
E·XFL

Altera - EPM9400RC208-15 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	15 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	25
Number of Macrocells	400
Number of Gates	8000
Number of I/O	139
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	208-BFQFP Exposed Pad
Supplier Device Package	208-RQFP (28x28)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=epm9400rc208-15

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Programmable macrocell flipflops with individual clear, preset, ...and More clock, and clock enable controls **Features**
 - Programmable security bit for protection of proprietary designs
 - Software design support and automatic place-and-route provided by Altera's MAX+PLUS® II development system on Windows-based PCs as well as Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations
 - Additional design entry and simulation support provided by EDIF 200 and 300 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest
 - Programming support with Altera's Master Programming Unit (MPU), BitBlasterTM serial download cable, ByteBlasterTM parallel port download cable, and ByteBlasterMVTM parallel port download cable, as well as programming hardware from third-party manufacturers
 - Offered in a variety of package options with 84 to 356 pins (see Table 2)

Table 2. MAX 9000 Package Options & I/O Counts Note (1)						
Device	84-Pin PLCC	208-Pin RQFP	240-Pin RQFP	280-Pin PGA	304-Pin RQFP	356-Pin BGA
EPM9320	60 (2)	132	-	168	-	168
EPM9320A	60 (2)	132	-	-	-	168
EPM9400	59 <i>(</i> 2 <i>)</i>	139	159	-	-	-
EPM9480	-	146	175	-	-	-
EPM9560	-	153	191	216	216	216
EPM9560A	-	153	191	-	-	216

Notes:

- MAX 9000 device package types include plastic J-lead chip carrier (PLCC), power (1)quad flat pack (RQFP), ceramic pin-grid array (PGA), and ball-grid array (BGA) packages.
- Perform a complete thermal analysis before committing a design to this device (2)package. See Application Note 74 (Evaluating Power for Altera Devices).

General Description

The MAX 9000 family of in-system-programmable, high-density, highperformance EPLDs is based on Altera's third-generation MAX architecture. Fabricated on an advanced CMOS technology, the EEPROMbased MAX 9000 family provides 6,000 to 12,000 usable gates, pin-to-pin delays as fast as 10 ns, and counter speeds of up to 144 MHz. The -10 speed grade of the MAX 9000 family is compliant with the **PCI Local Bus Specification, Revision 2.2.** Table 3 shows the speed grades available for MAX 9000 devices.

Table 3. MAX 9000 Speed Grade Availability					
Device	Speed Grade				
	-10	-15	-20		
EPM9320		\checkmark	 ✓ 		
EPM9320A	\checkmark				
EPM9400		\checkmark	 ✓ 		
EPM9480		\checkmark	\checkmark		
EPM9560		\checkmark	 ✓ 		
EPM9560A	\checkmark				

Table 4 shows the performance of MAX 9000 devices for typical functions.

Table 4. MAX 9000 PerformanceNote (1)					
Application	Macrocells Used	Is Used Speed Grade Units			Units
		-10	-15	-20	
16-bit loadable counter	16	144	118	100	MHz
16-bit up/down counter	16	144	118	100	MHz
16-bit prescaled counter	16	144	118	100	MHz
16-bit address decode	1	5.6 (10)	7.9 (15)	10 (20)	ns
16-to-1 multiplexer	1	7.7 (12.1)	10.9 (18)	16 (26)	ns

Note:

(1) Internal logic array block (LAB) performance is shown. Numbers in parentheses show external delays from row input pin to row I/O pin.

The MAX 9000 architecture supports high-density integration of systemlevel logic functions. It easily integrates multiple programmable logic devices ranging from PALs, GALs, and 22V10s to field-programmable gate array (FPGA) devices and EPLDs. The MAX 9000 family is supported by Altera's MAX+PLUS II development system, a single, integrated software package that offers schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The MAX+PLUS II software provides EDIF 2 0 0 and 3 0 0, LPM, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIXworkstation-based EDA tools. The MAX+PLUS II software runs on Windows-based PCs as well as Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations.

For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet.

Functional Description

MAX 9000 devices use a third-generation MAX architecture that yields both high performance and a high degree of utilization for most applications. The MAX 9000 architecture includes the following elements:

- Logic array blocks
- Macrocells
- Expander product terms (shareable and parallel)
- FastTrack Interconnect
- Dedicated inputs
- I/O cells

Figure 1 shows a block diagram of the MAX 9000 architecture.

