

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	20 ns
Voltage Supply - Internal	4.75V ~ 5.25V
Number of Logic Elements/Blocks	30
Number of Macrocells	480
Number of Gates	10000
Number of I/O	146
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	208-BFQFP Exposed Pad
Supplier Device Package	208-RQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm9480rc208-20

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

...and More Features

- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable security bit for protection of proprietary designs
- Software design support and automatic place-and-route provided by Altera's MAX+PLUS® II development system on Windows-based PCs as well as Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest
- Programming support with Altera's Master Programming Unit (MPU), BitBlasterTM serial download cable, ByteBlasterTM parallel port download cable, and ByteBlasterMVTM parallel port download cable, as well as programming hardware from third-party manufacturers
- Offered in a variety of package options with 84 to 356 pins (see Table 2)

Table 2. M/	Table 2. MAX 9000 Package Options & I/O CountsNote (1)										
Device	84-Pin PLCC	208-Pin RQFP	240-Pin RQFP	280-Pin PGA	304-Pin RQFP	356-Pin BGA					
EPM9320	60 (2)	132	_	168		168					
EPM9320A	60 (2)	132	1	_	1	168					
EPM9400	59 (2)	139	159	_	1	1					
EPM9480	1	146	175	_	1	1					
EPM9560	1	153	191	216	216	216					
EPM9560A	ı	153	191	_	ı	216					

Notes:

- MAX 9000 device package types include plastic J-lead chip carrier (PLCC), power quad flat pack (RQFP), ceramic pin-grid array (PGA), and ball-grid array (BGA) packages.
- (2) Perform a complete thermal analysis before committing a design to this device package. See *Application Note 74* (Evaluating Power for Altera Devices).

All MAX 9000 device packages provide four dedicated inputs for global control signals with large fan-outs. Each I/O pin has an associated I/O cell register with a clock enable control on the periphery of the device. As outputs, these registers provide fast clock-to-output times; as inputs, they offer quick setup times.

MAX 9000 EPLDs provide 5.0-V in-system programmability (ISP). This feature allows the devices to be programmed and reprogrammed on the printed circuit board (PCB) for quick and efficient iterations during design development and debug cycles. MAX 9000 devices are guaranteed for 100 program and erase cycles.

MAX 9000 EPLDs contain 320 to 560 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. For increased flexibility, each macrocell offers a dual-output structure that allows the register and the product terms to be used independently. This feature allows register-rich and combinatorial-intensive designs to be implemented efficiently. The dual-output structure of the MAX 9000 macrocell also improves logic utilization, thus increasing the effective capacity of the devices. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms to provide up to 32 product terms per macrocell.

The MAX 9000 family provides programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the user to configure one or more macrocells to operate at 50% or less power while adding only a nominal timing delay. MAX 9000 devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. MAX 9000 devices offer the MultiVolt feature, which allows output drivers to be set for either 3.3-V or 5.0-V operation in mixed-voltage systems.

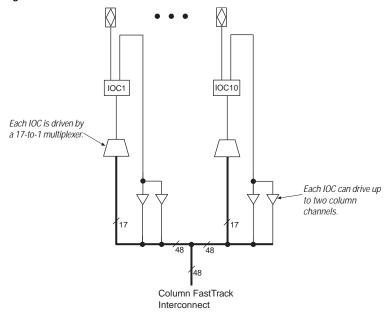


Figure 9. MAX 9000 Column-to-IOC Connections

Dedicated Inputs

In addition to the general-purpose I/O pins, MAX 9000 devices have four dedicated input pins. These dedicated inputs provide low-skew, device-wide signal distribution to the LABs and IOCs in the device, and are typically used for global clock, clear, and output enable control signals. The global control signals can feed the macrocell or IOC clock and clear inputs, as well as the IOC output enable. The dedicated inputs can also be used as general-purpose data inputs because they can feed the row FastTrack Interconnect (see Figure 2 on page 7).

I/O Cells

Figure 10 shows the IOC block diagram. Signals enter the MAX 9000 device from either the I/O pins that provide general-purpose input capability or from the four dedicated inputs. The IOCs are located at the ends of the row and column interconnect channels.

The VCCIO pins can be connected to either a 3.3-V or 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V power supply, the output levels are compatible with 5.0-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels lower than 4.75 V incur a nominally greater timing delay of t_{OD2} instead of t_{OD1} .

