Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ### **Applications of Embedded - CPLDs** | Details | | |---------------------------------|--| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 20 ns | | Voltage Supply - Internal | 4.5V ~ 5.5V | | Number of Logic Elements/Blocks | 35 | | Number of Macrocells | 560 | | Number of Gates | 12000 | | Number of I/O | 216 | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 304-BFQFP | | Supplier Device Package | 304-RQFP (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm9560ri304-20 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## General Description The MAX 9000 family of in-system-programmable, high-density, high-performance EPLDs is based on Altera's third-generation MAX architecture. Fabricated on an advanced CMOS technology, the EEPROM-based MAX 9000 family provides 6,000 to 12,000 usable gates, pin-to-pin delays as fast as 10 ns, and counter speeds of up to 144 MHz. The -10 speed grade of the MAX 9000 family is compliant with the *PCI Local Bus Specification, Revision 2.2.* Table 3 shows the speed grades available for MAX 9000 devices. | Table 3. MAX 9000 Speed Grade Availability | | | | | | | | | |--|-----|-------------|-----|--|--|--|--|--| | Device | | Speed Grade | | | | | | | | | -10 | -15 | -20 | | | | | | | EPM9320 | | ✓ | ✓ | | | | | | | EPM9320A | ✓ | | | | | | | | | EPM9400 | | ✓ | ✓ | | | | | | | EPM9480 | | ✓ | ✓ | | | | | | | EPM9560 | | ✓ | ✓ | | | | | | | EPM9560A | ✓ | | | | | | | | Table 4 shows the performance of MAX 9000 devices for typical functions. | Table 4. MAX 9000 Performance Note (1) | | | | | | | | | | |--|-----------------|-------------------|-----------|---------|-----|--|--|--|--| | Application | Macrocells Used | Speed Grade Units | | | | | | | | | | | -10 | -15 | -20 | | | | | | | 16-bit loadable counter | 16 | 144 | 118 | 100 | MHz | | | | | | 16-bit up/down counter | 16 | 144 | 118 | 100 | MHz | | | | | | 16-bit prescaled counter | 16 | 144 | 118 | 100 | MHz | | | | | | 16-bit address decode | 1 | 5.6 (10) | 7.9 (15) | 10 (20) | ns | | | | | | 16-to-1 multiplexer | 1 | 7.7 (12.1) | 10.9 (18) | 16 (26) | ns | | | | | #### Note: (1) Internal logic array block (LAB) performance is shown. Numbers in parentheses show external delays from row input pin to row I/O pin. The MAX 9000 architecture supports high-density integration of system-level logic functions. It easily integrates multiple programmable logic devices ranging from PALs, GALs, and 22V10s to field-programmable gate array (FPGA) devices and EPLDs. The MAX 9000 family is supported by Altera's MAX+PLUS II development system, a single, integrated software package that offers schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The MAX+PLUS II software provides EDIF 2 0 0 and 3 0 0, LPM, and other interfaces for additional design entry and simulation support from other industry-standard PC- and UNIX-workstation-based EDA tools. The MAX+PLUS II software runs on Windows-based PCs as well as Sun SPARCstation, HP 9000 Series 700/800, and IBM RISC System/6000 workstations. For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet. # Functional Description MAX 9000 devices use a third-generation MAX architecture that yields both high performance and a high degree of utilization for most applications. The MAX 9000 architecture includes the following elements: - Logic array blocks - Macrocells - Expander product terms (shareable and parallel) - FastTrack Interconnect - Dedicated inputs - I/O cells Figure 1 shows a block diagram of the MAX 9000 architecture. ### **Expander Product Terms** Although most logic functions can be implemented with the five product terms available in each macrocell, some logic functions are more complex and require additional product terms. Although another macrocell can supply the required logic resources, the MAX 9000 architecture also offers both shareable and parallel expander product terms that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed. #### Shareable Expanders Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the LAB local array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. A