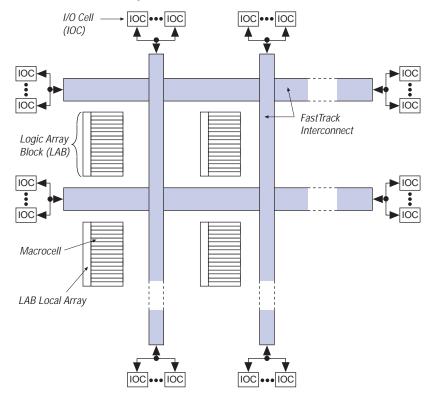


Figure 1. MAX 9000 Device Block Diagram

Logic Array Blocks

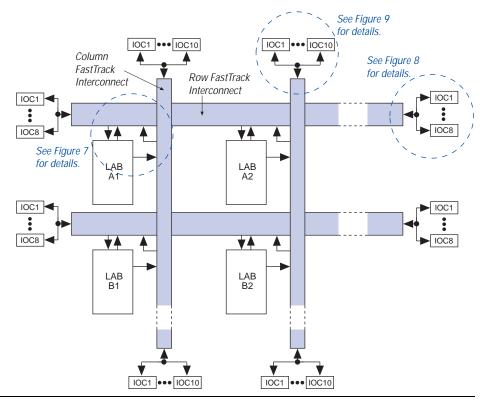
The MAX 9000 architecture is based on linking high-performance, flexible logic array modules called logic array blocks (LABs). LABs consist of 16-macrocell arrays that are fed by the LAB local array, as shown in Figure 2 on page 7. Multiple LABs are linked together via the FastTrack Interconnect, a series of fast, continuous channels that run the entire length and width of the device. The I/O pins are supported by I/O cells (IOCs) located at the end of each row (horizontal) and column (vertical) path of the FastTrack Interconnect.

Each LAB is fed by 33 inputs from the row interconnect and 16 feedback signals from the macrocells within the LAB. All of these signals are available within the LAB in their true and inverted form. In addition, 16 shared expander product terms ("expanders") are available in their inverted form, for a total of 114 signals that feed each product term in the LAB. Each LAB is also fed by two low-skew global clocks and one global clear that can be used for register control signals in all 16 macrocells.

For registered functions, each macrocell register can be individually programmed for D, T, JK, or SR operation with programmable clock control. The flipflop can also be bypassed for combinatorial operation. During design entry, the user specifies the desired register type; the MAX+PLUS II software then selects the most efficient register operation for each registered function to optimize resource utilization.

Each programmable register can be clocked in three different modes:

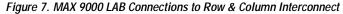
- By either global clock signal. This mode achieves the fastest clock-tooutput performance.
- By a global clock signal and enabled by an active-high clock enable. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock.
- By an array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins.

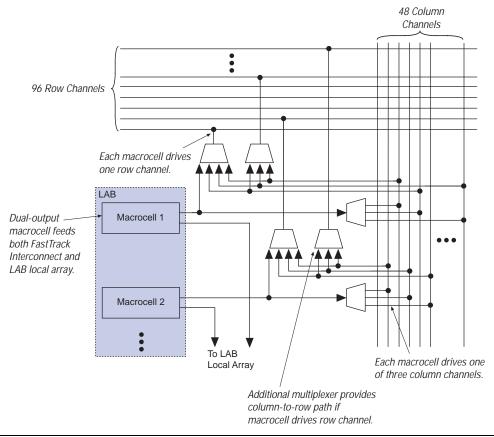

Two global clock signals are available. As shown in Figure 2, these global clock signals can be the true or the complement of either of the global clock pins (DIN1 and DIN2).

Each register also supports asynchronous preset and clear functions. As shown in Figure 3, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear inputs to registers are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the dedicated global clear pin (DIN3). The global clear can be programmed for active-high or active-low operation.

All MAX 9000 macrocells offer a dual-output structure that provides independent register and combinatorial logic output within the same macrocell. This function is implemented by a process called register packing. When register packing is used, the product-term select matrix allocates one product term to the D input of the register, while the remaining product terms can be used to implement unrelated combinatorial logic. Both the registered and the combinatorial output of the macrocell can feed either the FastTrack Interconnect or the LAB local array.

