1000 0000 | 00001101110 | 1 | | | | | EPM9560A (3) | 0000 | 1001 0101 0110 0000 | 00001101110 | 1 | | | | #### Notes: - (1) The IDCODE's least significant bit (LSB) is always 1. - (2) The most significant bit (MSB) is on the left. - (3) Although the EPM9320A and EPM9560A devices support the IDCODE instruction, the EPM9320 and EPM9560 devices do not. Figure 11 shows the timing requirements for the JTAG signals. Figure 11. MAX 9000 JTAG Waveforms Table 13 shows the JTAG timing parameters and values for MAX 9000 devices. | Table 13. JTAG Timing Parameters & Values for MAX 9000 Devices | | | | | | | | |--|--|-----|-----|------|--|--|--| | Symbol | Parameter | Min | Max | Unit | | | | | t _{JCP} | TCK clock period | 100 | | ns | | | | | t _{JCH} | TCK clock high time | 50 | | ns | | | | | t _{JCL} | TCK clock low time | 50 | | ns | | | | | t _{JPSU} | JTAG port setup time | 20 | | ns | | | | | t _{JPH} | JTAG port hold time | 45 | | ns | | | | | t _{JPCO} | JTAG port clock to output | | 25 | ns | | | | | t _{JPZX} | JTAG port high impedance to valid output | | 25 | ns | | | | | t _{JPXZ} | JTAG port valid output to high impedance | | 25 | ns | | | | | t _{JSSU} | Capture register setup time | 20 | | ns | | | | | t _{JSH} | Capture register hold time | 45 | | ns | | | | | t _{JSCO} | Update register clock to output | | 25 | ns | | | | | t _{JSZX} | Update register high impedance to valid output | | 25 | ns | | | | | t _{JSXZ} | Update register valid output to high impedance | | 25 | ns | | | | For detailed information on JTAG operation in MAX 9000 devices, refer to Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices). # Operating Conditions Tables 14 through 20 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 9000 devices. | Table 14. MAX 9000 Device Absolute Maximum Ratings Note (1) | | | | | | | | | |---|---|------------------------------------|------|-----|------|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | V _{CC} | Supply voltage | With respect to ground (2) | -2.0 | 7.0 | V | | | | | VI | DC input voltage | | -2.0 | 7.0 | V | | | | | V _{CCISP} | Supply voltage during in-system programming | | -2.0 | 7.0 | ٧ | | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | | | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | | | | TJ | Junction temperature | Ceramic packages, under bias | | 150 | ° C | | | | | | | PQFP and RQFP packages, under bias | | 135 | ° C | | | | | Table 1 | Table 15. MAX 9000 Device Recommended Operating Conditions | | | | | | | | |--------------------|--|--------------------|----------------|--------------------------|------|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 4.75
(4.50) | 5.25
(5.50) | V | | | | | V _{CCIO} | Supply voltage for output drivers, 5.0-V operation | (3), (4) | 4.75
(4.50) | 5.25
(5.50) | ٧ | | | | | | Supply voltage for output drivers, 3.3-V operation | (3), (4) | 3.00
(3.00) | 3.60
(3.60) | ٧ | | | | | V _{CCISP} | Supply voltage during in-system programming | | 4.75 | 5.25 | V | | | | | V _I | Input voltage | | -0.5 | V _{CCINT} + 0.5 | ٧ | | | | | Vo | Output voltage | | 0 | V _{CCIO} | V | | | | | T _A | Ambient temperature | For commercial use | 0 | 70 | ° C | | | | | | | For industrial use | -40 | 85 | ° C | | | | | T _J | Junction temperature | For commercial use | 0 | 90 | ° C | | | | | | | For industrial use | -40 | 105 | ° C | | | | | t _R | Input rise time | | | 40 | ns | | | | | t _F | Input fall time | | | 40 | ns | | | | | Table 