In-System Programmability (ISP)

MAX 9000 devices can be programmed in-system through a 4-pin JTAG interface. ISP offers quick and efficient iterations during design development and debug cycles. The MAX 9000 architecture internally generates the 12.0-V programming voltage required to program EEPROM cells, eliminating the need for an external 12.0-V power supply to program the devices on the board. During ISP, the I/O pins are tri-stated to eliminate board conflicts.

ISP simplifies the manufacturing flow by allowing the devices to be mounted on a printed circuit board with standard pick-and-place equipment before they are programmed. MAX 9000 devices can be programmed by downloading the information via in-circuit testers, embedded processors, or the Altera BitBlaster, ByteBlaster, or ByteBlasterMV download cable. (The ByteBlaster cable is obsolete and has been replaced by the ByteBlasterMV cable, which can interface with 2.5-V, 3.3-V, and 5.0-V devices.) Programming the devices after they are placed on the board eliminates lead damage on high pin-count packages (e.g., QFP packages) due to device handling. MAX 9000 devices can also be reprogrammed in the field (i.e., product upgrades can be performed in the field via software or modem).

In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. Because some in-circuit testers platforms have difficulties supporting an adaptive algorithm, Altera offers devices tested with a constant algorithm. Devices tested to the constant algorithm have an "F" suffix in the ordering code.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 9000 device through the \mathtt{TDI} input pin. Data is shifted out through the \mathtt{TDO} output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- Check ID. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- Bulk Erase. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

The programming times described in Tables 7 through 9 are associated with the worst-case method using the ISP algorithm.

Table 7. MAX 9000 t _{PULSE} & Cycle _{TCK} Values										
Device	Progra	ımming	Stand-Alone	e Verification						
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}						
EPM9320 EPM9320A	11.79	2,966,000	0.15	1,806,000						
EPM9400	12.00	3,365,000	0.15	2,090,000						
EPM9480	12.21	3,764,000	0.15	2,374,000						
EPM9560 EPM9560A	12.42	4,164,000	0.15	2,658,000						

Tables 8 and 9 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 8. MAX 9000 In-System Programming Times for Different Test Clock Frequencies										
Device				f	TCK				Units	
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz		
EPM9320 EPM9320A	12.09	12.38	13.27	14.76	17.72	26.62	41.45	71.11	S	
EPM9400	12.34	12.67	13.68	15.37	18.73	28.83	45.65	79.30	S	
EPM9480	12.59	12.96	14.09	15.98	19.74	31.03	49.85	87.49	S	
EPM9560 EPM9560A	12.84	13.26	14.50	16.59	20.75	33.24	54.06	95.70	S	

Table 9. MAX 9000 Stand-Alone Verification Times for Different Test Clock Frequencies											
Device		f _{TCK}									
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz			
EPM9320 EPM9320A	0.33	0.52	1.06	1.96	3.77	9.18	18.21	36.27	S		
EPM9400	0.36	0.57	1.20	2.24	4.33	10.60	21.05	41.95	S		
EPM9480	0.39	0.63	1.34	2.53	4.90	12.02	23.89	47.63	S		
EPM9560 EPM9560A	0.42	0.69	1.48	2.81	5.47	13.44	26.73	53.31	S		

Programming with External Hardware

MAX 9000 devices can be programmed on Windows-based PCs with an Altera Logic Programmer card, the Master Programming Unit (MPU), and the appropriate device adapter. The MPU performs continuity checking to ensure adequate electrical contact between the adapter and the device.

For more information, see the Altera Programming Hardware Data Sheet.

The MAX+PLUS II software can use text- or waveform-format test vectors created with the MAX+PLUS II Text Editor or Waveform Editor to test a programmed device. For added design verification, designers can perform functional testing to compare the functional behavior of a MAX 9000 device with the results of simulation.

Data I/O, BP Microsystems, and other programming hardware manufacturers also provide programming support for Altera devices.

For more information, see Programming Hardware Manufacturers.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

MAX 9000 devices support JTAG BST circuitry as specified by IEEE Std. 1149.1-1990. Table 10 describes the JTAG instructions supported by the MAX 9000 family. The pin-out tables starting on page 38 show the location of the JTAG control pins for each device. If the JTAG interface is not required, the JTAG pins are available as user I/O pins.

