Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. #### **Applications of Embedded - CPLDs** | Details | | |---------------------------------|--| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 10 ns | | Voltage Supply - Internal | 4.5V ~ 5.5V | | Number of Logic Elements/Blocks | 20 | | Number of Macrocells | 320 | | Number of Gates | 6000 | | Number of I/O | 60 | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 84-LCC (J-Lead) | | Supplier Device Package | 84-PLCC (29.31x29.31) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm9320ali84-10 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## ...and More Features - Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls - Programmable security bit for protection of proprietary designs - Software design support and automatic place-and-route provided by Altera's MAX+PLUS® II development system on Windows-based PCs as well as Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations - Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest - Programming support with Altera's Master Programming Unit (MPU), BitBlasterTM serial download cable, ByteBlasterTM parallel port download cable, and ByteBlasterMVTM parallel port download cable, as well as programming hardware from third-party manufacturers - Offered in a variety of package options with 84 to 356 pins (see Table 2) | Table 2. MAX 9000 Package Options & I/O Counts Note (1) | | | | | | | | | |---|----------------|-----------------|-----------------|----------------|-----------------|----------------|--|--| | Device | 84-Pin
PLCC | 208-Pin
RQFP | 240-Pin
RQFP | 280-Pin
PGA | 304-Pin
RQFP | 356-Pin
BGA | | | | EPM9320 | 60 (2) | 132 | _ | 168 | | 168 | | | | EPM9320A | 60 (2) | 132 | 1 | _ | 1 | 168 | | | | EPM9400 | 59 (2) | 139 | 159 | _ | 1 | 1 | | | | EPM9480 | 1 | 146 | 175 | _ | 1 | 1 | | | | EPM9560 | 1 | 153 | 191 | 216 | 216 | 216 | | | | EPM9560A | ı | 153 | 191 | _ | ı | 216 | | | #### Notes: - MAX 9000 device package types include plastic J-lead chip carrier (PLCC), power quad flat pack (RQFP), ceramic pin-grid array (PGA), and ball-grid array (BGA) packages. - (2) Perform a complete thermal analysis before committing a design to this device package. See *Application Note 74* (Evaluating Power for Altera Devices). All MAX 9000 device packages provide four dedicated inputs for global control signals with large fan-outs. Each I/O pin has an associated I/O cell register with a clock enable control on the periphery of the device. As outputs, these registers provide fast clock-to-output times; as inputs, they offer quick setup times. MAX 9000 EPLDs provide 5.0-V in-system programmability (ISP). This feature allows the devices to be programmed and reprogrammed on the printed circuit board (PCB) for quick and efficient iterations during design development and debug cycles. MAX 9000 devices are guaranteed for 100 program and erase cycles. MAX 9000 EPLDs contain 320 to 560 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. For increased flexibility, each macrocell offers a dual-output structure that allows the register and the product terms to be used independently. This feature allows register-rich and combinatorial-intensive designs to be implemented efficiently. The dual-output structure of the MAX 9000 macrocell also improves logic utilization, thus increasing the effective capacity of the devices. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms to provide up to 32 product terms per macrocell. The MAX 9000 family provides programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the user to configure one or more macrocells to operate at 50% or less power while adding only a nominal timing delay. MAX 9000 devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. MAX 9000 devices offer the MultiVolt feature, which allows output drivers to be set for either 3.3-V or 5.0-V operation in mixed-voltage systems. #### Macrocells The MAX 9000 macrocell consists of three functional blocks: the product terms, the product-term select matrix, and the programmable register. The macrocell can be individually configured for both sequential and combinatorial logic operation. See Figure 3. LAB Local Array Global Global 33 Row Clear Clocks FastTrack Parallel Interconnect 2 Expanders Inputs Macrocell Register Programmable (from Other Input Select Bypass Register Macrocells) To Row or Column FastTrack Clock/ Interconnect Product-(11) Enable ENA Select Select Matrix Clear Select 1 Local Array Feedback 16 Local 16 Shareable Feedbacks Expander Product Figure 3. MAX 9000 Macrocell & Local Array Combinatorial logic is implemented in the local array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the \mbox{OR} and \mbox{MOR} gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register clear, preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources: - Shareable expanders, which are inverted product terms that are fed back into the logic array - Parallel expanders, which are product terms borrowed from adjacent macrocells The MAX+PLUS II software automatically optimizes product-term allocation according to the logic requirements of the design. The MAX+PLUS II Compiler automatically allocates as many as three sets of up to five parallel expanders to macrocells that require additional product terms. Each set of expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$. Two groups of eight macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. #### FastTrack Interconnect In the MAX 9000 architecture, connections between macrocells and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal and vertical routing channels that traverse the entire device. This device-wide routing structure provides predictable performance even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance. Figure 6 shows the interconnection of four adjacent LABs with row and column interconnects. A row interconnect channel can be fed by the output of the macrocell through a 4-to-1 multiplexer that the macrocell shares with three column channels. If the multiplexer is used for a macrocell-to-row connection, the three column signals can access another row channel via an additional 3-to-1 multiplexer. Within any LAB, the multiplexers provide all 48 column channels with access to 32 row channels. #### Row-to-I/O Cell Connections Figure 8 illustrates the connections between row interconnect channels and IOCs. An input signal from an IOC can drive two separate row channels. When an IOC is used as an output, the signal is driven by a 10-to-1 multiplexer that selects the row channels. Each end of the row channel feeds up to eight IOCs on the periphery of the device. Figure 8. MAX 9000 Row-to-IOC Connections #### Column-to-I/O Cell Connections Each end of a column channel has up to 10 IOCs (see Figure 9). An input signal from an IOC can drive two separate column channels. When an IOC is used as an output, the signal is driven by a 17-to-1 multiplexer that selects the column channels. Figure 9. MAX 9000 Column-to-IOC Connections #### **Dedicated Inputs** In addition to the general-purpose I/O pins, MAX 9000 devices have four dedicated input pins. These dedicated inputs provide low-skew, device-wide signal distribution to the LABs and IOCs in the device, and are typically used for global clock, clear, and output enable control signals. The global control signals can feed the macrocell or IOC clock and clear inputs, as well as the IOC output enable. The dedicated inputs can also be used as general-purpose data inputs because they can feed the row FastTrack Interconnect (see Figure 2 on page 7). #### I/O Cells Figure 10 shows the IOC block diagram. Signals enter the MAX 9000 device from either the I/O pins that provide general-purpose input capability or from the four dedicated inputs. The IOCs are located at the ends of the row and column interconnect channels. The output buffer in each IOC has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces board-level noise and adds a nominal timing delay to the output buffer delay (t_{OD}) parameter. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate on a pin-by-pin basis during design entry or assign a default slew rate to all pins on a global basis. The slew rate control affects both rising and falling edges of the output signals. | Table 6. Peripheral Bus Sources | | | | | | | | |---------------------------------|---------------------|------------|------------|---------------------|--|--|--| | Peripheral Control | | Source | | | | | | | Signal | EPM9320
EPM9320A | EPM9400 | EPM9480 | EPM9560
EPM9560A | | | | | OE0/ENA0 | Row C | Row E | Row F | Row G | | | | | OE1/ENA1 | Row B | Row E | Row F | Row F | | | | | OE2/ENA2 | Row A | Row E | Row E | Row E | | | | | OE3/ENA3 | Row B | Row B | Row B | Row B | | | | | OE4/ENA4 | Row A | Row A | Row A | Row A | | | | | OE5 | Row D | Row D | Row D | Row D | | | | | OE6 | Row C | Row C | Row C | Row C | | | | | OE7/CLR1 | Row B/GOE | Row B/GOE | Row B/GOE | Row B/GOE | | | | | CLR0/ENA5 | Row A/GCLR | Row A/GCLR | Row A/GCLR | Row A/GCLR | | | | | CLK0 | GCLK1 | GCLK1 | GCLK1 | GCLK1 | | | | | CLK1 | GCLK2 | GCLK2 | GCLK2 | GCLK2 | | | | | CLK2 | Row D | Row D | Row D | Row D | | | | | CLK3 | Row C | Row C | Row C | Row C | | | | ## Output Configuration The MAX 9000 device architecture supports the MultiVolt I/O interface feature, which allows MAX 9000 devices to interface with systems of differing supply voltages. The 5.0-V devices in all packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO). The VCCINT pins must always be connected to a 5.0-V power supply. With a 5.0-V $V_{\rm CCINT}$ level, input voltages are at TTL levels and are therefore compatible with 3.3-V and 5.0-V inputs. # Programming with External Hardware MAX 9000 devices can be programmed on Windows-based PCs with an Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs continuity checking to ensure adequate electrical contact between the adapter and the device. For more information, see the Altera Programming Hardware Data Sheet. The MAX+PLUS II software can use text- or waveform-format test vectors created with the MAX+PLUS II Text Editor or Waveform Editor to test a programmed device. For added design verification, designers can perform functional testing to compare the functional behavior of a MAX 9000 device with the results of simulation. Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices. For more information, see Programming Hardware Manufacturers. ## IEEE Std. 1149.1 (JTAG) Boundary-Scan Support MAX 9000 devices support JTAG BST circuitry as specified by IEEE Std. 1149.1-1990. Table 10 describes the JTAG instructions supported by the MAX 9000 family. The pin-out tables starting on page 38 show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins. | Table 10. MAX 9000 | O JTAG Instructions | |--------------------|---| | JTAG Instruction | Description | | SAMPLE/PRELOAD | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins. | | EXTEST | Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. | | BYPASS | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation. | | IDCODE | Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be shifted out of TDO. Supported by the EPM9320A, EPM9400, EPM9480, and EPM9560A devices only. | | UESCODE | Selects the user electronic signature (UESCODE) register and allows the UESCODE to be shifted out of TDO serially. This instruction is supported by MAX 9000A devices only. | | ISP Instructions | These instructions are used when programming MAX 9000 devices via the JTAG ports with the BitBlaster or ByteBlasterMV download cable, or using a Jam File (.jam), Jam Byte-Code File (.jbc), or Serial Vector Format (.svf) File via an embedded processor or test equipment. | The instruction register length for MAX 9000 devices is 10 bits. EPM9320A and EPM9560A devices support a 16-bit UESCODE register. Tables 11 and 12 show the boundary-scan register length and device IDCODE information for MAX 9000 devices. | Table 11. MAX 9000 Boundary-Scan Register Length | | | | | | |--|-----|--|--|--|--| | Device Boundary-Scan Register Length | | | | | | | EPM9320, EPM9320A | 504 | | | | | | EPM9400 | 552 | | | | | | EPM9480 | 600 | | | | | | EPM9560, EPM9560A | 648 | | | | | | Table 12. 