small delay ($t_{LOCAL} + t_{SEXP}$) is incurred when shareable expanders are used. Figure 4 shows how shareable expanders can feed multiple macrocells. Figure 4. MAX 9000 Shareable Expanders Shareable expanders can be shared by any or all macrocells in the LAB. The MAX+PLUS II Compiler automatically allocates as many as three sets of up to five parallel expanders to macrocells that require additional product terms. Each set of expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the Compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$. Two groups of eight macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower-numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of 8, the lowest-numbered macrocell can only lend parallel expanders and the highest-numbered macrocell can only borrow them. #### FastTrack Interconnect In the MAX 9000 architecture, connections between macrocells and device I/O pins are provided by the FastTrack Interconnect, a series of continuous horizontal and vertical routing channels that traverse the entire device. This device-wide routing structure provides predictable performance even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance. Figure 6 shows the interconnection of four adjacent LABs with row and column interconnects. Each row of LABs has a dedicated row interconnect that routes signals both into and out of the LABs in the row. The row interconnect can then drive I/O pins or feed other LABs in the device. Each row interconnect has a total of 96 channels. Figure 7 shows how a macrocell drives the row and column interconnect. 48 Column Channels 96 Row Channels Each macrocell drives one row channel. LAB Dual-output -Macrocell 1 macrocell feeds both FastTrack Interconnect and LAB local array. Macrocell 2 To LAB Each macrocell drives one Local Array of three column channels. Additional multiplexer provides column-to-row path if macrocell drives row channel. Figure 7. MAX 9000 LAB Connections to Row & Column Interconnect Each macrocell in the LAB can drive one of three separate column interconnect channels. The column channels run vertically across the entire device, and are shared by the macrocells in the same column. The MAX+PLUS II Compiler optimizes connections to a column channel automatically. Figure 9. MAX 9000 Column-to-IOC Connections ### **Dedicated Inputs** In addition to the general-purpose I/O pins, MAX 9000 devices have four dedicated input pins. These dedicated inputs provide low-skew, device-wide signal distribution to the LABs and IOCs in the device, and are typically used for global clock, clear, and output enable control signals. The global control signals can feed the macrocell or IOC clock and clear inputs, as well as the IOC output enable. The dedicated inputs can also be used as general-purpose data inputs because they can feed the row FastTrack Interconnect (see Figure 2 on page 7). #### I/O Cells Figure 10 shows the IOC block diagram. Signals enter the MAX 9000 device from either the I/O pins that provide general-purpose input capability or from the four dedicated inputs. The IOCs are located at the ends of the row and column interconnect channels. The VCCIO pins can be connected to either a 3.3-V or 5.0-V power supply, depending on the output requirements. When the VCCIO pins are connected to a 5.0-V power supply, the output levels are compatible with 5.0-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0-V systems. Devices operating with $V_{\rm CCIO}$ levels lower than 4.75 V incur a nominally greater timing delay of t_{OD2} instead of t_{OD1} . ## In-System Programmability (ISP) MAX 9000 devices can be programmed in-system through a 4-pin JTAG interface. ISP offers quick and efficient iterations during design development and debug cycles. The MAX 9000 architecture internally generates the 12.0-V programming voltage required to program EEPROM cells, eliminating the need for an external 12.0-V power supply to program the devices on the board. During ISP, the I/O pins are tri-stated to eliminate board conflicts. ISP simplifies the manufacturing flow by allowing the devices to be mounted on a printed