Figure 6. MAX 9000 Device Interconnect Resources

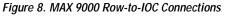

Each LAB is named on the basis of its physical row (A, B, C, etc.) and column (1, 2, 3, etc.) position within the device.

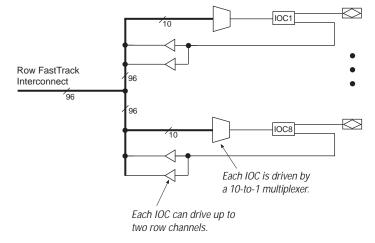


The LABs within MAX 9000 devices are arranged into a matrix of columns and rows. Table 5 shows the number of columns and rows in each MAX 9000 device.

Table 5. MAX 9000 Rows & Columns				
Devices Rows Columns				
EPM9320, EPM9320A	4	5		
EPM9400	5	5		
EPM9480	6	5		
EPM9560, EPM9560A	7	5		

Each row of LABs has a dedicated row interconnect that routes signals both into and out of the LABs in the row. The row interconnect can then drive I/O pins or feed other LABs in the device. Each row interconnect has a total of 96 channels. Figure 7 shows how a macrocell drives the row and column interconnect.





Each macrocell in the LAB can drive one of three separate column interconnect channels. The column channels run vertically across the entire device, and are shared by the macrocells in the same column. The MAX+PLUS II Compiler optimizes connections to a column channel automatically. A row interconnect channel can be fed by the output of the macrocell through a 4-to-1 multiplexer that the macrocell shares with three column channels. If the multiplexer is used for a macrocell-to-row connection, the three column signals can access another row channel via an additional 3-to-1 multiplexer. Within any LAB, the multiplexers provide all 48 column channels with access to 32 row channels.

Row-to-I/O Cell Connections

Figure 8 illustrates the connections between row interconnect channels and IOCs. An input signal from an IOC can drive two separate row channels. When an IOC is used as an output, the signal is driven by a 10-to-1 multiplexer that selects the row channels. Each end of the row channel feeds up to eight IOCs on the periphery of the device.

Column-to-I/O Cell Connections

Each end of a column channel has up to 10 IOCs (see Figure 9). An input signal from an IOC can drive two separate column channels. When an IOC is used as an output, the signal is driven by a 17-to-1 multiplexer that selects the column channels.

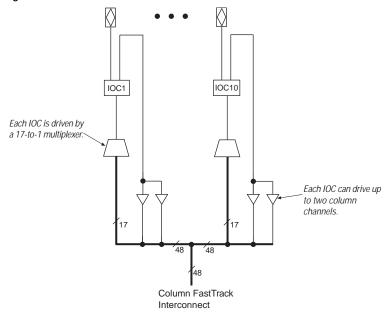


Figure 9. MAX 9000 Column-to-IOC Connections

Dedicated Inputs

In addition to the general-purpose I/O pins, MAX 9000 devices have four dedicated input pins. These dedicated inputs provide low-skew, device-wide signal distribution to the LABs and IOCs in the device, and are typically used for global clock, clear, and output enable control signals. The global control signals can feed the macrocell or IOC clock and clear inputs, as well as the IOC output enable. The dedicated inputs can also be used as general-purpose data inputs because they can feed the row FastTrack Interconnect (see Figure 2 on page 7).

I/O Cells

Figure 10 shows the IOC block diagram. Signals enter the MAX 9000 device from either the I/O pins that provide general-purpose input capability or from the four dedicated inputs. The IOCs are located at the ends of the row and column interconnect channels.

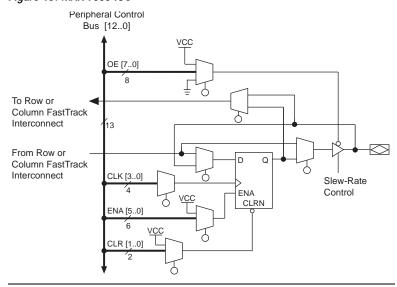


Figure 10. MAX 9000 IOC

I/O pins can be used as input, output, or bidirectional pins. Each IOC has an IOC register with a clock enable input. This register can be used either as an input register for external data that requires fast setup times, or as an output register for data that requires fast clock-to-output performance. The IOC register clock enable allows the global clock to be used for fast clock-to-output performance, while maintaining the flexibility required for selective clocking.

