E·XFL

Intel - EPM9560ARI240-10 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	4.5V ~ 5.5V
Number of Logic Elements/Blocks	35
Number of Macrocells	560
Number of Gates	12000
Number of I/O	191
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	240-BFQFP Exposed Pad
Supplier Device Package	240-RQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm9560ari240-10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Programmable macrocell flipflops with individual clear, preset, ...and More clock, and clock enable controls **Features**
 - Programmable security bit for protection of proprietary designs
 - Software design support and automatic place-and-route provided by Altera's MAX+PLUS® II development system on Windows-based PCs as well as Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations
 - Additional design entry and simulation support provided by EDIF 200 and 300 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest
 - Programming support with Altera's Master Programming Unit (MPU), BitBlasterTM serial download cable, ByteBlasterTM parallel port download cable, and ByteBlasterMVTM parallel port download cable, as well as programming hardware from third-party manufacturers
 - Offered in a variety of package options with 84 to 356 pins (see Table 2)

Table 2. MAX 9000 Package Options & I/O Counts Note (1)							
Device	84-Pin PLCC	208-Pin RQFP	240-Pin RQFP	280-Pin PGA	304-Pin RQFP	356-Pin BGA	
EPM9320	60 (2)	132	-	168	-	168	
EPM9320A	60 (2)	132	-	-	-	168	
EPM9400	59 <i>(</i> 2 <i>)</i>	139	159	-	-	-	
EPM9480	-	146	175	-	-	-	
EPM9560	-	153	191	216	216	216	
EPM9560A	-	153	191	-	-	216	

Notes:

- MAX 9000 device package types include plastic J-lead chip carrier (PLCC), power (1)quad flat pack (RQFP), ceramic pin-grid array (PGA), and ball-grid array (BGA) packages.
- Perform a complete thermal analysis before committing a design to this device (2)package. See Application Note 74 (Evaluating Power for Altera Devices).

General Description

The MAX 9000 family of in-system-programmable, high-density, highperformance EPLDs is based on Altera's third-generation MAX architecture. Fabricated on an advanced CMOS technology, the EEPROMbased MAX 9000 family provides 6,000 to 12,000 usable gates, pin-to-pin delays as fast as 10 ns, and counter speeds of up to 144 MHz. The -10 speed grade of the MAX 9000 family is compliant with the **PCI Local Bus Specification, Revision 2.2.** Table 3 shows the speed grades available for MAX 9000 devices.

Table 3. MAX 9000 Speed Grade Availability						
Device		Speed Grade				
	-10	-15	-20			
EPM9320		\checkmark	 ✓ 			
EPM9320A	\checkmark					
EPM9400		\checkmark	 ✓ 			
EPM9480		\checkmark	\checkmark			
EPM9560		\checkmark	 ✓ 			
EPM9560A	\checkmark					

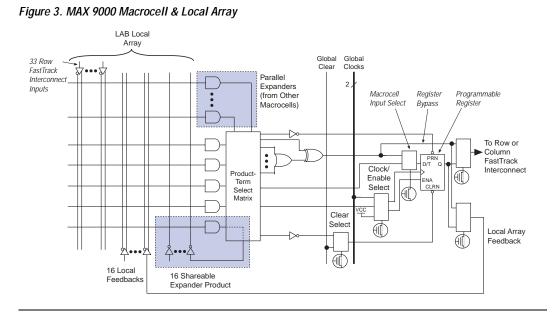
Table 4 shows the performance of MAX 9000 devices for typical functions.

Table 4. MAX 9000 PerformanceNote (1)							
Application	Macrocells Used	Speed Grade Units					
		-10	-15	-20			
16-bit loadable counter	16	144	118	100	MHz		
16-bit up/down counter	16	144	118	100	MHz		
16-bit prescaled counter	16	144	118	100	MHz		
16-bit address decode	1	5.6 (10)	7.9 (15)	10 (20)	ns		
16-to-1 multiplexer	1	7.7 (12.1)	10.9 (18)	16 (26)	ns		

Note:

(1) Internal logic array block (LAB) performance is shown. Numbers in parentheses show external delays from row input pin to row I/O pin.

