




Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                              |
|----------------------------|------------------------------------------------------------------------------|
| Product Status             | Active                                                                       |
| Core Processor             | ARM® Cortex®-M0+                                                             |
| Core Size                  | 32-Bit Single-Core                                                           |
| Speed                      | 24MHz                                                                        |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART   |
| Peripherals                | Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT                    |
| Number of I/O              | 34                                                                           |
| Program Memory Size        | 32KB (32K x 8)                                                               |
| Program Memory Type        | FLASH                                                                        |
| EEPROM Size                | -                                                                            |
| RAM Size                   | 4K x 8                                                                       |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 5.5V                                                                 |
| Data Converters            | A/D 16x10b Slope; D/A 2xIDAC                                                 |
| Oscillator Type            | Internal                                                                     |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                |
| Package / Case             | 40-UFQFN Exposed Pad                                                         |
| Supplier Device Package    | 40-QFN (6x6)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4125lqi-s413t |

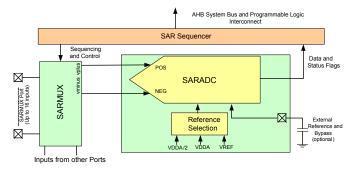


#### Reset

The PSoC 4100S can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset by asserting it active low. The XRES pin has an internal pull-up resistor that is always enabled.

#### **Analog Blocks**

#### 12-bit SAR ADC


The 12-bit, 1-Msps SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion.

The Sample-and-Hold (S/H) aperture is programmable allowing the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. It is possible to provide an external bypass (through a fixed pin location) for the internal reference amplifier.

The SAR is connected to a fixed set of pins through an 8-input sequencer. The sequencer cycles through selected channels autonomously (sequencer scan) with zero switching overhead (that is, aggregate sampling bandwidth is equal to 1 Msps whether it is for a single channel or distributed over several channels). The sequencer switching is effected through a state machine or through firmware driven switching. A feature provided by the sequencer is buffering of each channel to reduce CPU interrupt service requirements. To accommodate signals with varying source impedance and frequency, it is possible to have different sample times programmable for each channel. Also, signal range specification through a pair of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast detection of out-of-range values without the necessity of having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software.

The SAR is not available in Deep Sleep mode as it requires a high-speed clock (up to 18 MHz). The SAR operating range is 1.71 V to 5.5 V.

Figure 3. SAR ADC



Two Opamps (Continuous-Time Block; CTB)

The PSoC 4100S has two opamps with Comparator modes which allow most common analog functions to be performed on-chip eliminating external components; PGAs, Voltage

Buffers, Filters, Trans-Impedance Amplifiers, and other functions can be realized, in some cases with external passives. saving power, cost, and space. The on-chip opamps are designed with enough bandwidth to drive the Sample-and-Hold circuit of the ADC without requiring external buffering.

#### Low-power Comparators (LPC)

The PSoC 4100S has a pair of low-power comparators, which can also operate in Deep Sleep modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode where the system wake-up circuit is activated by a comparator switch event. The LPC outputs can be routed to pins.

#### Current DACs

The PSoC 4100S has two IDACs, which can drive any of the pins on the chip. These IDACs have programmable current ranges.

#### Analog Multiplexed Buses

The PSoC 4100S has two concentric independent buses that go around the periphery of the chip. These buses (called amux buses) are connected to firmware-programmable analog switches that allow the chip's internal resources (IDACs, comparator) to connect to any pin on the I/O Ports.

#### **Programmable Digital Blocks**

The Programmable I/O (Smart I/O) block is a fabric of switches and LUTs that allows Boolean functions to be performed in signals being routed to the pins of a GPIO port. The Smart I/O can perform logical operations on input pins to the chip and on signals going out as outputs.