Table 10. MAX 9000	Table 10. MAX 9000 JTAG Instructions							
JTAG Instruction	Description							
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern output at the device pins.							
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.							
BYPASS	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through a selected device to adjacent devices during normal device operation.							
IDCODE	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be shifted out of TDO. Supported by the EPM9320A, EPM9400, EPM9480, and EPM9560A devices only.							
UESCODE	Selects the user electronic signature (UESCODE) register and allows the UESCODE to be shifted out of TDO serially. This instruction is supported by MAX 9000A devices only.							
ISP Instructions	These instructions are used when programming MAX 9000 devices via the JTAG ports with the BitBlaster or ByteBlasterMV download cable, or using a Jam File (.jam), Jam Byte-Code File (.jbc), or Serial Vector Format (.svf) File via an embedded processor or test equipment.							

Operating Conditions

Tables 14 through 20 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 9000 devices.

Table 1	Table 14. MAX 9000 Device Absolute Maximum RatingsNote (1)										
Symbol	Parameter	Conditions	Min	Max	Unit						
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V						
VI	DC input voltage		-2.0	7.0	V						
V _{CCISP}	Supply voltage during in-system programming		-2.0	7.0	٧						
I _{OUT}	DC output current, per pin		-25	25	mA						
T _{STG}	Storage temperature	No bias	-65	150	° C						
T _{AMB}	Ambient temperature	Under bias	-65	135	° C						
TJ	Junction temperature	Ceramic packages, under bias		150	° C						
		PQFP and RQFP packages, under bias		135	° C						

Table 1	Table 15. MAX 9000 Device Recommended Operating Conditions										
Symbol	Parameter	Conditions	Min	Max	Unit						
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	4.75 (4.50)	5.25 (5.50)	V						
V _{CCIO}	Supply voltage for output drivers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V						
	Supply voltage for output drivers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V						
V _{CCISP}	Supply voltage during in-system programming		4.75	5.25	V						
VI	Input voltage		-0.5	V _{CCINT} + 0.5	V						
Vo	Output voltage		0	V _{CCIO}	V						
T _A	Ambient temperature	For commercial use	0	70	° C						
		For industrial use	-40	85	° C						
TJ	Junction temperature	For commercial use	0	90	° C						
		For industrial use	-40	105	° C						
t _R	Input rise time			40	ns						
t _F	Input fall time			40	ns						

Table 1	6. MAX 9000 Device DC Operating (Conditions Notes (5), (6)			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{IH}	High-level input voltage	(7)	2.0	V _{CCINT} + 0.5	٧
V _{IL}	Low-level input voltage		-0.5	0.8	V
	5.0-V high-level TTL output voltage	I _{OH} = -4 mA DC, V _{CCIO} = 4.75 V (8)	2.4		V
	3.3-V high-level TTL output voltage	I _{OH} = -4 mA DC, V _{CCIO} = 3.00 V (8)	2.4		V
	3.3-V high-level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (8)$	V _{CCIO} – 0.2		V
V _{OL}	5.0-V low level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 4.75 V (8)		0.45	V
	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (8)		0.45	V
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (8)		0.2	V
I _I	I/O pin leakage current of dedicated input pins	V _I = -0.5 to 5.5 V (9)	-10	10	μА
I _{OZ}	Tri-state output off-state current	$V_1 = -0.5 \text{ to } 5.5 \text{ V}$	-40	40	μΑ

Table 1	Table 17. MAX 9000 Device Capacitance: EPM9320, EPM9400, EPM9480 & EPM9560 Devices Note (10)									
Symbol	Parameter	Conditions	Min	Max	Unit					
C _{DIN1}	Dedicated input capacitance	V _{IN} = 0 V, f = 1.0 MHz		18	pF					
C _{DIN2}	Dedicated input capacitance	V _{IN} = 0 V, f = 1.0 MHz		18	pF					
C _{DIN3}	Dedicated input capacitance	V _{IN} = 0 V, f = 1.0 MHz		17	pF					
C _{DIN4}	Dedicated input capacitance	V _{IN} = 0 V, f = 1.0 MHz		20	pF					
C _{I/O}	I/O pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		12	pF					

Table 1	8. MAX 9000A Device Capacitan	Note (10)			
Symbol	Parameter	Conditions	Min	Max	Unit
C _{DIN1}	Dedicated input capacitance	V _{IN} = 0 V, f = 1.0 MHz		16	pF
C _{DIN2}	Dedicated input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF
C _{DIN3}	Dedicated input capacitance	V _{IN} = 0 V, f = 1.0 MHz		10	pF
C _{DIN4}	Dedicated input capacitance	V _{IN} = 0 V, f = 1.0 MHz		12	pF
C _{I/O}	I/O pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF

Table 1	Table 19. MAX 9000 Device Typical I _{CC} Supply Current Values											
Symbol	Parameter	Conditions	EPM9320	EPM9400	EPM9480	EPM9560	Unit					
I _{CC1}	I _{CC} supply current (low-power mode, standby, typical)	V _I = ground, no load (11)	106	132	140	146	mA					

Timing Model

The continuous, high-performance FastTrack Interconnect ensures predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and hence have unpredictable performance. Timing simulation and delay prediction are available with the MAX+PLUS II Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time prediction, and device-wide performance analysis.

The MAX 9000 timing model in Figure 14 shows the delays that correspond to various paths and functions in the circuit. This model contains three distinct parts: the macrocell, IOC, and interconnect, including the row and column FastTrack Interconnect and LAB local array paths. Each parameter shown in Figure 14 is expressed as a worst-case value in the internal timing characteristics tables in this data sheet. Hand-calculations that use the MAX 9000 timing model and these timing parameters can be used to estimate MAX 9000 device performance.

For more information on calculating MAX 9000 timing delays, see *Application Note 77 (Understanding MAX 9000 Timing).*

Tables 21 through 24 show timing for MAX 9000 devices.

Symbol	Parameter	Conditions		Speed Grade						Unit
				-10		-15		-20		-
				Min	Max	Min	Max	Min	Max	
t _{PD1}	Row I/O pin input to row I/O pin output	C1 = 35 pF	(2)		10.0		15.0		20.0	ns
t _{PD2}	Column I/O pin input to column I/O pin output	C1 = 35 pF (2)	EPM9320A		10.8					ns
			EPM9320				16.0		23.0	ns
			EPM9400				16.2		23.2	ns
			EPM9480				16.4		23.4	ns
			EPM9560A		11.4					ns
			EPM9560				16.6		23.6	ns
t _{FSU}	Global clock setup time for I/O cell			3.0		5.0		6.0		ns
t _{FH}	Global clock hold time for I/O cell			0.0		0.0		0.0		ns
t _{FCO}	Global clock to I/O cell output delay	C1 = 35 pF		1.0 (3)	4.8	1.0 (3)	7.0	1.0 (3)	8.5	ns
t _{CNT}	Minimum internal global clock period	(4)			6.9		8.5		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(4)		144.9		117.6		100.0		MHz

Table 22	Table 22. MAX 9000 Internal Timing Characteristics Note (1)								
Symbol	Parameter	Conditions	Speed Grade						Unit
				-10		-15		-20	
			Min	Max	Min	Max	Min	Max	
t_{LAD}	Logic array delay			3.5		4.0		4.5	ns
t _{LAC}	Logic control array delay			3.5		4.0		4.5	ns
t _{IC}	Array clock delay			3.5		4.0		4.5	ns
t _{EN}	Register enable time			3.5		4.0		4.5	ns
t _{SEXP}	Shared expander delay			3.5		5.0		7.5	ns
t _{PEXP}	Parallel expander delay			0.5		1.0		2.0	ns
t _{RD}	Register delay			0.5		1.0		1.0	ns
t _{COMB}	Combinatorial delay			0.4		1.0		1.0	ns
t _{SU}	Register setup time		2.4		3.0		4.0		ns
t _H	Register hold time		2.0		3.5		4.5		ns
t _{PRE}	Register preset time			3.5		4.0		4.5	ns
t _{CLR}	Register clear time			3.7		4.0		4.5	ns
t _{FTD}	FastTrack drive delay			0.5		1.0		2.0	ns
t_{LPA}	Low-power adder	(5)		10.0		15.0		20.0	ns