The MAX 9000 architecture supports high-density integration of systemlevel logic functions. It easily integrates multiple programmable logic devices ranging from PALs, GALs, and 22V10s to field-programmable gate array (FPGA) devices and EPLDs. All MAX 9000 device packages provide four dedicated inputs for global control signals with large fan-outs. Each I/O pin has an associated I/O cell register with a clock enable control on the periphery of the device. As outputs, these registers provide fast clock-to-output times; as inputs, they offer quick setup times.


MAX 9000 EPLDs provide 5.0-V in-system programmability (ISP). This feature allows the devices to be programmed and reprogrammed on the printed circuit board (PCB) for quick and efficient iterations during design development and debug cycles. MAX 9000 devices are guaranteed for 100 program and erase cycles.

MAX 9000 EPLDs contain 320 to 560 macrocells that are combined into groups of 16 macrocells, called logic array blocks (LABs). Each macrocell has a programmable-AND/fixed-OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. For increased flexibility, each macrocell offers a dual-output structure that allows the register and the product terms to be used independently. This feature allows register-rich and combinatorial-intensive designs to be implemented efficiently. The dual-output structure of the MAX 9000 macrocell also improves logic utilization, thus increasing the effective capacity of the devices. To build complex logic functions, each macrocell can be supplemented with both shareable expander product terms and high-speed parallel expander product terms to provide up to 32 product terms per macrocell.

The MAX 9000 family provides programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the user to configure one or more macrocells to operate at 50% or less power while adding only a nominal timing delay. MAX 9000 devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. MAX 9000 devices offer the MultiVolt feature, which allows output drivers to be set for either 3.3-V or 5.0-V operation in mixedvoltage systems.

Macrocells

The MAX 9000 macrocell consists of three functional blocks: the product terms, the product-term select matrix, and the programmable register. The macrocell can be individually configured for both sequential and combinatorial logic operation. See Figure 3.

Combinatorial logic is implemented in the local array, which provides five product terms per macrocell. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register clear, preset, clock, and clock enable control functions. Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

The MAX+PLUS II software automatically optimizes product-term allocation according to the logic requirements of the design.

For registered functions, each macrocell register can be individually programmed for D, T, JK, or SR operation with programmable clock control. The flipflop can also be bypassed for combinatorial operation. During design entry, the user specifies the desired register type; the MAX+PLUS II software then selects the most efficient register operation for each registered function to optimize resource utilization.

Each programmable register can be clocked in three different modes:

- By either global clock signal. This mode achieves the fastest clock-tooutput performance.
- By a global clock signal and enabled by an active-high clock enable. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock.
- By an array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins.

Two global clock signals are available. As shown in Figure 2, these global clock signals can be the true or the complement of either of the global clock pins (DIN1 and DIN2).

Each register also supports asynchronous preset and clear functions. As shown in Figure 3, the product-term select matrix allocates product terms to control these operations. Although the product-term-driven preset and clear inputs to registers are active high, active-low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the dedicated global clear pin (DIN3). The global clear can be programmed for active-high or active-low operation.

All MAX 9000 macrocells offer a dual-output structure that provides independent register and combinatorial logic output within the same macrocell. This function is implemented by a process called register packing. When register packing is used, the product-term select matrix allocates one product term to the D input of the register, while the remaining product terms can be used to implement unrelated combinatorial logic. Both the registered and the combinatorial output of the macrocell can feed either the FastTrack Interconnect or the LAB local array. The MAX+PLUS II Compiler automatically allocates as many as three sets of up to five parallel expanders to macrocells that require additional product terms. Each set of expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$.

Two groups of eight macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lowernumbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them.

FastTrack Interconnect

In the MAX 9000 architecture, connections between macrocells and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal and vertical routing channels that traverse the entire device. This device-wide routing structure provides predictable performance even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance. Figure 6 shows the interconnection of four adjacent LABs with row and column interconnects.