20. MAX 9000A Device Typical I _{CC} Supply Current Values | | | | | | | | | | |--|---|--|----------|----------|------|--|--|--|--| | Symbol | Parameter | Conditions | EPM9320A | EPM9560A | Unit | | | | | | I _{CC1} | I _{CC} supply current (low-power mode, standby, typical) | V _I = ground, no load <i>(11)</i> | 99 | 174 | mA | | | | | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input on I/O pins is −0.5 V and on the four dedicated input pins is −0.3 V. During transitions, the inputs may undershoot to −2.0 V or overshoot to 7.0 V for periods shorter than 20 ns under no-load conditions. - V_{CC} must rise monotonically. - (4) Numbers in parentheses are for industrial-temperature-range devices. - (5) Typical values are for $T_A = 25^{\circ}$ C and $V_{CC} = 5.0$ V. - (6) These values are specified under the MAX 9000 recommended operating conditions, shown in Table 15 on page 27. - (7) During in-system programming, the minimum V_{IH} of the JTAG TCK pin is 3.6 V. The minimum V_{IH} of this pin during JTAG testing remains at 2.0 V. To attain this 3.6-V V_{IH} during programming, the ByteBlaster and ByteBlasterMV download cables must have a 5.0-V V_{CC} . - (8) This parameter is measured with 50% of the outputs each sinking 12 mA. The I_{OH} parameter refers to high-level TTL or CMOS output current; the I_{OL} parameter refers to the low-level TTL or CMOS output current. - (9) JTAG pin input leakage is typically –60 μA. - (10) Capacitance is sample-tested only and is measured at 25° C. - (11) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. I_{CC} is measured at 0° C. Figure 13 shows typical output drive characteristics for MAX 9000 devices with 5.0-V and 3.3-V $V_{\rm CCIO}.\,$ #### Note: (1) Output drive characteristics include the JTAG TDO pin. Tables 21 through 24 show timing for MAX 9000 devices. | Symbol | Parameter Conditions | | Speed Grade | | | | | | | | |------------------|---|------------|-------------|---------|------|---------|------|---------|------|-----| | | | | | -10 | | -15 | | -20 | | 1 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Row I/O pin input to row I/O pin output | C1 = 35 pF | (2) | | 10.0 | | 15.0 | | 20.0 | ns | | t _{PD2} | Column I/O pin input to column I/O pin output | C1 = 35 pF | EPM9320A | | 10.8 | | | | | ns | | | | (2) | EPM9320 | | | | 16.0 | | 23.0 | ns | | | | | EPM9400 | | | | 16.2 | | 23.2 | ns | | | | | EPM9480 | | | | 16.4 | | 23.4 | ns | | | | | EPM9560A | | 11.4 | | | | | ns | | | | | EPM9560 | | | | 16.6 | | 23.6 | ns | | t _{FSU} | Global clock setup time for I/O cell | | | 3.0 | | 5.0 | | 6.0 | | ns | | t _{FH} | Global clock hold time for I/O cell | | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FCO} | Global clock to I/O cell output delay | C1 = 35 pF | | 1.0 (3) | 4.8 | 1.0 (3) | 7.0 | 1.0 (3) | 8.5 | ns | | t _{CNT} | Minimum internal global clock period | (4) | | | 6.9 | | 8.5 | | 10.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (4) | | 144.9 | | 117.6 | | 100.0 | | MHz | | Table 22. MAX 9000 Internal Timing Characteristics Note (1) | | | | | | | | | | |---|---------------------------|------------|-------------|------|-----|------|-----|------|------| | Symbol | Parameter | Conditions | Speed Grade | | | | | | Unit | | | | | -10 | | -15 | | -20 | | 1 | | | | | Min | Max | Min | Max | Min | Max | | | t_{LAD} | Logic array delay | | | 3.5 | | 4.0 | | 4.5 | ns | | t _{LAC} | Logic control array delay | | | 3.5 | | 4.0 | | 4.5 | ns | | t _{IC} | Array clock delay | | | 3.5 | | 4.0 | | 4.5 | ns | | t _{EN} | Register enable time | | | 3.5 | | 4.0 | | 4.5 | ns | | t _{SEXP} | Shared expander delay | | | 3.5 | | 5.0 | | 7.5 | ns | | t _{PEXP} | Parallel expander delay | | | 0.5 | | 1.0 | | 2.0 | ns | | t _{RD} | Register delay | | | 0.5 | | 1.0 | | 1.0 | ns | | t _{COMB} | Combinatorial delay | | | 0.4 | | 1.0 | | 1.0 | ns | | t _{SU} | Register setup time | | 2.4 | | 3.0 | | 4.0 | | ns | | t _H | Register hold time | | 2.0 | | 3.5 | | 4.5 | | ns | | t _{PRE} | Register preset time | | | 3.5 | | 4.0 | | 4.5 | ns | | t _{CLR} | Register clear time | | | 3.7 | | 4.0 | | 4.5 | ns | | t _{FTD} | FastTrack drive delay | | | 0.5 | | 1.0 | | 2.0 | ns | | t_{LPA} | Low-power adder | (5) | | 10.0 | | 15.0 | | 20.0 | ns | | Table 23 | 3. IOC Delays | | | | | | | | | |---------------------|--|------------|-------------|-----|-----|------|-----|------|------| | Symbol | Parameter | Conditions | Speed Grade | | | | | | Unit | | | | | | -10 | | -15 | | 20 | 1 | | | | | Min | Max | Min | Max | Min | Max | | | t _{IODR} | I/O row output data delay | | | 0.2 | | 0.2 | | 1.5 | ns | | t _{IODC} | I/O column output data delay | | | 0.4 | | 0.2 | | 1.5 | ns | | t _{IOC} | I/O control delay | (6) | | 0.5 | | 1.0 | | 2.0 | ns | | t _{IORD} | I/O register clock-to-output delay | | | 0.6 | | 1.0 | | 1.5 | ns | | t _{IOCOMB} | I/O combinatorial delay | | | 0.2 | | 1.0 | | 1.5 | ns | | t _{IOSU} | I/O register setup time before clock | | 2.0 | | 4.0 | | 5.0 | | ns | | t _{IOH} | I/O register hold time after clock | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{IOCLR} | I/O register clear delay | | | 1.5 | | 3.0 | | 3.0 | ns | | t _{IOFD} | I/O register feedback delay | | | 0.0 | | 0.0 | | 0.5 | ns | | t _{INREG} | I/O input pad and buffer to I/O register delay | | | 3.5 | | 4.5 | | 5.5 | ns | | t _{INCOMB} | I/O input pad and buffer to row and column delay | | | 1.5 | | 2.0 | | 2.5 | ns | | t _{OD1} | Output buffer and pad delay,
Slow slew rate = off,
V _{CCIO} = 5.0 V | C1 = 35 pF | | 1.8 | | 2.5 | | 2.5 | ns | | t _{OD2} | Output buffer and pad delay,
Slow slew rate = off,
V _{CCIO} = 3.3 V | C1 = 35 pF | | 2.3 | | 3.5 | | 3.5 | ns | | t _{OD3} | Output buffer and pad delay,
Slow slew rate = on,
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF | | 8.3 | | 10.0 | | 10.5 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 2.5 | | 2.5 | | 2.5 | ns | | t _{ZX1} | Output buffer enable delay,
Slow slew rate = off,
V _{CCIO} = 5.0 V | C1 = 35 pF | | 2.5 | | 2.5 | | 2.5 | ns | | t _{ZX2} | Output buffer enable delay,
Slow slew rate = off,
V _{CCIO} = 3.3 V | C1 = 35 pF | | 3.0 | | 3.5 | | 3.5 | ns | | t_{ZX3} | Output buffer enable delay,
Slow slew rate = on,
V _{CCIO} = 3.3 V or 5.0 V | C1 = 35 pF | | 9.0 | | 10.0 | | 10.5 | ns | | Table 24. Interconnect Delays | | | | | | | | | | | |-------------------------------|--|------------|-------------|-----|-----|-----|-----|-----|------|--| | Symbol | Parameter | Conditions | Speed Grade | | | | | | Unit | | | | | | -10 | | -15 | | -20 | | 1 | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{LOCAL} | LAB local array delay | | | 0.5 | | 0.5 | | 0.5 | ns | | | t _{ROW} | FastTrack row delay | (6) | | 0.9 | | 1.4 | | 2.0 | ns | | | t _{COL} | FastTrack column delay | (6) | | 0.9 | | 1.7 | | 3.0 | ns | | | t _{DIN_D} | Dedicated input data delay | | | 4.0 | | 4.5 | | 5.0 | ns | | | t _{DIN_CLK} | Dedicated input