circuit board with standard pick-and-place equipment before they are programmed. MAX 9000 devices can be programmed by downloading the information via in-circuit testers, embedded processors, or the Altera BitBlaster, ByteBlaster, or ByteBlasterMV download cable. (The ByteBlaster cable is obsolete and has been replaced by the ByteBlasterMV cable, which can interface with 2.5-V, 3.3-V, and 5.0-V devices.) Programming the devices after they are placed on the board eliminates lead damage on high pin-count packages (e.g., QFP packages) due to device handling. MAX 9000 devices can also be reprogrammed in the field (i.e., product upgrades can be performed in the field via software or modem). In-system programming can be accomplished with either an adaptive or constant algorithm. An adaptive algorithm reads information from the unit and adapts subsequent programming steps to achieve the fastest possible programming time for that unit. Because some in-circuit testers platforms have difficulties supporting an adaptive algorithm, Altera offers devices tested with a constant algorithm. Devices tested to the constant algorithm have an "F" suffix in the ordering code. ### **Programming Sequence** During in-system programming, instructions, addresses, and data are shifted into the MAX 9000 device through the \mathtt{TDI} input pin. Data is shifted out through the \mathtt{TDO} output pin and compared against the expected data. Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6. - Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms. - Check ID. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time. - Bulk Erase. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms. - Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address. - Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address. - Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms. ### **Programming Times** The time required to implement each of the six programming stages can be broken into the following two elements: - A pulse time to erase, program, or read the EEPROM cells. - A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device. By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device. #### Programming a Single MAX 9000 Device The time required to program a single MAX 9000 device in-system can be calculated from the following formula: $$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$ where: $t_{PROG} = t_{PPULSE}$ = Programming time $t_{PPULSE} = t_{PPULSE}$ = Sum of the fixed times to erase, program, and verify the EEPROM cells Cycle_{PTCK} = Number of TCK cycles to program a device f_{TCK} = TCK frequency The ISP times for a stand-alone verification of a single MAX 9000 device can be calculated from the following formula: $$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$ where: t_{VER} = Verify time t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells $Cycle_{VTCK}$ = Number of TCK cycles to verify a device # Operating Conditions Tables 14 through 20 provide information on absolute maximum ratings, recommended operating conditions, operating conditions, and capacitance for MAX 9000 devices. | Table 14. MAX 9000 Device Absolute Maximum Ratings Note (1) | | | | | | | | | | |---|---|------------------------------------|------|-----|------|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | V _{CC} | Supply voltage | With respect to ground (2) | -2.0 | 7.0 | V | | | | | | VI | DC input voltage | | -2.0 | 7.0 | V | | | | | | V _{CCISP} | Supply voltage during in-system programming | | -2.0 | 7.0 | ٧ | | | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | | | | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | | | | | TJ | Junction temperature | Ceramic packages, under bias | | 150 | ° C | | | | | | | | PQFP and RQFP packages, under bias | | 135 | ° C | | | | | | Table 15. MAX 9000 Device Recommended Operating Conditions | | | | | | | | | | |--|---|--------------------|----------------|--------------------------|------|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 4.75
(4.50) | 5.25
(5.50) | V | | | | | | V _{CCIO} | Supply voltage for output drivers, 5.0-V operation | (3), (4) | 4.75