The clock, clock enable, clear, and output enable controls for the IOCs are provided by a network of I/O control signals. These signals can be supplied by either the dedicated input pins or internal logic. The IOC control-signal paths are designed to minimize the skew across the device. All control-signal sources are buffered onto high-speed drivers that drive the signals around the periphery of the device. This "peripheral bus" can be configured to provide up to eight output enable signals, up to four clock signals, up to six clock enable signals, and up to two clear signals. Table 6 on page 18 shows the sources that drive the peripheral bus and how the IOC control signals share the peripheral bus. The VCCIO pins can be connected to either a 3.3-V or 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V power supply, the output levels are compatible with 5.0-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with V_{CCIO} levels lower than 4.75 V incur a nominally greater timing delay of t_{OD2} instead of t_{OD1} .

In-System Programmability (ISP)

MAX 9000 devices can be programmed in-system through a 4-pin JTAG interface. ISP offers quick and efficient iterations during design development and debug cycles. The MAX 9000 architecture internally generates the 12.0-V programming voltage required to program EEPROM cells, eliminating the need for an external 12.0-V power supply to program the devices on the board. During ISP, the I/O pins are tri-stated to eliminate board conflicts.

ISP simplifies the manufacturing flow by allowing the devices to be mounted on a printed circuit board with standard pick-and-place equipment before they are programmed. MAX 9000 devices can be programmed by downloading the information via in-circuit testers, embedded processors, or the Altera BitBlaster, ByteBlaster, or ByteBlasterMV download cable. (The ByteBlaster cable is obsolete and has been replaced by the ByteBlasterMV cable, which can interface with 2.5-V, 3.3-V, and 5.0-V devices.) Programming the devices after they are placed on the board eliminates lead damage on high pin-count packages (e.g., QFP packages) due to device handling. MAX 9000 devices can also be reprogrammed in the field (i.e., product upgrades can be performed in the field via software or modem).

In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. Because some in-circuit testers platforms have difficulties supporting an adaptive algorithm, Altera offers devices tested with a constant algorithm. Devices tested to the constant algorithm have an "F" suffix in the ordering code.

The instruction register length for MAX 9000 devices is 10 bits. EPM9320A and EPM9560A devices support a 16-bit UESCODE register. Tables 11 and 12 show the boundary-scan register length and device IDCODE information for MAX 9000 devices.

Table 11. MAX 9000 Boundary-Scan Register Length				
Device Boundary-Scan Register Length				
EPM9320, EPM9320A	504			
EPM9400	552			
EPM9480	600			
EPM9560, EPM9560A	648			

Table 12. 32-Bit MAX 9000 Device IDCODE Note (1)						
Device		IDCODE (32 Bits)				
	Version (4 Bits)					
EPM9320A (3)	0000	1001 0011 0010 0000	00001101110	1		
EPM9400	0000	1001 0100 0000 0000	00001101110	1		
EPM9480	0000	1001 0100 1000 0000	00001101110	1		
EPM9560A (3)	0000	1001 0101 0110 0000	00001101110	1		

Notes:

(1) The IDCODE's least significant bit (LSB) is always 1.

(2) The most significant bit (MSB) is on the left.

(3) Although the EPM9320A and EPM9560A devices support the IDCODE instruction, the EPM9320 and EPM9560 devices do not.

Figure 11 shows the timing requirements for the JTAG signals.

Operating Conditions

Tables 14 through 20 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 9000 devices.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V
VI	DC input voltage		-2.0	7.0	V
V _{CCISP}	Supply voltage during in-system programming		-2.0	7.0	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	°C
Т _{АМВ}	Ambient temperature	Under bias	-65	135	°C
TJ	Junction temperature	Ceramic packages, under bias		150	°C
		PQFP and RQFP packages, under bias		135	°C

Table 15. MAX 9000 Device Recommended Operating Conditions							
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	4.75 (4.50)	5.25 (5.50)	V		
V _{CCIO}	Supply voltage for output drivers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V		
	Supply voltage for output drivers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V		
V _{CCISP}	Supply voltage during in-system programming		4.75	5.25	V		
VI	Input voltage		-0.5	V _{CCINT} + 0.5	V		
Vo	Output voltage		0	V _{CCIO}	V		
Τ _A	Ambient temperature	For commercial use	0	70	°C		
		For industrial use	-40	85	°C		
TJ	Junction temperature	For commercial use	0	90	°C		
		For industrial use	-40	105	°C		
t _R	Input rise time			40	ns		
t _F	Input fall time			40	ns		