clock delay | | | 2.7 | | 3.5 | | 4.0 | ns | | | t _{DIN_CLR} | Dedicated input clear delay | | | 4.5 | | 5.0 | | 5.5 | ns | | | t _{DIN_IOC} | Dedicated input I/O register clock delay | | | 2.5 | | 3.5 | | 4.5 | ns | | | t _{DIN_IO} | Dedicated input I/O register control delay | | | 5.5 | | 6.0 | | 6.5 | ns | | #### Notes to tables: - These values are specified under the MAX 9000 device recommended operating conditions, shown in Table 15 on page 27. - See Application Note 77 (Understanding MAX 9000 Timing) for more information on test conditions for t_{PD1} and t_{PD2} delays. - (3) This parameter is a guideline that is sample-tested only. It is based on extensive device characterization. This parameter applies for both global and array clocking as well as both macrocell and I/O cell registers. - (4) Measured with a 16-bit loadable, enabled, up/down counter programmed in each LAB. - (5) The t_{LPA} parameter must be added to the t_{LOCAL} parameter for macrocells running in low-power mode. - (6) The t_{ROW}, t_{COL}, and t_{IOC} delays are worst-case values for typical applications. Post-compilation timing simulation or timing analysis is required to determine actual worst-case performance. # Power Consumption The supply power (P) versus frequency (f_{MAX}) for MAX 9000 devices can be calculated with the following equation: $$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$ The $P_{\rm IO}$ value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*. The $I_{\rm CCINT}$ value depends on the switching frequency and the application logic. The I_{CCINT} value is calculated with the following equation: $$I_{CCINT} = (A \times MC_{TON}) + [B \times (MC_{DEV} - MC_{TON})] + (C \times MC_{USED} \times f_{MAX} \times tog_{LC})$$ Figure 15. I_{CC} vs. Frequency for MAX 9000 Devices (Part 2 of 2) ### Device Pin-Outs Tables 26 through 29 show the dedicated pin names and numbers for each EPM9320, EPM9320A, EPM9400, EPM9480, EPM9560, and EPM9560A device package. | Table 26. EPM9320 & EPM9320A Dedicated Pin-Outs (Part 1 of 2) Note (1) | | | | | | | | | | |--|-----------------|--------------|-----------------|-------------|--|--|--|--|--| | Pin Name | 84-Pin PLCC (2) | 208-Pin RQFP | 280-Pin PGA (3) | 356-Pin BGA | | | | | | | DIN1
(GCLK1) | 1 | 182 | V10 | AD13 | | | | | | | DIN2
(GCLK2) | 84 | 183 | U10 | AF14 | | | | | | | DIN3 (GCLR) | 13 | 153 | V17 | AD1 | | | | | | | DIN4 (GOE) | 72 | 4 | W2 | AC24 | | | | | | | TCK | 43 | 78 | A9 | A18 | | | | | | | TMS | 55 | 49 | D6 | E23 | | | | | | | TDI | 42 | 79 | C11 | A13 | | | | | | | TDO | 30 | 108 | A18 | D3 | | | | | | ### Revision **History** Information contained in the MAX 9000 Programmable Logic Device Family Data Sheet version 6.5 supersedes information published in previous versions. #### Version 6.5 Version 6.6 of the MAX 9000 Programmable Logic Device Family Data Sheet contains the following change: - Added Tables 7 through 9. - Added "Programming Sequence" on page 20 and "Programming Times" on page 20 #### Version 6.4 Version 6.4 of the MAX 9000 Programmable Logic Device Family Data Sheet contains the following change: Updated text on page 23. #### Version 6.3 Version 6.3 of the MAX 9000 Programmable Logic Device Family Data Sheet contains the following change: added Note (7) to Table 16. 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD **Customer Marketing:** (408) 544-7104 Literature Services: lit_req@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.