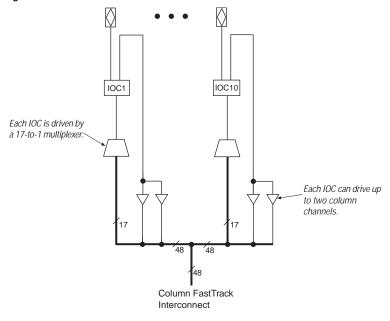


Figure 9. MAX 9000 Column-to-IOC Connections

Dedicated Inputs

In addition to the general-purpose I/O pins, MAX 9000 devices have four dedicated input pins. These dedicated inputs provide low-skew, device-wide signal distribution to the LABs and IOCs in the device, and are typically used for global clock, clear, and output enable control signals. The global control signals can feed the macrocell or IOC clock and clear inputs, as well as the IOC output enable. The dedicated inputs can also be used as general-purpose data inputs because they can feed the row FastTrack Interconnect (see Figure 2 on page 7).

I/O Cells

Figure 10 shows the IOC block diagram. Signals enter the MAX 9000 device from either the I/O pins that provide general-purpose input capability or from the four dedicated inputs. The IOCs are located at the ends of the row and column interconnect channels.

The output buffer in each IOC has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A slower slew rate reduces board-level noise and adds a nominal timing delay to the output buffer delay (t_{OD}) parameter. The fast slew rate should be used for speed-critical outputs in systems that are adequately protected against noise. Designers can specify the slew rate on a pin-by-pin basis during design entry or assign a default slew rate to all pins on a global basis. The slew rate control affects both rising and falling edges of the output signals.

Table 6. Peripheral Bus Sources						
Peripheral Control		Source				
Signal	EPM9320 EPM9320A	EPM9400	EPM9480	EPM9560 EPM9560A		
OE0/ENA0	Row C	Row E	Row F	Row G		
OE1/ENA1	Row B	Row E	Row F	Row F		
OE2/ENA2	Row A	Row E	Row E	Row E		
OE3/ENA3	Row B	Row B	Row B	Row B		
OE4/ENA4	Row A	Row A	Row A	Row A		
OE5	Row D	Row D	Row D	Row D		
OE6	Row C	Row C	Row C	Row C		
OE7/CLR1	Row B/GOE	Row B/GOE	Row B/GOE	Row B/GOE		
CLR0/ENA5	Row A/GCLR	Row A/GCLR	Row A/gclr	Row A/GCLR		
CLK0	GCLK1	GCLK1	GCLK1	GCLK1		
CLK1	GCLK2	GCLK2	GCLK2	GCLK2		
CLK2	Row D	Row D	Row D	Row D		
CLK3	Row C	Row C	Row C	Row C		

Output Configuration

The MAX 9000 device architecture supports the MultiVolt I/O interface feature, which allows MAX 9000 devices to interface with systems of differing supply voltages. The 5.0-V devices in all packages can be set for 3.3-V or 5.0-V I/O pin operation. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCINT pins must always be connected to a 5.0-V power supply. With a 5.0-V V_{CCINT} level, input voltages are at TTL levels and are therefore compatible with 3.3-V and 5.0-V inputs.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 9000 device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- 1. *Enter ISP*. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- 4. *Program.* Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- 5. *Verify*. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 9000 Device

The time required to program a single MAX 9000 device in-system can be calculated from the following formula:

$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$									
where:	t _{PROG} t _{PPULSE}	Programming timeSum of the fixed times to erase, program, and verify the EEPROM cells							
	Cycle _{PTCK} f _{TCK}	Number of TCK cycles to program a deviceTCK frequency							

The ISP times for a stand-alone verification of a single MAX 9000 device can be calculated from the following formula:

$t_{VER} = t_{VPULSE} + -$	releving free start fr
where: t_{VER} t_{VPULSE} $Cycle_{VTCK}$	Verify timeSum of the fixed times to verify the EEPROM cellsNumber of TCK cycles to verify a device

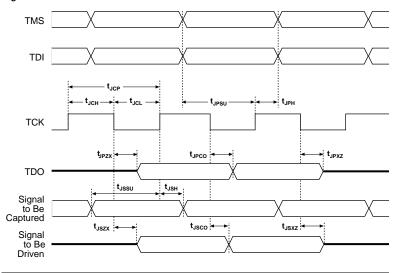
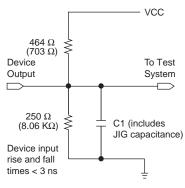


Figure 11. MAX 9000 JTAG Waveforms

Table 13 shows the JTAG timing parameters and values for MAX 9000 devices.