Table 23	3. IOC Delays								
Symbol	Parameter	Conditions	Speed Grade						Unit
			-10		-15		-20		
			Min	Max	Min	Max	Min	Max	
t _{IODR}	I/O row output data delay			0.2		0.2		1.5	ns
t _{IODC}	I/O column output data delay			0.4		0.2		1.5	ns
t _{IOC}	I/O control delay	(6)		0.5		1.0		2.0	ns
t _{IORD}	I/O register clock-to-output delay			0.6		1.0		1.5	ns
t _{IOCOMB}	I/O combinatorial delay			0.2		1.0		1.5	ns
t _{IOSU}	I/O register setup time before clock		2.0		4.0		5.0		ns
t _{IOH}	I/O register hold time after clock		1.0		1.0		1.0		ns
t _{IOCLR}	I/O register clear delay			1.5		3.0		3.0	ns
t _{IOFD}	I/O register feedback delay			0.0		0.0		0.5	ns
t _{INREG}	I/O input pad and buffer to I/O register delay			3.5		4.5		5.5	ns
t _{INCOMB}	I/O input pad and buffer to row and column delay			1.5		2.0		2.5	ns
t _{OD1}	Output buffer and pad delay, Slow slew rate = off, V _{CCIO} = 5.0 V	C1 = 35 pF		1.8		2.5		2.5	ns
t _{OD2}	Output buffer and pad delay, Slow slew rate = off, V _{CCIO} = 3.3 V	C1 = 35 pF		2.3		3.5		3.5	ns
t _{OD3}	Output buffer and pad delay, Slow slew rate = on, V _{CCIO} = 5.0 V or 3.3 V	C1 = 35 pF		8.3		10.0		10.5	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		2.5		2.5		2.5	ns
t _{ZX1}	Output buffer enable delay, Slow slew rate = off, V _{CCIO} = 5.0 V	C1 = 35 pF		2.5		2.5		2.5	ns
t _{ZX2}	Output buffer enable delay, Slow slew rate = off, V _{CCIO} = 3.3 V	C1 = 35 pF		3.0		3.5		3.5	ns
t_{ZX3}	Output buffer enable delay, Slow slew rate = on, V _{CCIO} = 3.3 V or 5.0 V	C1 = 35 pF		9.0		10.0		10.5	ns

The parameters in this equation are shown below:

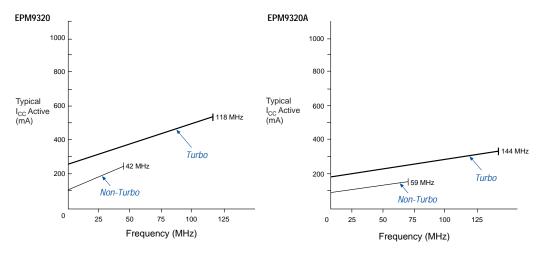
MC_{TON} = Number of macrocells with the Turbo Bit option turned on, as reported in the MAX+PLUS II Report File (.rpt)

 MC_{DEV} = Number of macrocells in the device

 $MC_{USED} = Number of macrocells used in the design, as reported in the MAX+PLUS II Report File$

f_{MAX} = Highest clock frequency to the device

 tog_{LC} = Average percentage of logic cells toggling at each clock


(typically 12.5%)

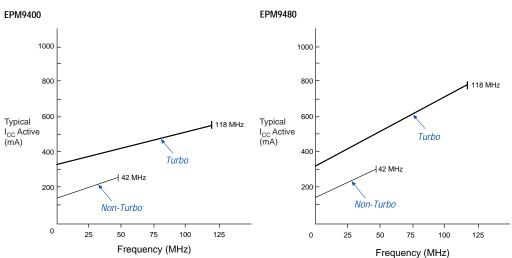

A, B, C = Constants, shown in Table 25

Table 25. MAX 9000 I _{CC} Equation Constants						
Device	Constant A	Constant B	Constant C			
EPM9320	0.81	0.33	0.056			
EPM9320A	0.56	0.31	0.024			
EPM9400	0.60	0.33	0.053			
EPM9480	0.68	0.29	0.064			
EPM9560	0.68	0.26	0.052			
EPM9560A	0.56	0.31	0.024			

This calculation provides an $I_{\rm CC}$ estimate based on typical conditions with no output load, using a typical pattern of a 16-bit, loadable, enabled up/down counter in each LAB. Actual $I_{\rm CC}$ values should be verified during operation, because the measurement is sensitive to the actual pattern in the device and the environmental operating conditions. Figure 15 shows typical supply current versus frequency for MAX 9000 devices.

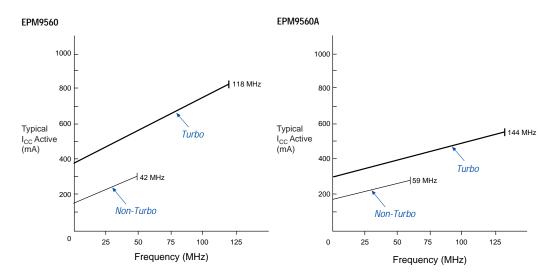


Figure 15. I_{CC} vs. Frequency for MAX 9000 Devices (Part 2 of 2)

Device Pin-Outs

Tables 26 through 29 show the dedicated pin names and numbers for each EPM9320, EPM9320A, EPM9400, EPM9480, EPM9560, and EPM9560A device package.