MAX 9000 Programmable Logic Device Family Data Sheet

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{IH}	High-level input voltage	(7)	2.0	V _{CCINT} + 0.5	V
V _{IL}	Low-level input voltage		-0.5	0.8	V
:	5.0-V high-level TTL output voltage	I _{OH} = -4 mA DC, V _{CCIO} = 4.75 V (8)	2.4		V
	3.3-V high-level TTL output voltage	I _{OH} = -4 mA DC, V _{CCIO} = 3.00 V (8)	2.4		V
	3.3-V high-level CMOS output voltage	I_{OH} = -0.1 mA DC, V_{CCIO} = 3.00 V (8)	V _{CCIO} – 0.2		V
V _{OL}	5.0-V low level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (8)		0.45	V
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (8)		0.45	V
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (8)		0.2	V
I _I	I/O pin leakage current of dedicated input pins	$V_1 = -0.5 \text{ to } 5.5 \text{ V} (9)$	-10	10	μA
loz	Tri-state output off-state current	$V_1 = -0.5$ to 5.5 V	-40	40	μΑ

Table 17. MAX 9000 Device Capacitance: EPM9320, EPM9400, EPM9480 & EPM9560 Devices Note (10)						
Symbol	Parameter	Conditions	Min	Max	Unit	
C _{DIN1}	Dedicated input capacitance	V _{IN} = 0 V, f = 1.0 MHz		18	pF	
C _{DIN2}	Dedicated input capacitance	V _{IN} = 0 V, f = 1.0 MHz		18	pF	
C _{DIN3}	Dedicated input capacitance	V _{IN} = 0 V, f = 1.0 MHz		17	pF	
C _{DIN4}	Dedicated input capacitance	V _{IN} = 0 V, f = 1.0 MHz		20	pF	
C _{I/O}	I/O pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		12	pF	

Table 1	Table 18. MAX 9000A Device Capacitance: EPM9320A & EPM9560A Devices Note (10)						
Symbol	Parameter	Conditions	Min	Max	Unit		
C _{DIN1}	Dedicated input capacitance	V _{IN} = 0 V, f = 1.0 MHz		16	pF		
C _{DIN2}	Dedicated input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF		
C _{DIN3}	Dedicated input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF		
C _{DIN4}	Dedicated input capacitance	V _{IN} = 0 V, f = 1.0 MHz		12	pF		
C _{I/O}	I/O pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF		

Table 19. MAX 9000 Device Typical I _{CC} Supply Current Values								
Symbol	Parameter	Conditions	EPM9320	EPM9400	EPM9480	EPM9560	Unit	
I _{CC1}	I _{CC} supply current (low-power mode, standby, typical)	V_{I} = ground, no load (11)	106	132	140	146	mA	

Symbol	Parameter	Conditions		Speed Grade					Unit	
				-10		-15		-20		
				Min	Max	Min	Max	Min	Max	
t _{PD1}	Row I/O pin input to row I/O pin output	C1 = 35 pF (2)			10.0		15.0		20.0	ns
t _{PD2}	Column I/O pin input to column I/O pin output	C1 = 35 pF (2)	EPM9320A		10.8					ns
			EPM9320				16.0		23.0	ns
			EPM9400				16.2		23.2	ns
			EPM9480				16.4		23.4	ns
			EPM9560A		11.4					ns
			EPM9560				16.6		23.6	ns
t _{FSU}	Global clock setup time for I/O cell			3.0		5.0		6.0		ns
t _{FH}	Global clock hold time for I/O cell			0.0		0.0		0.0		ns
t _{FCO}	Global clock to I/O cell output delay	C1 = 35 pF		1.0 (3)	4.8	1.0 (3)	7.0	1.0 (3)	8.5	ns
t _{CNT}	Minimum internal global clock period	(4)			6.9		8.5		10.0	ns
fcnt	Maximum internal global clock frequency	(4)		144.9		117.6		100.0		MHz

Tables 21 through 24 show timing for MAX 9000 devices.