#### **Fixed Function Digital**

#### Timer/Counter/PWM (TCPWM) Block

The TCPWM block consists of a 16-bit counter with user-programmable period length. There is a capture register to record the count value at the time of an event (which may be an I/O event), a period register that is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals that are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as dead-band programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an over-current state is indicated and the PWM driving the FETs needs to be shut off immediately with no time for software intervention. There are five TCPWM blocks in the PSoC 4100S.

#### Serial Communication Block (SCB)

The PSoC 4100S has three serial communication blocks, which can be programmed to have SPI, I2C, or UART functionality.

**I<sup>2</sup>C Mode**: The hardware I<sup>2</sup>C block implements a full multi-master and slave interface (it is capable of multi-master arbitration). This block is capable of operating at speeds of up to 400 kbps (Fast Mode) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. It also



supports EZI2C that creates a mailbox address range in the memory of the PSoC 4100S and effectively reduces I<sup>2</sup>C communication to reading from and writing to an array in memory. In addition, the block supports an 8-deep FIFO for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock stretching caused by the CPU not having read data on time.

The  $I^2C$  peripheral is compatible with the  $I^2C$  Standard-mode and Fast-mode devices as defined in the NXP  $I^2C$ -bus specification and user manual (UM10204). The  $I^2C$  bus I/O is implemented with GPIO in open-drain modes.

The PSoC 4100S is not completely compliant with the I<sup>2</sup>C spec in the following respect:

■ GPIO cells are not overvoltage tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I<sup>2</sup>C system.

**UART Mode**: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

**SPI Mode**: The SPI mode supports full Motorola SPI, TI SSP (adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.

#### GPIO

The PSoC 4100S has up to 36 GPIOs. The GPIO block implements the following:

- Eight drive modes:
  - ☐ Analog input mode (input and output buffers disabled)
  - □ Input only
  - ☐ Weak pull-up with strong pull-down
  - □ Strong pull-up with weak pull-down
  - □ Open drain with strong pull-down
  - □ Open drain with strong pull-up
  - $\ensuremath{\square}$  Strong pull-up with strong pull-down
  - □ Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL).
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes
- Selectable slew rates for dV/dt related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width (less for Ports 2 and 3). During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (5 for PSoC 4100S).

## **Special Function Peripherals**

#### CapSense

CapSense is supported in the PSoC 4100S through a CapSense Sigma-Delta (CSD) block that can be connected to any pins through an analog multiplex bus via analog switches. CapSense function can thus be provided on any available pin or group of pins in a system under software control. A PSoC Creator component is provided for the CapSense block to make it easy for the user.

Shield voltage can be driven on another analog multiplex bus to provide water-tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input. Proximity sensing can also be implemented.

The CapSense block has two IDACs, which can be used for general purposes if CapSense is not being used (both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available).

The CapSense block also provides a 10-bit Slope ADC function which can be used in conjunction with the CapSense function.

The CapSense block is an advanced, low-noise, programmable block with programmable voltage references and current source ranges for improved sensitivity and flexibility. It can also use an external reference voltage. It has a full-wave CSD mode that alternates sensing to VDDA and ground to null out power-supply related noise.

#### LCD Segment Drive

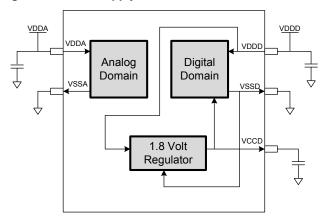
The PSoC 4100S has an LCD controller, which can drive up to 4 commons and up to 32 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as Digital Correlation and PWM. Digital Correlation pertains to modulating the frequency and drive levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal to zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays. PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).



# **Pinouts**

The following table provides the pin list for PSoC 4100S for the 48-pin TQFP, 44-pin TQFP, 40-pin QFN, 32-pin QFN, and 35-ball CSP packages. All port pins support GPIO.