(4.50) | 5.25
(5.50) | V | | | | | | | Supply voltage for output drivers, 3.3-V operation | (3), (4) | 3.00
(3.00) | 3.60
(3.60) | V | | | | | | V _{CCISP} | Supply voltage during in-system programming | | 4.75 | 5.25 | V | | | | | | VI | Input voltage | | -0.5 | V _{CCINT} + 0.5 | V | | | | | | Vo | Output voltage | | 0 | V _{CCIO} | V | | | | | | T _A | Ambient temperature | For commercial use | 0 | 70 | ° C | | | | | | | | For industrial use | -40 | 85 | ° C | | | | | | TJ | Junction temperature | For commercial use | 0 | 90 | ° C | | | | | | | | For industrial use | -40 | 105 | ° C | | | | | | t _R | Input rise time | | | 40 | ns | | | | | | t _F | Input fall time | | | 40 | ns | | | | | ## **Timing Model** The continuous, high-performance FastTrack Interconnect ensures predictable performance and accurate simulation and timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and hence have unpredictable performance. Timing simulation and delay prediction are available with the MAX+PLUS II Simulator and Timing Analyzer, or with industry-standard EDA tools. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1-ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time prediction, and device-wide performance analysis. The MAX 9000 timing model in Figure 14 shows the delays that correspond to various paths and functions in the circuit. This model contains three distinct parts: the macrocell, IOC, and interconnect, including the row and column FastTrack Interconnect and LAB local array paths. Each parameter shown in Figure 14 is expressed as a worst-case value in the internal timing characteristics tables in this data sheet. Hand-calculations that use the MAX 9000 timing model and these timing parameters can be used to estimate MAX 9000 device performance. For more information on calculating MAX 9000 timing delays, see *Application Note 77 (Understanding MAX 9000 Timing).* | Table 22 | Table 22. MAX 9000 Internal Timing Characteristics Note (1) | | | | | | | | | | |-------------------|---|------------|-----|------|-------|-------|-----|------|------|--| | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | | | | | | 10 | -1 | 15 | -2 | 20 | | | | | | | Min | Max | Min | Max | Min | Max | | | | t_{LAD} | Logic array delay | | | 3.5 | | 4.0 | | 4.5 | ns | | | t _{LAC} | Logic control array delay | | | 3.5 | | 4.0 | | 4.5 | ns | | | t _{IC} | Array clock delay | | | 3.5 | | 4.0 | | 4.5 | ns | | | t _{EN} | Register enable time | | | 3.5 | | 4.0 | | 4.5 | ns | | | t _{SEXP} | Shared expander delay | | | 3.5 | | 5.0 | | 7.5 | ns | | | t _{PEXP} | Parallel expander delay | | | 0.5 | | 1.0 | | 2.0 | ns | | | t _{RD} | Register delay | | | 0.5 | | 1.0 | | 1.0 | ns | | | t _{COMB} | Combinatorial delay | | | 0.4 | | 1.0 | | 1.0 | ns | | | t _{SU} | Register setup time | | 2.4 | | 3.0 | | 4.0 | | ns | | | t _H | Register hold time | | 2.0 | | 3.5 | | 4.5 | | ns | | | t _{PRE} | Register preset time | | | 3.5 | | 4.0 | | 4.5 | ns | | | t _{CLR} | Register clear time | | | 3.7 | | 4.0 | | 4.5 | ns | | | t _{FTD} | FastTrack drive delay | | | 0.5 | | 1.0 | | 2.0 | ns | | | t_{LPA} | Low-power adder | (5) | | 10.0 | | 15.0 | | 20.0 | ns | | | Table 23 | 3. IOC Delays | | | | | | | | | |---------------------|--|------------|-------------|-----|-----|------|-----|------|------| | Symbol | Parameter | Conditions | Speed Grade | | | | | | Unit | | | | | | 10 | | 15 | -2 | 20 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IODR} | I/O row output data delay | | | 0.2 | | 0.2 | | 1.5 | ns | | t _{IODC} | I/O column output data delay | | | 0.4 | | 0.2 | | 1.5 | ns | | t _{IOC} | I/O control delay | (6) | | 0.5 | | 1.0 | | 2.0 | ns | | t _{IORD} | I/O register clock-to-output delay | | | 0.6 | | 1.0 | | 1.5 | ns | | t _{IOCOMB} | I/O combinatorial delay | | | 0.2 | | 1.0 | | 1.5 | ns | | t _{IOSU} | I/O register setup time before clock | | 2.0 | | 4.0 | | 5.0 | | ns | | t _{IOH} | I/O register hold time after clock | | 1.0 | | 1.0 | | 1.0 | | ns | | t _{IOCLR} | I/O register clear delay | | | 1.5 | | 3.0 | | 3.0 | ns | | t _{IOFD} | I/O register feedback delay | | | 0.0 | | 0.0 | | 0.5 | ns | | t _{INREG} | I/O input pad and buffer to I/O register delay | | | 3.5 | | 4.5 | | 5.5 | ns | | t _{INCOMB} | I/O input pad and buffer to row and column delay | | | 1.5 | | 2.0 | | 2.5 | ns | | t _{OD1} | Output buffer and pad delay,