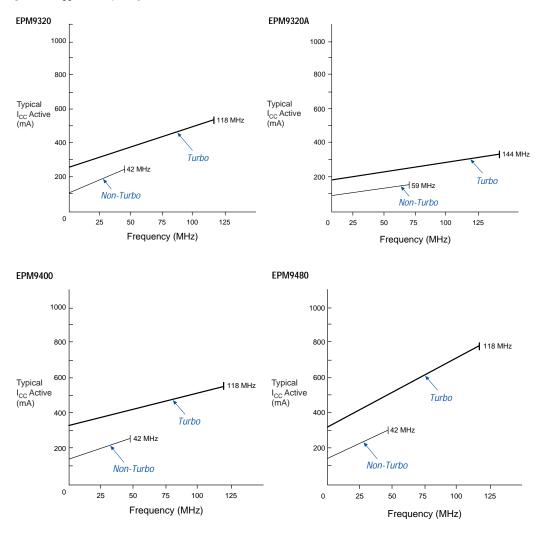


Figure 15. I_{CC} vs. Frequency for MAX 9000 Devices (Part 1 of 2)

Pin Name	84-Pin PLCC (2)	208-Pin RQFP	280-Pin PGA (3)	356-Pin BGA
GND	6, 18, 24, 25, 48, 61, 67, 70	14, 20, 24, 31, 35, 41, 42, 43, 44, 46, 47, 66, 85, 102, 110, 113, 114, 115, 116, 118, 121, 122, 132, 133, 143, 152, 170, 189, 206	D4, D5, D16, E4, E5, E6, E15, E16, F5, F15, G5, G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P4, P5, P15, P16, R4, R5, R15, R16, T4, T5, T16	A9, A22, A25, A26, B25, B26, D2, E1, E26, F2, G1, G25, G26, H2, J1, J25, J26 K2, L26, M26, N1, N25, P26, R2, T1, U2, U26, V1, V25, W25, Y26, AA2, AB1, AB26, AC26, AE1, AF1, AF2, AF4, AF7, AF20
VCCINT (5.0 V only)	14, 21, 28, 57, 64, 71	10, 19, 30, 45, 112, 128, 139, 148	D15, E8, E10, E12, E14, R7, R9, R11, R13, R14, T14	D26, F1, H1, K26, N26, P1, U1, W26, AE26, AF25, AF26
VCCIO (3.3 or 5.0 V)	15, 37, 60, 79	5, 25, 36, 55, 72, 91, 111, 127, 138, 159, 176, 195	D14, E7, E9, E11, E13, R6, R8, R10, R12, T13, T15	A1, A2, A21, B1, B10, B24, D1, H26, K1, M25, R1, V26 AA1, AC25, AF5, AF8, AF19
No Connect (N.C.)	29	6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 109, 140, 141, 142, 144, 145, 146, 147, 149, 150, 151	B6, K19, L2, L4, L18, L19, M1, M2, M3, M4, M16, M17, M18, M19, N1, N2, N3, N4, N16, N17, N18, N19, P1, P2, P3, P17, P18, P19, R1, R2, R3, R17, R18, R19, T1, T2, T3, T17, T18, T19, U1, U2, U3, U17, U18, U19, V1, V2, V19, W1	B4, B5, B6, B7, B8, B9, B11, B12, B13, B14, B15, B16, B18, B19, B20, B21, B22, B23, C4, C23, D4, D23, E4, E22, F4, F23, G4, H4, H23, J23, K4, L4, L23, N4, P4, P23, R3, R26, T2, T3, T4, T5, T22, T23, T24, T25, T26, U3, U4, U5, U22, U23, U24, U25, V2, V3, V4, V5, V22, V23, V24, W1, W2, W3, W4, W5, W22, W23, W24, Y1, Y2, Y3, Y4, Y5, Y22, Y23, Y24, Y25, AA3, AA4, AA5, AA22, AA23, AA24, AA25, AA26, AB2, AB3, AB4, AB5, AB23, AB24, AB25, AC1, AC2, AC23, AD4, AD23, AE4, AE5, AE6, AE7, AE9, AE11, AE12, AE14, AE15, AE16, AE18, AE19, AE20, AE21, AE22, AE23
VPP (4)	56	48	C4	E25
Total User I/O Pins (5)	60	132	168	168