32-Bit MAX 9000 Device IDCODE Note (1) | | | | | | | | | | |--|---------------------|------------------------------|-----------------------------------|--------------|--|--|--|--|--| | Device | | IDCODE (32 Bits) | | | | | | | | | | Version
(4 Bits) | Part Number
(16 Bits) (2) | Manufacturer's Identity (11 Bits) | 1
(1 Bit) | | | | | | | EPM9320A (3) | 0000 | 1001 0011 0010 0000 | 00001101110 | 1 | | | | | | | EPM9400 | 0000 | 1001 0100 0000 0000 | 00001101110 | 1 | | | | | | | EPM9480 | 0000 | 1001 0100 1000 0000 | 00001101110 | 1 | | | | | | | EPM9560A (3) | 0000 | 1001 0101 0110 0000 | 00001101110 | 1 | | | | | | #### Notes: - (1) The IDCODE's least significant bit (LSB) is always 1. - (2) The most significant bit (MSB) is on the left. - (3) Although the EPM9320A and EPM9560A devices support the IDCODE instruction, the EPM9320 and EPM9560 devices do not. Figure 11 shows the timing requirements for the JTAG signals. Figure 11. MAX 9000 JTAG Waveforms Table 13 shows the JTAG timing parameters and values for MAX 9000 devices. | Table 1 | Table 13. JTAG Timing Parameters & Values for MAX 9000 Devices | | | | | | | | | |-------------------|--|-----|-----|------|--|--|--|--|--| | Symbol | Parameter | Min | Max | Unit | | | | | | | t _{JCP} | TCK clock period | 100 | | ns | | | | | | | t _{JCH} | TCK clock high time | 50 | | ns | | | | | | | t _{JCL} | TCK clock low time | 50 | | ns | | | | | | | t _{JPSU} | JTAG port setup time | 20 | | ns | | | | | | | t _{JPH} | JTAG port hold time | 45 | | ns | | | | | | | t _{JPCO} | JTAG port clock to output | | 25 | ns | | | | | | | t _{JPZX} | JTAG port high impedance to valid output | | 25 | ns | | | | | | | t _{JPXZ} | JTAG port valid output to high impedance | | 25 | ns | | | | | | | t _{JSSU} | Capture register setup time | 20 | | ns | | | | | | | t _{JSH} | Capture register hold time | 45 | | ns | | | | | | | t _{JSCO} | Update register clock to output | | 25 | ns | | | | | | | t _{JSZX} | Update register high impedance to valid output | | 25 | ns | | | | | | | t _{JSXZ} | Update register valid output to high impedance | | 25 | ns | | | | | | For detailed information on JTAG operation in MAX 9000 devices, refer to Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices). ## Programmable Speed/Power Control MAX 9000 devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. Because most logic applications require only a small fraction of all gates to operate at maximum frequency, this feature allows total power dissipation to be reduced by 50% or more. The designer can program each individual macrocell in a MAX 9000 device for either high-speed (i.e., with the Turbo Bit option turned on) or low-power (i.e., with the Turbo Bit option turned off) operation. As a result, speed-critical paths in the design can run at high speed, while remaining paths operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the LAB local array delay (t_{LOCAI}). ## **Design Security** All MAX 9000 EPLDs contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a proprietary design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security, because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is erased. ### **Generic Testing** MAX 9000 EPLDs are fully functionally tested. Complete testing of each programmable EEPROM bit and all logic functionality ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 12. Test patterns can be used and then erased during the early stages of the production flow. Figure 12. MAX 9000 AC