Table 1. Pin List


| 48-1 | TQFP      | 44- | TQFP      | 40  | -QFN      | 32  | -QFN      | 35  | 5-CSP    |
|------|-----------|-----|-----------|-----|-----------|-----|-----------|-----|----------|
| Pin  | Name      | Pin | Name      | Pin | Name      | Pin | Name      | Pin | Name     |
| 28   | P0.0      | 24  | P0.0      | 22  | P0.0      | 17  | P0.0      | C3  | P0.0     |
| 29   | P0.1      | 25  | P0.1      | 23  | P0.1      | 18  | P0.1      | A5  | P0.1     |
| 30   | P0.2      | 26  | P0.2      | 24  | P0.2      | 19  | P0.2      | A4  | P0.2     |
| 31   | P0.3      | 27  | P0.3      | 25  | P0.3      | 20  | P0.3      | A3  | P0.3     |
| 32   | P0.4      | 28  | P0.4      | 26  | P0.4      | 21  | P0.4      | В3  | P0.4     |
| 33   | P0.5      | 29  | P0.5      | 27  | P0.5      | 22  | P0.5      | A6  | P0.5     |
| 34   | P0.6      | 30  | P0.6      | 28  | P0.6      | 23  | P0.6      | B4  | P0.6     |
| 35   | P0.7      | 31  | P0.7      | 29  | P0.7      |     |           | B5  | P0.7     |
| 36   | XRES      | 32  | XRES      | 30  | XRES      | 24  | XRES      | В6  | XRES     |
| 37   | VCCD      | 33  | VCCD      | 31  | VCCD      | 25  | VCCD      | A7  | VCCD     |
| 38   | VSSD      |     |           | DN  | VSSD      | 26  | VSSD      | В7  | VSS      |
| 39   | VDDD      | 34  | VDDD      | 32  | VDDD      |     |           | C7  | VDD      |
| 40   | VDDA      | 35  | VDDA      | 33  | VDDA      | 27  | VDD       | C7  | VDD      |
| 41   | VSSA      | 36  | VSSA      | 34  | VSSA      | 28  | VSSA      | В7  | VSS      |
| 42   | P1.0      | 37  | P1.0      | 35  | P1.0      | 29  | P1.0      | C4  | P1.0     |
| 43   | P1.1      | 38  | P1.1      | 36  | P1.1      | 30  | P1.1      | C5  | P1.1     |
| 44   | P1.2      | 39  | P1.2      | 37  | P1.2      | 31  | P1.2      | C6  | P1.2     |
| 45   | P1.3      | 40  | P1.3      | 38  | P1.3      | 32  | P1.3      | D7  | P1.3     |
| 46   | P1.4      | 41  | P1.4      | 39  | P1.4      |     |           | D4  | P1.4     |
| 47   | P1.5      | 42  | P1.5      |     |           |     |           | D5  | P1.5     |
| 48   | P1.6      | 43  | P1.6      |     |           |     |           | D6  | P1.6     |
| 1    | P1.7/VREF | 44  | P1.7/VREF | 40  | P1.7/VREF | 1   | P1.7/VREF | E7  | P1.7/VRE |
|      |           | 1   | VSSD      |     |           |     |           |     |          |
| 2    | P2.0      | 2   | P2.0      | 1   | P2.0      | 2   | P2.0      |     |          |
| 3    | P2.1      | 3   | P2.1      | 2   | P2.1      | 3   | P2.1      |     |          |
| 4    | P2.2      | 4   | P2.2      | 3   | P2.2      | 4   | P2.2      | D3  | P2.2     |
| 5    | P2.3      | 5   | P2.3      | 4   | P2.3      | 5   | P2.3      | E4  | P2.3     |
| 6    | P2.4      | 6   | P2.4      | 5   | P2.4      |     |           | E5  | P2.4     |
| 7    | P2.5      | 7   | P2.5      | 6   | P2.5      | 6   | P2.5      | E6  | P2.5     |
| 8    | P2.6      | 8   | P2.6      | 7   | P2.6      | 7   | P2.6      | E3  | P2.6     |
| 9    | P2.7      | 9   | P2.7      | 8   | P2.7      | 8   | P2.7      | E2  | P2.7     |
| 10   | VSSD      | 10  | VSSD      | 9   | VSSD      |     | 1         |     |          |
| 12   | P3.0      | 11  | P3.0      | 10  | P3.0      | 9   | P3.0      | E1  | P3.0     |
| 13   | P3.1      | 12  | P3.1      | 11  | P3.1      | 10  | P3.1      | D2  | P3.1     |
| 14   | P3.2      | 13  | P3.2      | 12  | P3.2      | 11  | P3.2      | D1  | P3.2     |
| 16   | P3.3      | 14  | P3.3      | 13  | P3.3      | 12  | P3.3      | C1  | P3.3     |
| 17   | P3.4      | 15  | P3.4      | 14  | P3.4      |     |           | C2  | P3.4     |
| 18   | P3.5      | 16  | P3.5      | 15  | P3.5      |     |           |     |          |