Pin Name	208-Pin RQFP	240-Pin RQFP	280-Pin PGA (2)	304-Pin RQFP (2)	356-Pin BGA
DIN1 (GCLK1)	182	210	V10	266	AD13
DIN2 (GCLK2)	183	211	U10	267	AF14
DIN3 (GCLR)	153	187	V17	237	AD1
DIN4 (GOE)	4	234	W2	296	AC24
TCK	78	91	A9	114	A18
TMS	49	68	D6	85	E23
TDI	79	92	C11	115	A13
TDO	108	114	A18	144	D3
GND	14, 20, 24, 31, 35, 41, 42, 43, 44, 46, 47, 66, 85, 102, 110, 113, 114, 115, 116, 118, 121, 122, 132, 133, 143, 152, 170, 189, 206	5, 14, 25, 34, 45, 54, 65, 66, 81, 96, 110, 115, 126, 127, 146, 147, 166, 167, 186, 200, 216, 229	F5, F15, G5, G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P4, P5, P15, P16, R4, R5, R15, R16, T4, T5, T16	13, 22, 33, 42, 53, 62, 73, 74, 102, 121, 138, 155, 166, 167, 186, 187, 206, 207, 226, 254, 273, 290	A9, A22, A25, A26, B25, B26, D2, E1, E26, F2, G1, G25, G26, H2, J1, J25, J26, K2, L26, M26, N1, N25, P26, R2, T1, U2, U26, V1, V25, W25, Y26, AA2, AB1, AB26, AC26, AE1, AF1, AF2, AF4, AF7, AF20
VCCINT (5.0 V only)	10, 19, 30, 45, 112, 128, 139, 148	4, 24, 44, 64, 117, 137, 157, 177	D15, E8, E10, E12, E14, R7, R9, R11, R13, R14, T14	12, 32, 52, 72, 157, 177, 197, 217	D26, F1, H1, K26, N26, P1, U1, W26, AE26, AF25, AF26
VCCIO (3.3 or 5.0 V)	5, 25, 36, 55, 72, 91, 111, 127, 138, 159, 176, 195	15, 35, 55, 73, 86, 101, 116, 136, 156, 176, 192, 205, 220, 235	D14, E7, E9, E11, E13, R6, R8, R10, R12, T13, T15	3, 23, 43, 63, 91, 108, 127, 156, 176, 196, 216, 243, 260, 279	A1, A2, A21, B1, B10, B24, D1, H26, K1, M25, R1, V26, AA1, AC25, AF5, AF8, AF19

Table 29. EF	Table 29. EPM9560 & EPM9560A Dedicated Pin-Outs (Part 2 of 2) Note (1)						
Pin Name	208-Pin RQFP	240-Pin RQFP	280-Pin PGA (2)	304-Pin RQFP (2)	356-Pin BGA		
No Connect (N.C.)	109	-	B6, W1	1, 2, 76, 77, 78, 79, 80, 81, 82, 83, 84, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 297, 298, 299, 300, 301, 302, 303, 304			
VPP (3)	48	67	C4	75	E25		
Total User I/O Pins (4)	153	191	216	216	216		

Notes:

(1) All pins not listed are user I/O pins.

(2) EPM9560A devices are not offered in this package.

(3) During in-system programming, each device's VPP pin must be connected to the 5.0-V power supply. During normal device operation, the VPP pin is pulled up internally and can be connected to the 5.0-V supply or left unconnected.

(4) The user I/O pin count includes dedicated input pins and all I/O pins.

Revision History

Information contained in the *MAX 9000 Programmable Logic Device Family Data Sheet* version 6.5 supersedes information published in previous versions.

Version 6.5

Version 6.6 of the MAX 9000 Programmable Logic Device Family Data Sheet contains the following change:

- Added Tables 7 through 9.
- Added "Programming Sequence" on page 20 and "Programming Times" on page 20

Version 6.4

Version 6.4 of the *MAX 9000 Programmable Logic Device Family Data Sheet* contains the following change: Updated text on page 23.

Version 6.3

Version 6.3 of the *MAX 9000 Programmable Logic Device Family Data Sheet* contains the following change: added Note (7) to Table 16.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes

to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

1.5. 1.1 150 5001

Altera Corporation