Table 26. EPM9320 & EPM9320A Dedicated Pin-Outs (Part 1 of 2) Note (1)							
Pin Name	84-Pin PLCC (2)	208-Pin RQFP	280-Pin PGA (3)	356-Pin BGA			
DIN1 (GCLK1)	1	182	V10	AD13			
DIN2 (GCLK2)	84	183	U10	AF14			
DIN3 (GCLR)	13	153	V17	AD1			
DIN4 (GOE)	72	4	W2	AC24			
TCK	43	78	A9	A18			
TMS	55	49	D6	E23			
TDI	42	79	C11	A13			
TDO	30	108	A18	D3			

Pin Name	84-Pin PLCC (2)	208-Pin RQFP	280-Pin PGA (3)	356-Pin BGA
GND	6, 18, 24, 25, 48, 61, 67, 70	14, 20, 24, 31, 35, 41, 42, 43, 44, 46, 47, 66, 85, 102, 110, 113, 114, 115, 116, 118, 121, 122, 132, 133, 143, 152, 170, 189, 206	D4, D5, D16, E4, E5, E6, E15, E16, F5, F15, G5, G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P4, P5, P15, P16, R4, R5, R15, R16, T4, T5, T16	A9, A22, A25, A26, B25, B26, D2, E1, E26, F2, G1, G25, G26, H2, J1, J25, J26 K2, L26, M26, N1, N25, P26, R2, T1, U2, U26, V1, V25, W25, Y26, AA2, AB1 AB26, AC26, AE1, AF1, AF2, AF4, AF7, AF20
VCCINT (5.0 V only)	14, 21, 28, 57, 64, 71	10, 19, 30, 45, 112, 128, 139, 148	D15, E8, E10, E12, E14, R7, R9, R11, R13, R14, T14	D26, F1, H1, K26, N26, P1 U1, W26, AE26, AF25, AF26
VCCIO (3.3 or 5.0 V)	15, 37, 60, 79	5, 25, 36, 55, 72, 91, 111, 127, 138, 159, 176, 195	D14, E7, E9, E11, E13, R6, R8, R10, R12, T13, T15	A1, A2, A21, B1, B10, B24 D1, H26, K1, M25, R1, V26 AA1, AC25, AF5, AF8, AF19
No Connect (N.C.)	29	6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 109, 140, 141, 142, 144, 145, 146, 147, 149, 150, 151	B6, K19, L2, L4, L18, L19, M1, M2, M3, M4, M16, M17, M18, M19, N1, N2, N3, N4, N16, N17, N18, N19, P1, P2, P3, P17, P18, P19, R1, R2, R3, R17, R18, R19, T1, T2, T3, T17, T18, T19, U1, U2, U3, U17, U18, U19, V1, V2, V19, W1	B4, B5, B6, B7, B8, B9, B11, B12, B13, B14, B15, B16, B18, B19, B20, B21, B22, B23, C4, C23, D4, D23, E4, E22, F4, F23, G4 H4, H23, J23, K4, L4, L23, N4, P4, P23, R3, R26, T2, T3, T4, T5, T22, T23, T24, T25, T26, U3, U4, U5, U22 U23, U24, U25, V2, V3, V4 V5, V22, V23, V24, W1, W2, W3, W4, W5, W22, W23, W24, Y1, Y2, Y3, Y4 Y5, Y22, Y23, Y24, Y25, A3, AA4, AA5, AA22, AA23, AA24, AA25, AA26, AB2, AB3, AB4, AB5, AB23, AB24, AB25, AC1, AC2, AC23, AD4, AD23, AE4, AE5, AE6, AE7, AE9 AE11, AE12, AE14, AE15, AE16, AE18, AE19, AE20, AE21, AE22, AE23
VPP <i>(4)</i>	56	48	C4	E25
Total User I/O Pins (5)	60	132	168	168

Notes:

- (1) All pins not listed are user I/O pins.
- (2) Perform a complete thermal analysis before committing a design to this device package. See Application Note 74 (Evaluating Power for Altera Devices).
- (3) EPM9320A devices are not offered in this package.
- (4) During in-system programming, each device's VPP pin must be connected to the 5.0-V power supply. During normal device operation, the VPP pin is pulled up internally and can be connected to the 5.0-V supply or left unconnected.
- (5) The user I/O pin count includes dedicated input pins and all I/O pins.