#### **Power**

The following power system diagram shows the set of power supply pins as implemented for the PSoC 4100S. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the  $V_{DD}$  input.

Figure 4. Power Supply Connections

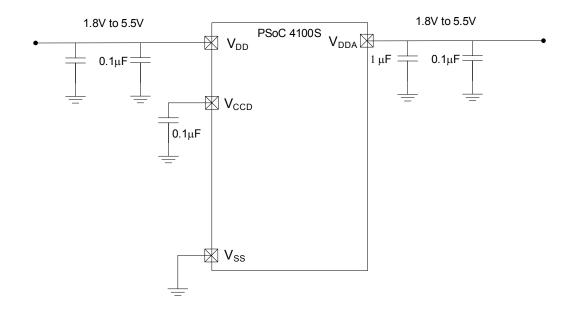


There are two distinct modes of operation. In Mode 1, the supply voltage range is 1.8 V to 5.5 V (unregulated externally; internal regulator operational). In Mode 2, the supply range is 1.8 V ±5% (externally regulated; 1.71 to 1.89, internal regulator bypassed).

#### Mode 1: 1.8 V to 5.5 V External Supply

In this mode, the PSoC 4100S is powered by an external power supply that can be anywhere in the range of 1.8 to 5.5 V. This range is also designed for battery-powered operation. For example, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4100S supplies the internal logic and its output is connected to the  $V_{\rm CCD}$  pin. The VCCD pin must be bypassed to ground via an external capacitor (0.1  $\mu$ F; X5R ceramic or better) and must not be connected to anything else.

## Mode 2: 1.8 V ±5% External Supply


In this mode, the PSoC 4100S is powered by an external power supply that must be within the range of 1.71 to 1.89 V; note that this range needs to include the power supply ripple too. In this mode, the VDD and VCCD pins are shorted together and bypassed. The internal regulator can be disabled in the firmware.

Bypass capacitors must be used from VDDD to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1- $\mu$ F range, in parallel with a smaller capacitor (0.1  $\mu$ F, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

An example of a bypass scheme is shown in the following diagram.

Figure 5. External Supply Range from 1.8 V to 5.5 V with Internal Regulator Active

Power supply bypass connections example



Page 12 of 41



# **Development Support**

The PSoC 4100S family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

#### **Documentation**

A suite of documentation supports the PSoC 4100S family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

**Software User Guide**: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

**Component Datasheets**: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

**Application Notes**: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

**Technical Reference Manual**: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers. The TRM is available in the Documentation section at www.cypress.com/psoc4.

#### Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

#### **Tools**

With industry standard cores, programming, and debugging interfaces, the PSoC 4100S family is part of a development tool ecosystem. Visit us at <a href="https://www.cypress.com/go/psoccreator">www.cypress.com/go/psoccreator</a> for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.