Table 13. JTAG Timing Parameters & Values for MAX 9000 Devices						
Symbol	Parameter	Min	Мах	Unit		
t _{JCP}	TCK clock period	100		ns		
t _{JCH}	TCK clock high time	50		ns		
t _{JCL}	TCK clock low time	50		ns		
t _{JPSU}	JTAG port setup time	20		ns		
t _{JPH}	JTAG port hold time	45		ns		
t _{JPCO}	JTAG port clock to output		25	ns		
t _{JPZX}	JTAG port high impedance to valid output		25	ns		
t _{JPXZ}	JTAG port valid output to high impedance		25	ns		
t _{JSSU}	Capture register setup time	20		ns		
t _{JSH}	Capture register hold time	45		ns		
t _{JSCO}	Update register clock to output		25	ns		
t _{JSZX}	Update register high impedance to valid output		25	ns		
t _{JSXZ}	Update register valid output to high impedance		25	ns		

For detailed information on JTAG operation in MAX 9000 devices, refer to *Application Note 39 (IEEE 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices).*

Programmable Speed/Power Control	MAX 9000 devices offer a power-saving mode that supports low-power operation across user-defined signal paths or the entire device. Because most logic applications require only a small fraction of all gates to operate at maximum frequency, this feature allows total power dissipation to be reduced by 50% or more.
	The designer can program each individual macrocell in a MAX 9000 device for either high-speed (i.e., with the Turbo Bit ^{M} option turned on) or low-power (i.e., with the Turbo Bit option turned off) operation. As a result, speed-critical paths in the design can run at high speed, while remaining paths operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the LAB local array delay (t_{LOCAL}).
Design Security	All MAX 9000 EPLDs contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a proprietary design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security, because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is erased.
Generic Testing	MAX 9000 EPLDs are fully functionally tested. Complete testing of each programmable EEPROM bit and all logic functionality ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 12. Test patterns can be used and then erased during the early stages of the production flow.

Figure 12. MAX 9000 AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in parentheses are for 3.3-V outputs. Numbers without parentheses are for 5.0-V devices or outputs.

Operating Conditions

Tables 14 through 20 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 9000 devices.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to ground (2)	-2.0	7.0	V
VI	DC input voltage		-2.0	7.0	V
V _{CCISP}	Supply voltage during in-system programming		-2.0	7.0	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	°C
Т _{АМВ}	Ambient temperature	Under bias	-65	135	°C
TJ	Junction temperature	Ceramic packages, under bias		150	°C
		PQFP and RQFP packages, under bias		135	°C

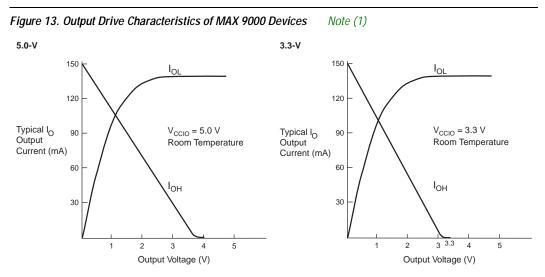
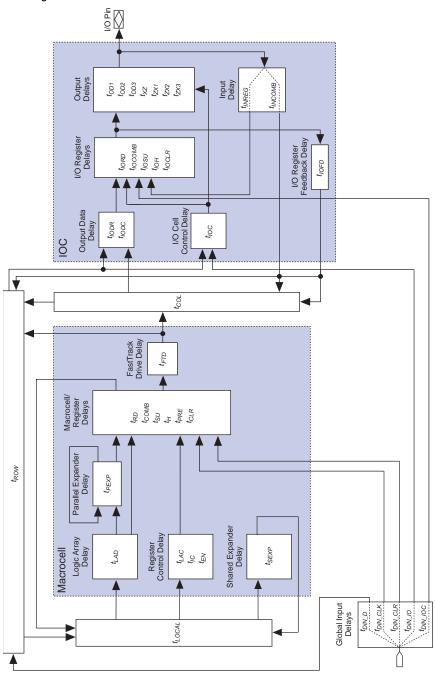