Table 27. EPM9400 Ded	licated Pin-Outs Note (1)		
Pin Name	84-Pin PLCC (2)	208-Pin RQFP	240-Pin RQFP
DIN1 (GCLK1)	2	182	210
DIN2 (GCLK2)	1	183	211
DIN3 (GCLR)	12	153	187
DIN4 (GOE)	74	4	234
TCK	43	78	91
TMS	54	49	68
TDI	42	79	92
TDO	31	108	114
GND	6, 13, 20, 26, 27, 47, 60, 66, 69, 73	14, 20, 24, 31, 35, 41, 42, 43, 44, 46, 47, 66, 85, 102, 110, 113, 114, 115, 116, 118, 121, 122, 132, 133, 143, 152, 170, 189, 206	5, 14, 25, 34, 45, 54, 65, 66, 81, 96, 110, 115, 126, 127, 146, 147, 166, 167, 186, 200, 216, 229
VCCINT (5.0 V only)	16, 23, 30, 56, 63, 70	10, 19, 30, 45, 112, 128, 139, 148	4, 24, 44, 64, 117, 137, 157, 177
VCCIO (3.3 or 5.0 V)	17, 37, 59, 80	5, 25, 36, 55, 72, 91, 111, 127, 138, 159, 176, 195	15, 35, 55, 73, 86, 101, 116, 136, 156, 176, 192, 205, 220, 235
No Connect (N.C.)	_	6, 7, 8, 9, 11, 12, 13, 109, 144, 145, 146, 147, 149, 150, 151	1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 168, 169, 170, 171, 172, 173, 174, 175, 178, 179, 180, 181, 182, 183, 184, 185, 236, 237, 238, 239, 240
VPP (3)	55	48	67
Total User I/O Pins (4)	59	139	159

Notes:

- (1) All pins not listed are user I/O pins.
- (2) Perform a complete thermal analysis before committing a design to this device package. See *Application Note 74* (Evaluating Power for Altera Devices) for more information.
- (3) During in-system programming, each device's VPP pin must be connected to the 5.0-V power supply. During normal device operation, the VPP pin is pulled up internally and can be connected to the 5.0-V supply or left unconnected.
- (4) The user I/O pin count includes dedicated input pins and all I/O pins.

Table 28. EPM9480 Dedicated Pin-Outs Note (1)						
Pin Name	208-Pin RQFP	240-Pin RQFP				
DIN1 (GCLK1)	182	210				
DIN2 (GCLK2)	183	211				
DIN3 (GCLR)	153	187				
DIN4 (GOE)	4	234				
TCK	78	91				
TMS	49	68				
TDI	79	92				
TDO	108	114				
GND	14, 20, 24, 31, 35, 41, 42, 43, 44, 46, 47, 66, 85, 102, 110, 113, 114, 115, 116, 118, 121, 122, 132, 133, 143, 152, 170, 189, 206	5, 14, 25, 34, 45, 54, 65, 66, 81, 96, 110, 115, 126, 127, 146, 147, 166, 167, 186, 200, 216, 229				
VCCINT (5.0 V only)	10, 19, 30, 45, 112, 128, 139, 148	4, 24, 44, 64, 117, 137, 157, 177				
VCCIO (3.3 or 5.0 V)	5, 25, 36, 55, 72, 91, 111, 127, 138, 159, 176, 195	15, 35, 55, 73, 86, 101, 116, 136, 156, 176, 192, 205, 220, 235				
No Connect (N.C.)	6, 7, 8, 9, 109, 149, 150, 151	1, 2, 3, 178, 179, 180, 181, 182, 183, 184, 185, 236, 237, 238, 239, 240				
VPP (2)	48	67				
Total User I/O Pins (3)	146	175				

Notes:

- (1) All pins not listed are user I/O pins.
- (2) During in-system programming, each device's VPP pin must be connected to the 5.0-V power supply. During normal device operation, the VPP pin is pulled up internally and can be connected to the 5.0-V supply or left unconnected.
- (3) The user I/O pin count includes dedicated input pins and all I/O pins.