Table 3. DC Specifications (continued)

Typical values measured at  $V_{DD}$  = 3.3 V and 25 °C.

| Spec ID#     | Parameter                               | Description                                         | Min | Тур | Max | Units | Details/<br>Conditions             |  |  |
|--------------|-----------------------------------------|-----------------------------------------------------|-----|-----|-----|-------|------------------------------------|--|--|
| Sleep Mode,  | VDDD = 1.8 V to                         | 5.5 V (Regulator on)                                |     |     |     |       |                                    |  |  |
| SID22        | IDD17                                   | I <sup>2</sup> C wakeup WDT, and Comparators on     | _   | 1.7 | 2.2 | mA    | 6 MHZ. Max is at 85 °C and 5.5 V.  |  |  |
| SID25        | IDD20                                   | I <sup>2</sup> C wakeup, WDT, and Comparators on.   | _   | 2.2 | 2.5 |       | 12 MHZ. Max is at 85 °C and 5.5 V. |  |  |
| Sleep Mode,  | V <sub>DDD</sub> = 1.71 V to            | o 1.89 V (Regulator bypassed)                       |     |     |     | · •   |                                    |  |  |
| SID28        | IDD23                                   | I <sup>2</sup> C wakeup, WDT, and Comparators on    | _   | 0.7 | 0.9 | mA    | 6 MHZ. Max is at 85 °C and 5.5 V.  |  |  |
| SID28A       | IDD23A                                  | I <sup>2</sup> C wakeup, WDT, and Comparators on    | _   | 1   | 1.2 | mA    | 12 MHZ. Max is at 85 °C and 5.5 V. |  |  |
| Deep Sleep   | Mode, V <sub>DD</sub> = 1.8             | V to 3.6 V (Regulator on)                           |     | •   |     |       |                                    |  |  |
| SID31        | I <sub>DD26</sub>                       | I <sup>2</sup> C wakeup and WDT on                  | _   | 2.5 | 60  | μA    | Max is at 3.6 V and 85 °C.         |  |  |
| Deep Sleep   | Mode, V <sub>DD</sub> = 3.6             | V to 5.5 V (Regulator on)                           |     |     |     | 1     |                                    |  |  |
| SID34        | I <sub>DD29</sub>                       | I <sup>2</sup> C wakeup and WDT on                  | _   | 2.5 | 60  | μА    | Max is at 5.5 V and 85 °C.         |  |  |
| Deep Sleep   | Mode, V <sub>DD</sub> = V <sub>CO</sub> | <sub>CD</sub> = 1.71 V to 1.89 V (Regulator bypasse | ed) |     |     | 1     |                                    |  |  |
| SID37        | I <sub>DD32</sub>                       | I <sup>2</sup> C wakeup and WDT on                  | _   | 2.5 | 65  | μΑ    | Max is at 1.89 V and 85 °C.        |  |  |
| XRES Current |                                         |                                                     |     |     |     |       |                                    |  |  |
| SID307       | I <sub>DD_XR</sub>                      | Supply current while XRES asserted                  | _   | 2   | 5   | mA    | _                                  |  |  |

# Table 4. AC Specifications

| Spec ID#             | Parameter              | Description                 | Min | Тур | Max | Units | Details/<br>Conditions    |
|----------------------|------------------------|-----------------------------|-----|-----|-----|-------|---------------------------|
| SID48                | F <sub>CPU</sub>       | CPU frequency               | DC  | _   | 48  | MHz   | $1.71 \le V_{DD} \le 5.5$ |
| SID49 <sup>[3]</sup> | T <sub>SLEEP</sub>     | Wakeup from Sleep mode      | _   | 0   | _   | us    |                           |
| SID50 <sup>[3]</sup> | T <sub>DEEPSLEEP</sub> | Wakeup from Deep Sleep mode | _   | 35  | 1   | μδ    |                           |

Note
2. Guaranteed by characterization.