Test Conditions Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in parentheses are for 3.3-V outputs. Numbers without parentheses are for 5.0-V devices or outputs. | Table 1 | Table 16. MAX 9000 Device DC Operating Conditions Notes (5), (6) | | | | | | | | |-----------------|--|---|-------------------------|--------------------------|------|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | V _{IH} | High-level input voltage | (7) | 2.0 | V _{CCINT} + 0.5 | ٧ | | | | | V _{IL} | Low-level input voltage | | -0.5 | 0.8 | V | | | | | 311 | 5.0-V high-level TTL output voltage | I _{OH} = -4 mA DC, V _{CCIO} = 4.75 V (8) | 2.4 | | V | | | | | | 3.3-V high-level TTL output voltage | I _{OH} = -4 mA DC, V _{CCIO} = 3.00 V (8) | 2.4 | | V | | | | | | 3.3-V high-level CMOS output voltage | $I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$ | V _{CCIO} – 0.2 | | V | | | | | V _{OL} | 5.0-V low level TTL output voltage | I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (8) | | 0.45 | V | | | | | | 3.3-V low-level TTL output voltage | I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (8) | | 0.45 | V | | | | | | 3.3-V low-level CMOS output voltage | I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (8) | | 0.2 | V | | | | | I _I | I/O pin leakage current of dedicated input pins | V _I = -0.5 to 5.5 V (9) | -10 | 10 | μА | | | | | I _{OZ} | Tri-state output off-state current | $V_1 = -0.5 \text{ to } 5.5 \text{ V}$ | -40 | 40 | μΑ | | | | | Table 1 | Table 17. MAX 9000 Device Capacitance: EPM9320, EPM9400, EPM9480 & EPM9560 Devices Note (10) | | | | | | | | |-------------------|--|------------------------------------|--|----|----|--|--|--| | Symbol | Parameter | Parameter Conditions Min | | | | | | | | C _{DIN1} | Dedicated input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 18 | pF | | | | | C _{DIN2} | Dedicated input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 18 | pF | | | | | C _{DIN3} | Dedicated input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 17 | pF | | | | | C _{DIN4} | Dedicated input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 20 | pF | | | | | C _{I/O} | I/O pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | | Table 1 | 8. MAX 9000A Device Capacitan | Note (10) | | | | |-------------------|-------------------------------|------------------------------------|-----|-----|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | C _{DIN1} | Dedicated input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 16 | pF | | C _{DIN2} | Dedicated input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | C _{DIN3} | Dedicated input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 10 | pF | | C _{DIN4} | Dedicated input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | C _{I/O} | I/O pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | Table 1 | Table 19. MAX 9000 Device Typical I _{CC} Supply Current Values | | | | | | | | |------------------|---|--|-----|-----|-----|-----|----|--| | Symbol | Parameter Conditions EPM9320 EPM9400 EPM9480 EPM9560 Unit | | | | | | | | | I _{CC1} | I _{CC} supply current (low-power mode, standby, typical) | V _I = ground,
no load (11) | 106 | 132 | 140 | 146 | mA | | ## **Timing Model** The continuous, high-performance FastTrack Interconnect ensures predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and hence have unpredictable performance. Timing simulation and delay prediction are available with the MAX+PLUS II Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time prediction, and device-wide performance analysis. The MAX 9000 timing model in Figure 14 shows the delays that correspond to various paths and functions in the circuit. This model contains three distinct parts: the macrocell, IOC, and interconnect, including the row and column FastTrack Interconnect and LAB local array paths. Each parameter shown in Figure 14 is expressed as a worst-case value in the internal timing characteristics tables in this data sheet. Hand-calculations that use the MAX 9000 timing model and these timing parameters can be used to estimate MAX 9000 device performance. For more information on calculating MAX 9000 timing delays, see *Application Note 77 (Understanding MAX 9000 Timing).