Slow slew rate = off,
V _{CCIO} = 5.0 V | C1 = 35 pF | | 1.8 | | 2.5 | | 2.5 | ns | | t _{OD2} | Output buffer and pad delay,
Slow slew rate = off,
V _{CCIO} = 3.3 V | C1 = 35 pF | | 2.3 | | 3.5 | | 3.5 | ns | | t _{OD3} | Output buffer and pad delay,
Slow slew rate = on,
V _{CCIO} = 5.0 V or 3.3 V | C1 = 35 pF | | 8.3 | | 10.0 | | 10.5 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 2.5 | | 2.5 | | 2.5 | ns | | t _{ZX1} | Output buffer enable delay,
Slow slew rate = off,
V _{CCIO} = 5.0 V | C1 = 35 pF | | 2.5 | | 2.5 | | 2.5 | ns | | t _{ZX2} | Output buffer enable delay,
Slow slew rate = off,
V _{CCIO} = 3.3 V | C1 = 35 pF | | 3.0 | | 3.5 | | 3.5 | ns | | t_{ZX3} | Output buffer enable delay,
Slow slew rate = on,
V _{CCIO} = 3.3 V or 5.0 V | C1 = 35 pF | | 9.0 | | 10.0 | | 10.5 | ns | | Table 24 | Table 24. Interconnect Delays | | | | | | | | | | |----------------------|--|------------|-----|-----|-------|-------|-----|-----|------|--| | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | | | | | | 10 | -1 | 15 | -2 | 20 | | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{LOCAL} | LAB local array delay | | | 0.5 | | 0.5 | | 0.5 | ns | | | t _{ROW} | FastTrack row delay | (6) | | 0.9 | | 1.4 | | 2.0 | ns | | | t _{COL} | FastTrack column delay | (6) | | 0.9 | | 1.7 | | 3.0 | ns | | | t _{DIN_D} | Dedicated input data delay | | | 4.0 | | 4.5 | | 5.0 | ns | | | t _{DIN_CLK} | Dedicated input clock delay | | | 2.7 | | 3.5 | | 4.0 | ns | | | t _{DIN_CLR} | Dedicated input clear delay | | | 4.5 | | 5.0 | | 5.5 | ns | | | t _{DIN_IOC} | Dedicated input I/O register clock delay | | | 2.5 | | 3.5 | | 4.5 | ns | | | t _{DIN_IO} | Dedicated input I/O register control delay | | | 5.5 | | 6.0 | | 6.5 | ns | | #### Notes to tables: - These values are specified under the MAX 9000 device recommended operating conditions, shown in Table 15 on page 27. - See Application Note 77 (Understanding MAX 9000 Timing) for more information on test conditions for t_{PD1} and t_{PD2} delays. - (3) This parameter is a guideline that is sample-tested only. It is based on extensive device characterization. This parameter applies for both global and array clocking as well as both macrocell and I/O cell registers. - (4) Measured with a 16-bit loadable, enabled, up/down counter programmed in each LAB. - (5) The t_{LPA} parameter must be added to the t_{LOCAL} parameter for macrocells running in low-power mode. - (6) The t_{ROW}, t_{COL}, and t_{IOC} delays are worst-case values for typical applications. Post-compilation timing simulation or timing analysis is required to determine actual worst-case performance. ## Power Consumption The supply power (P) versus frequency (f_{MAX}) for MAX 9000 devices can be calculated with the following equation: $$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$ The $P_{\rm IO}$ value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*. The $I_{\rm CCINT}$ value depends on the switching frequency and the application logic. The I_{CCINT} value is calculated with the following equation: $$I_{CCINT} = (A \times MC_{TON}) + [B \times (MC_{DEV} - MC_{TON})] + (C \times MC_{USED} \times f_{MAX} \times tog_{LC})$$ Figure 15. I_{CC} vs. Frequency for MAX 9000 Devices (Part 2 of 2) ## Device Pin-Outs Tables 26 through 29 show the dedicated pin names and numbers for each EPM9320, EPM9320A, EPM9400, EPM9480, EPM9560, and EPM9560A device package. | Table 26. EPM9320 & EPM9320A Dedicated Pin-Outs (Part 1 of 2) Note (1) | | | | | | | | | | |--|-----------------|--------------|-----------------|-------------|--|--|--|--|--| | Pin Name | 84-Pin PLCC (2) | 208-Pin RQFP | 280-Pin PGA (3) | 356-Pin BGA | | | | | | | DIN1
(GCLK1) | 1 | 182 | V10 | AD13 | | | | | | | DIN2