Table 1	Table 15. MAX 9000 Device Recommended Operating Conditions							
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	4.75 (4.50)	5.25 (5.50)	V			
V _{CCIO}	Supply voltage for output drivers, 5.0-V operation	(3), (4)	4.75 (4.50)	5.25 (5.50)	V			
	Supply voltage for output drivers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V			
V _{CCISP}	Supply voltage during in-system programming		4.75	5.25	V			
VI	Input voltage		-0.5	V _{CCINT} + 0.5	V			
Vo	Output voltage		0	V _{CCIO}	V			
Τ _A	Ambient temperature	For commercial use	0	70	°C			
		For industrial use	-40	85	°C			
TJ	Junction temperature	For commercial use	0	90	°C			
		For industrial use	-40	105	°C			
t _R	Input rise time			40	ns			
t _F	Input fall time			40	ns			

Table 2	Table 20. MAX 9000A Device Typical I _{CC} Supply Current Values							
Symbol	Parameter	Conditions	EPM9320A	EPM9560A	Unit			
I _{CC1}	I _{CC} supply current (low-power mode, standby, typical)	V ₁ = ground, no load (11)	99	174	mA			

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input on I/O pins is -0.5 V and on the four dedicated input pins is -0.3 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 7.0 V for periods shorter than 20 ns under no-load conditions.
- (3) V_{CC} must rise monotonically.
- (4) Numbers in parentheses are for industrial-temperature-range devices.
- (5) Typical values are for $T_A = 25^\circ \text{ C}$ and $V_{CC} = 5.0 \text{ V}$.
- (6) These values are specified under the MAX 9000 recommended operating conditions, shown in Table 15 on page 27.
- (7) During in-system programming, the minimum V_{IH} of the JTAG TCK pin is 3.6 V. The minimum V_{IH} of this pin during JTAG testing remains at 2.0 V. To attain this 3.6-V V_{IH} during programming, the ByteBlaster and ByteBlasterMV download cables must have a 5.0-V V_{CC} .
- (8) This parameter is measured with 50% of the outputs each sinking 12 mA. The I_{OH} parameter refers to high-level TTL or CMOS output current; the I_{OL} parameter refers to the low-level TTL or CMOS output current.
- (9) JTAG pin input leakage is typically –60 μA.
- (10) Capacitance is sample-tested only and is measured at 25° C.
- (11) Measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB. I_{CC} is measured at 0° C.


Figure 13 shows typical output drive characteristics for MAX 9000 devices with 5.0-V and 3.3-V $\rm V_{CCIO}.$

Note:

(1) Output drive characteristics include the JTAG TDO pin.

Figure 14. MAX 9000 Timing Model

Symbol	Parameter	Conditions	Speed Grade					Unit	
			-10		-15		-20		-
			Min	Мах	Min	Max	Min	Max	1
t _{LAD}	Logic array delay			3.5		4.0		4.5	ns
t _{LAC}	Logic control array delay			3.5		4.0		4.5	ns
t _{IC}	Array clock delay			3.5		4.0		4.5	ns
t _{EN}	Register enable time			3.5		4.0		4.5	ns
t _{SEXP}	Shared expander delay			3.5		5.0		7.5	ns
t _{PEXP}	Parallel expander delay			0.5		1.0		2.0	ns
t _{RD}	Register delay			0.5		1.0		1.0	ns
t _{COMB}	Combinatorial delay			0.4		1.0		1.0	ns
t _{SU}	Register setup time		2.4		3.0		4.0		ns
t _H	Register hold time		2.0		3.5		4.5		ns
t _{PRE}	Register preset time			3.5		4.0		4.5	ns
t _{CLR}	Register clear time			3.7		4.0		4.5	ns
t _{FTD}	FastTrack drive delay			0.5		1.0		2.0	ns
t _{LPA}	Low-power adder	(5)		10.0		15.0		20.0	ns

Symbol	Parameter	Conditions	Speed Grade					Unit	
			-10		-15		-20		1
			Min	Мах	Min	Мах	Min	Мах	1
t _{LOCAL}	LAB local array delay			0.5		0.5		0.5	ns
t _{ROW}	FastTrack row delay	(6)		0.9		1.4		2.0	ns
t _{COL}	FastTrack column delay	(6)		0.9		1.7		3.0	ns
t _{DIN_D}	Dedicated input data delay			4.0		4.5		5.0	ns
t _{DIN_CLK}	Dedicated input clock delay			2.7		3.5		4.0	ns
t _{DIN_CLR}	Dedicated input clear delay			4.5		5.0		5.5	ns
t _{DIN_IOC}	Dedicated input I/O register clock delay			2.5		3.5		4.5	ns
t _{DIN_IO}	Dedicated input I/O register control delay			5.5		6.0		6.5	ns