* Figure 14. MAX 9000 Timing Model Tables 21 through 24 show timing for MAX 9000 devices. | Symbol | Parameter | Cond | litions | Speed Grade | | | | | Unit | | |------------------|--|------------|------------|-------------|---------|---------|------|---------|------|-----| | | | | | -1 | -10 -15 | | | -2 | 20 | • | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Row I/O pin input to row I/O C1 = 35 pF (2) pin output | | | 10.0 | | 15.0 | | 20.0 | ns | | | t _{PD2} | Column I/O pin input to column I/O pin output | C1 = 35 pF | EPM9320A | | 10.8 | | | | | ns | | | | (2) | EPM9320 | | | | 16.0 | | 23.0 | ns | | | | | EPM9400 | | | | 16.2 | | 23.2 | ns | | | | | EPM9480 | | | | 16.4 | | 23.4 | ns | | | | | EPM9560A | | 11.4 | | | | | ns | | | | | EPM9560 | | | | 16.6 | | 23.6 | ns | | t _{FSU} | Global clock setup time for I/O cell | | | 3.0 | | 5.0 | | 6.0 | | ns | | t _{FH} | Global clock hold time for I/O cell | | | 0.0 | | 0.0 | | 0.0 | | ns | | t _{FCO} | Global clock to I/O cell output delay | C1 = 35 pF | C1 = 35 pF | | 4.8 | 1.0 (3) | 7.0 | 1.0 (3) | 8.5 | ns | | t _{CNT} | Minimum internal global clock period | (4) | | | 6.9 | | 8.5 | | 10.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (4) | | 144.9 | | 117.6 | | 100.0 | | MHz | | Table 23. IOC Delays | | | | | | | | | | |----------------------|--|------------|-------------|-----|-----|------|-----|------|----| | Symbol | Parameter | Conditions | Speed Grade | | | | | Unit | | | | | | -10 | | -15 | | -20 | | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IODR} | I/O row output data delay | | | 0.2 | | 0.2 | | 1.5 | ns | | t _{IODC} | I/O column output data delay | | | 0.4 | | 0.2 | | 1.5 | ns | | t _{IOC} | I/O control delay | (6) | | 0.5 | | 1.0 | | 2.0 | ns | | t _{IORD} | I/O register clock-to-output delay | | | 0.6 | | 1.0 | | 1.5 | ns | | t _{IOCOMB} | I/O combinatorial delay | | | 0.2 | | 1.0 | | 1.5 | ns | | t _{IOSU} | I/O register setup time before clock | | 2.0 | | 4.0 | | 5.0 | | ns | | t _{IOH} | I/O register hold time after clock | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{IOCLR} | I/O register clear delay | | | 1.5 | | 3.0 | | 3.0 | ns | | t _{IOFD} | I/O register feedback delay | | | 0.0 | | 0.0 | | 0.5 | ns | | t _{INREG} | I/O input pad and buffer to I/O register delay | | | 3.5 | | 4.5 | | 5.5 | ns | | t _{INCOMB} | I/O input pad and buffer to row and column delay | | | 1.5 | | 2.0 | | 2.5 | ns | | t _{OD1} | Output buffer and pad delay,
Slow slew rate = off,
V _{CCIO} = 5.0 V | C1 = 35 pF | | 1.8 | | 2.5 | | 2.5 | ns | | t _{OD2} | Output buffer and pad delay,
Slow slew rate = off,
V _{CCIO} = 3.3 V | C1 = 35 pF | | 2.3 | | 3.5 | | 3.5 | ns | | t _{OD3} | Output buffer and pad delay,
Slow slew rate = on,
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF | | 8.3 | | 10.0 | | 10.5 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 2.5 | | 2.5 | | 2.5 | ns | | t _{ZX1} | Output buffer enable delay,
Slow slew rate = off,
V _{CCIO} = 5.0 V | C1 = 35 pF | | 2.5 | | 2.5 | | 2.5 | ns | | t _{ZX2} | Output buffer enable delay,
Slow slew rate = off,
V _{CCIO} = 3.3 V | C1 = 35 pF | | 3.0 | | 3.5 | | 3.5 | ns | | t_{ZX3} | Output buffer enable delay,
Slow slew rate = on,
V _{CCIO} = 3.3 V or 5.0 V | C1 = 35 pF | | 9.0 | | 10.0 | | 10.5 | ns | | Pin Name | 84-Pin PLCC (2) | 208-Pin RQFP | 280-Pin PGA (3) | 356-Pin BGA | |----------------------------|----------------------------------|--|--|---| | GND | 6, 18, 24, 25, 48,
61, 67, 70 | 14, 20, 24, 31, 35,
41, 42, 43, 44, 46,
47, 66, 85, 102,
110, 113, 114, 115,
116, 118, 121, 122,
132, 133, 143, 152,
170, 189, 206 | D4, D5, D16, E4, E5, E6,