(GCLK2) | 84 | 183 | U10 | AF14 | | | | | | | DIN3 (GCLR) | 13 | 153 | V17 | AD1 | | | | | | | DIN4 (GOE) | 72 | 4 | W2 | AC24 | | | | | | | TCK | 43 | 78 | A9 | A18 | | | | | | | TMS | 55 | 49 | D6 | E23 | | | | | | | TDI | 42 | 79 | C11 | A13 | | | | | | | TDO | 30 | 108 | A18 | D3 | | | | | | | Pin Name | 208-Pin RQFP | 240-Pin RQFP | 280-Pin PGA (2) | 304-Pin RQFP (2) | 356-Pin BGA | |-------------------------|---|--|--|--|--| | DIN1
(GCLK1) | 182 | 210 | V10 | 266 | AD13 | | DIN2
(GCLK2) | 183 | 211 | U10 | 267 | AF14 | | DIN3 (GCLR) | 153 | 187 | V17 | 237 | AD1 | | DIN4 (GOE) | 4 | 234 | W2 | 296 | AC24 | | TCK | 78 | 91 | A9 | 114 | A18 | | TMS | 49 | 68 | D6 | 85 | E23 | | TDI | 79 | 92 | C11 | 115 | A13 | | TDO | 108 | 114 | A18 | 144 | D3 | | GND | 14, 20, 24, 31, 35,
41, 42, 43, 44, 46,
47, 66, 85, 102,
110, 113, 114,
115, 116, 118,
121, 122, 132,
133, 143, 152,
170, 189, 206 | 5, 14, 25, 34, 45,
54, 65, 66, 81, 96,
110, 115, 126,
127, 146, 147,
166, 167, 186,
200, 216, 229 | D4, D5, D16, E4,
E5, E6, E15, E16,
F5, F15, G5, G15,
H5, H15, J5, J15,
K5, K15, L5, L15,
M5, M15, N5,
N15, P4, P5, P15,
P16, R4, R5, R15,
R16, T4, T5, T16 | 13, 22, 33, 42, 53, 62, 73, 74, 102, 121, 138, 155, 166, 167, 186, 187, 206, 207, 226, 254, 273, 290 | A9, A22, A25,
A26, B25, B26,
D2, E1, E26, F2,
G1, G25, G26,
H2, J1, J25, J26,
K2, L26, M26, N1
N25, P26, R2, T1
U2, U26, V1, V25
W25, Y26, AA2,
AB1, AB26,
AC26, AE1, AF1,
AF2, AF4, AF7,
AF20 | | VCCINT
(5.0 V only) | 10, 19, 30, 45,
112, 128, 139,
148 | 4, 24, 44, 64, 117,
137, 157, 177 | D15, E8, E10,
E12, E14, R7, R9,
R11, R13, R14,
T14 | 12, 32, 52, 72,
157, 177, 197,
217 | D26, F1, H1, K26
N26, P1, U1,
W26, AE26,
AF25, AF26 | | VCCIO
(3.3 or 5.0 V) | 5, 25, 36, 55, 72,
91, 111, 127, 138,
159, 176, 195 | 15, 35, 55, 73, 86, 101, 116, 136, 156, 176, 192, 205, 220, 235 | D14, E7, E9, E11,
E13, R6, R8, R10,
R12, T13, T15 | 3, 23, 43, 63, 91,
108, 127, 156,
176, 196, 216,
243, 260, 279 | A1, A2, A21, B1,
B10, B24, D1,
H26, K1, M25,
R1, V26, AA1,
AC25, AF5, AF8,
AF19 | | Table 29. EF | Table 29. EPM9560 & EPM9560A Dedicated Pin-Outs (Part 2 of 2) Note (1) | | | | | | | | | | |----------------------------|--|--------------|-----------------|---|---|--|--|--|--|--| | Pin Name | 208-Pin RQFP | 240-Pin RQFP | 280-Pin PGA (2) | 304-Pin RQFP (2) | 356-Pin BGA | | | | | | | No Connect
(N.C.) | 109 | | B6, W1 | 1, 2, 76, 77, 78,
79, 80, 81, 82, 83,
84, 145, 146, 147,
148, 149, 150,
151, 152, 153,
154, 227, 228,
229, 230, 231,
232, 233, 234,
235, 236, 297,
298, 299, 300,
301, 302, 303,
304 | B4, B5, B6, B7,
B8, B9, B11, B12,
B13, B14, B15,
B16, B18, B19,
B20, B21, B22,
B23, C4, C23, D4,
D23, E4, E22, F4,
F23, G4, H4, H23,
J23, K4, L4, L23,
N4, P4, P23, T4,
T23, U4, V4, V23,
W4, Y4, AA4,
AA23, AB4,
AB23, AC23,
AD4, AD23, AE4,
AE5, AE6, AE7,
AE9, AE11,
AE12, AE14,
AE15, AE16,
AE18, AE19,
AE20, AE21,
AE22, AE23 | | | | | | | VPP (3) | 48 | 67 | C4 | 75 | E25 | | | | | | | Total User
I/O Pins (4) | 153 | 191 | 216 | 216 | 216 | | | | | | #### Notes: - (1) All pins not listed are user I/O pins. - (2) EPM9560A devices are not offered in this package. - (3) During in-system programming, each device's VPP pin must be connected to the 5.0-V power supply. During normal device operation, the VPP pin is pulled up internally and can be connected to the 5.0-V supply or left unconnected. - (4) The user I/O pin count includes dedicated input pins and all I/O pins. ## Revision History Information contained in the MAX 9000 Programmable Logic Device Family Data Sheet version 6.5 supersedes information published in previous versions. #### Version 6.5 Version 6.6 of the MAX 9000 Programmable Logic Device Family Data Sheet contains the following change: - Added Tables 7 through 9. - Added "Programming Sequence" on page 20 and "Programming Times" on page 20 #### Version 6.4 Version 6.4 of the MAX 9000 Programmable Logic Device Family Data Sheet contains the following change: Updated text on page 23. #### Version 6.3 Version 6.3 of the MAX 9000 Programmable Logic Device Family Data Sheet contains the following change: added Note (7) to Table 16. 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD **Customer Marketing:** (408) 544-7104 Literature Services: lit_req@altera.com Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.