Notes to tables:

- (1) These values are specified under the MAX 9000 device recommended operating conditions, shown in Table 15 on page 27.
- (2) See Application Note 77 (Understanding MAX 9000 Timing) for more information on test conditions for t_{PD1} and t_{PD2} delays.
- (3) This parameter is a guideline that is sample-tested only. It is based on extensive device characterization. This parameter applies for both global and array clocking as well as both macrocell and I/O cell registers.
- (4) Measured with a 16-bit loadable, enabled, up/down counter programmed in each LAB.
- (5) The t_{LPA} parameter must be added to the t_{LOCAL} parameter for macrocells running in low-power mode.
- (6) The t_{ROW} , t_{COL} , and t_{IOC} delays are worst-case values for typical applications. Post-compilation timing simulation or timing analysis is required to determine actual worst-case performance.

Power Consumption

The supply power (P) versus frequency (f_{MAX}) for MAX 9000 devices can be calculated with the following equation:

 $P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$

The P_{IO} value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*. The I_{CCINT} value depends on the switching frequency and the application logic.

The I_{CCINT} value is calculated with the following equation:

$$I_{CCINT} = (A \times MC_{TON}) + [B \times (MC_{DEV} - MC_{TON})] + (C \times MC_{USED} \times \mathbf{f}_{MAX} \times \mathbf{tog}_{LC})$$

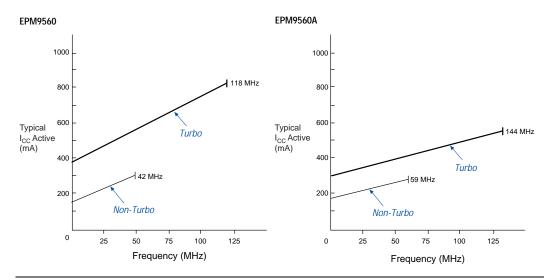


Figure 15. I_{CC} vs. Frequency for MAX 9000 Devices (Part 2 of 2)

Device Pin-Outs

Tables 26 through 29 show the dedicated pin names and numbers for each EPM9320, EPM9320A, EPM9400, EPM9480, EPM9560, and EPM9560A device package.

Table 26. EPM9320 & EPM9320A Dedicated Pin-Outs (Part 1 of 2)Note (1)							
Pin Name	84-Pin PLCC (2)	208-Pin RQFP	280-Pin PGA (3)	356-Pin BGA			
DIN1 (GCLK1)	1	182	V10	AD13			
DIN2 (GCLK2)	84	183	U10	AF14			
DIN3 (GCLR)	13	153	V17	AD1			
DIN4 (GOE)	72	4	W2	AC24			
TCK	43	78	A9	A18			
TMS	55	49	D6	E23			
TDI	42	79	C11	A13			
TDO	30	108	A18	D3			

Notes:

- All pins not listed are user I/O pins. (1)
- Perform a complete thermal analysis before committing a design to this device package. See Application Note 74 (2)(Evaluating Power for Altera Devices).
- (3) EPM9320A devices are not offered in this package.
- During in-system programming, each device's VPP pin must be connected to the 5.0-V power supply. During (4) normal device operation, the VPP pin is pulled up internally and can be connected to the 5.0-V supply or left unconnected.
- (5) The user I/O pin count includes dedicated input pins and all I/O pins.