E15, E16, F5, F15, G5,
G15, H5, H15, J5, J15, K5,
K15, L5, L15, M5, M15, N5,
N15, P4, P5, P15, P16, R4,
R5, R15, R16, T4, T5, T16 | A9, A22, A25, A26, B25,
B26, D2, E1, E26, F2, G1,
G25, G26, H2, J1, J25, J26
K2, L26, M26, N1, N25,
P26, R2, T1, U2, U26, V1,
V25, W25, Y26, AA2, AB1
AB26, AC26, AE1, AF1,
AF2, AF4, AF7, AF20 | | VCCINT
(5.0 V only) | 14, 21, 28, 57,
64, 71 | 10, 19, 30, 45, 112,
128, 139, 148 | D15, E8, E10, E12, E14,
R7, R9, R11, R13, R14,
T14 | D26, F1, H1, K26, N26, P1
U1, W26, AE26, AF25,
AF26 | | VCCIO
(3.3 or 5.0 V) | 15, 37, 60, 79 | 5, 25, 36, 55, 72,
91, 111, 127, 138,
159, 176, 195 | D14, E7, E9, E11, E13, R6, R8, R10, R12, T13, T15 | A1, A2, A21, B1, B10, B24
D1, H26, K1, M25, R1, V26
AA1, AC25, AF5, AF8,
AF19 | | No Connect
(N.C.) | 29 | 6, 7, 8, 9, 11, 12,
13, 15, 16, 17, 18,
109, 140, 141, 142,
144, 145, 146, 147,
149, 150, 151 | B6, K19, L2, L4, L18, L19, M1, M2, M3, M4, M16, M17, M18, M19, N1, N2, N3, N4, N16, N17, N18, N19, P1, P2, P3, P17, P18, P19, R1, R2, R3, R17, R18, R19, T1, T2, T3, T17, T18, T19, U1, U2, U3, U17, U18, U19, V1, V2, V19, W1 | B4, B5, B6, B7, B8, B9, B11, B12, B13, B14, B15, B16, B18, B19, B20, B21, B22, B23, C4, C23, D4, D23, E4, E22, F4, F23, G4 H4, H23, J23, K4, L4, L23, N4, P4, P23, R3, R26, T2, T3, T4, T5, T22, T23, T24, T25, T26, U3, U4, U5, U22 U23, U24, U25, V2, V3, V4 V5, V22, V23, V24, W1, W2, W3, W4, W5, W22, W23, W24, Y1, Y2, Y3, Y4 Y5, Y22, Y23, Y24, Y25, A3, AA4, AA5, AA22, AA23, AA24, AA25, AA26, AB2, AB3, AB4, AB5, AB23, AB24, AB25, AC1, AC2, AC23, AD4, AD23, AE4, AE5, AE6, AE7, AE9 AE11, AE12, AE14, AE15, AE16, AE18, AE19, AE20, AE21, AE22, AE23 | | VPP <i>(4)</i> | 56 | 48 | C4 | E25 | | Total User
I/O Pins (5) | 60 | 132 | 168 | 168 | | Table 29. EPM9560 & EPM9560A Dedicated Pin-Outs (Part 2 of 2) Note (1) | | | | | | | | | |--|--------------|--------------|-----------------|---|---|--|--|--| | Pin Name | 208-Pin RQFP | 240-Pin RQFP | 280-Pin PGA (2) | 304-Pin RQFP (2) | 356-Pin BGA | | | | | No Connect
(N.C.) | 109 | | B6, W1 | 1, 2, 76, 77, 78,
79, 80, 81, 82, 83,
84, 145, 146, 147,
148, 149, 150,
151, 152, 153,
154, 227, 228,
229, 230, 231,
232, 233, 234,
235, 236, 297,
298, 299, 300,
301, 302, 303,
304 | B4, B5, B6, B7,
B8, B9, B11, B12,
B13, B14, B15,
B16, B18, B19,
B20, B21, B22,
B23, C4, C23, D4,
D23, E4, E22, F4,
F23, G4, H4, H23,
J23, K4, L4, L23,
N4, P4, P23, T4,
T23, U4, V4, V23,
W4, Y4, AA4,
AA23, AB4,
AB23, AC23,
AD4, AD23, AE4,
AE5, AE6, AE7,
AE9, AE11,
AE12, AE14,
AE15, AE16,
AE18, AE19,
AE20, AE21,
AE22, AE23 | | | | | VPP (3) | 48 | 67 | C4 | 75 | E25 | | | | | Total User
I/O Pins (4) | 153 | 191 | 216 | 216 | 216 | | | | #### Notes: - (1) All pins not listed are user I/O pins. - (2) EPM9560A devices are not offered in this package. - (3) During in-system programming, each device's VPP pin must be connected to the 5.0-V power supply. During normal device operation, the VPP pin is pulled up internally and can be connected to the 5.0-V supply or left unconnected. - (4) The user I/O pin count includes dedicated input pins and all I/O pins. ## Revision **History** Information contained in the MAX 9000 Programmable Logic Device Family Data Sheet version 6.5 supersedes information published in previous versions. #### Version 6.5 Version 6.6 of the MAX 9000 Programmable Logic Device Family Data Sheet contains the following change: - Added Tables 7 through 9. - Added "Programming Sequence" on page 20 and "Programming Times" on page 20 #### Version 6.4 Version 6.4 of the MAX 9000 Programmable Logic Device Family Data Sheet contains the following change: Updated text on page 23. #### Version 6.3 Version 6.3 of the MAX 9000 Programmable Logic Device Family Data Sheet contains the following change: added Note (7) to Table 16. 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD **Customer Marketing:** (408) 544-7104 Literature Services: lit_req@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.