Pin Name	84-Pin PLCC (2)	208-Pin RQFP	240-Pin RQFP
DIN1 (GCLK1)	2	182	210
DIN2 (GCLK2)	1	183	211
DIN3 (GCLR)	12	153	187
DIN4 (GOE)	74	4	234
TCK	43	78	91
TMS	54	49	68
TDI	42	79	92
TDO	31	108	114
GND	6, 13, 20, 26, 27, 47, 60, 66, 69, 73	14, 20, 24, 31, 35, 41, 42, 43, 44, 46, 47, 66, 85, 102, 110, 113, 114, 115, 116, 118, 121, 122, 132, 133, 143, 152, 170, 189, 206	5, 14, 25, 34, 45, 54, 65, 66, 81, 96, 110, 115, 126, 127, 146, 147, 166, 167, 186, 200, 216, 229
VCCINT (5.0 V only)	16, 23, 30, 56, 63, 70	10, 19, 30, 45, 112, 128, 139, 148	4, 24, 44, 64, 117, 137, 157, 177
VCCIO (3.3 or 5.0 V)	17, 37, 59, 80	5, 25, 36, 55, 72, 91, 111, 127, 138, 159, 176, 195	15, 35, 55, 73, 86, 101, 116, 136, 156, 176, 192, 205, 220, 235
No Connect (N.C.)	-	6, 7, 8, 9, 11, 12, 13, 109, 144, 145, 146, 147, 149, 150, 151	1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 168, 169, 170, 171, 172, 173, 174, 175, 178, 179, 180, 181, 182, 183, 184, 185, 236, 237, 238, 239, 240
VPP (3)	55	48	67
Total User I/O Pins (4)	59	139	159

Notes:

⁽¹⁾ All pins not listed are user I/O pins.

Perform a complete thermal analysis before committing a design to this device package. See Application Note 74 (2)(Evaluating Power for Altera Devices) for more information.

⁽³⁾ During in-system programming, each device's VPP pin must be connected to the 5.0-V power supply. During normal device operation, the VPP pin is pulled up internally and can be connected to the 5.0-V supply or left unconnected.

⁽⁴⁾ The user I/O pin count includes dedicated input pins and all I/O pins.

Pin Name	208-Pin RQFP	240-Pin RQFP	280-Pin PGA (2)	304-Pin RQFP (2)	356-Pin BGA
DIN1 (GCLK1)	182	210	V10	266	AD13
DIN2 (GCLK2)	183	211	U10	267	AF14
DIN3 (GCLR)	153	187	V17	237	AD1
DIN4 (GOE)	4	234	W2	296	AC24
TCK	78	91	A9	114	A18
TMS	49	68	D6	85	E23
TDI	79	92	C11	115	A13
TDO	108	114	A18	144	D3
GND	14, 20, 24, 31, 35, 41, 42, 43, 44, 46, 47, 66, 85, 102, 110, 113, 114, 115, 116, 118, 121, 122, 132, 133, 143, 152, 170, 189, 206	5, 14, 25, 34, 45, 54, 65, 66, 81, 96, 110, 115, 126, 127, 146, 147, 166, 167, 186, 200, 216, 229	F5, F15, G5, G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P4, P5, P15, P16, R4, R5, R15, R16, T4, T5, T16	13, 22, 33, 42, 53, 62, 73, 74, 102, 121, 138, 155, 166, 167, 186, 187, 206, 207, 226, 254, 273, 290	A9, A22, A25, A26, B25, B26, D2, E1, E26, F2, G1, G25, G26, H2, J1, J25, J26, K2, L26, M26, N1, N25, P26, R2, T1, U2, U26, V1, V25, W25, Y26, AA2, AB1, AB26, AC26, AE1, AF1, AF2, AF4, AF7, AF20
VCCINT (5.0 V only)	10, 19, 30, 45, 112, 128, 139, 148	4, 24, 44, 64, 117, 137, 157, 177	D15, E8, E10, E12, E14, R7, R9, R11, R13, R14, T14	12, 32, 52, 72, 157, 177, 197, 217	D26, F1, H1, K26, N26, P1, U1, W26, AE26, AF25, AF26
VCCIO (3.3 or 5.0 V)	5, 25, 36, 55, 72, 91, 111, 127, 138, 159, 176, 195	15, 35, 55, 73, 86, 101, 116, 136, 156, 176, 192, 205, 220, 235	D14, E7, E9, E11, E13, R6, R8, R10, R12, T13, T15	3, 23, 43, 63, 91, 108, 127, 156, 176, 196, 216, 243, 260, 279	A1, A2, A21, B1, B10, B24, D1, H26, K1, M25, R1, V26, AA1, AC25, AF5, AF8, AF19