**GPIO** 

Table 5. GPIO DC Specifications

| Spec ID#              | Parameter               | Description                                         | Min                   | Тур | Max                  | Units | Details/<br>Conditions                              |
|-----------------------|-------------------------|-----------------------------------------------------|-----------------------|-----|----------------------|-------|-----------------------------------------------------|
| SID57                 | V <sub>IH</sub> [3]     | Input voltage high threshold                        | $0.7 \times V_{DDD}$  | -   | _                    |       | CMOS Input                                          |
| SID58                 | V <sub>IL</sub>         | Input voltage low threshold                         | -                     | _   | $0.3 \times V_{DDD}$ |       | CMOS Input                                          |
| SID241                | V <sub>IH</sub> [3]     | LVTTL input, V <sub>DDD</sub> < 2.7 V               | $0.7 \times V_{DDD}$  | -   | _                    |       | _                                                   |
| SID242                | V <sub>IL</sub>         | LVTTL input, V <sub>DDD</sub> < 2.7 V               | -                     | _   | $0.3 \times V_{DDD}$ |       | _                                                   |
| SID243                | V <sub>IH</sub> [3]     | LVTTL input, $V_{DDD} \ge 2.7 \text{ V}$            | 2.0                   | -   | _                    |       | _                                                   |
| SID244                | V <sub>IL</sub>         | LVTTL input, $V_{DDD} \ge 2.7 \text{ V}$            | _                     | -   | 8.0                  | V     | _                                                   |
| SID59                 | V <sub>OH</sub>         | Output voltage high level                           | V <sub>DDD</sub> -0.6 | -   | _                    |       | $I_{OH}$ = 4 mA at 3 V $V_{DDD}$                    |
| SID60                 | V <sub>OH</sub>         | Output voltage high level                           | V <sub>DDD</sub> -0.5 | -   | _                    |       | I <sub>OH</sub> = 1 mA at 1.8 V<br>V <sub>DDD</sub> |
| SID61                 | V <sub>OL</sub>         | Output voltage low level                            | -                     | _   | 0.6                  |       | I <sub>OL</sub> = 4 mA at 1.8 V<br>V <sub>DDD</sub> |
| SID62                 | V <sub>OL</sub>         | Output voltage low level                            | _                     | -   | 0.6                  |       | $I_{OL}$ = 10 mA at 3 V $V_{DDD}$                   |
| SID62A                | V <sub>OL</sub>         | Output voltage low level                            | -                     | -   | 0.4                  |       | $I_{OL}$ = 3 mA at 3 V $V_{DDD}$                    |
| SID63                 | R <sub>PULLUP</sub>     | Pull-up resistor                                    | 3.5                   | 5.6 | 8.5                  | kΩ    | _                                                   |
| SID64                 | R <sub>PULLDOWN</sub>   | Pull-down resistor                                  | 3.5                   | 5.6 | 8.5                  | N22   | _                                                   |
| SID65                 | I <sub>IL</sub>         | Input leakage current (absolute value)              | _                     | _   | 2                    | nA    | 25 °C, V <sub>DDD</sub> = 3.0 V                     |
| SID66                 | C <sub>IN</sub>         | Input capacitance                                   | _                     | -   | 7                    | pF    | _                                                   |
| SID67 <sup>[4]</sup>  | V <sub>HYSTTL</sub>     | Input hysteresis LVTTL                              | 25                    | 40  | _                    |       | $V_{DDD} \ge 2.7 \text{ V}$                         |
| SID68 <sup>[4]</sup>  | V <sub>HYSCMOS</sub>    | Input hysteresis CMOS                               | $0.05 \times V_{DDD}$ | -   | _                    | mV    | V <sub>DD</sub> < 4.5 V                             |
| SID68A <sup>[4]</sup> | V <sub>HYSCMOS5V5</sub> | Input hysteresis CMOS                               | 200                   | -   | _                    |       | V <sub>DD</sub> > 4.5 V                             |
| SID69 <sup>[4]</sup>  | I <sub>DIODE</sub>      | Current through protection diode to $V_{DD}/V_{SS}$ | -                     | _   | 100                  | μA    | _                                                   |
| SID69A <sup>[4]</sup> | I <sub>TOT_GPIO</sub>   | Maximum total source or sink chip current           | _                     | _   | 200                  | mA    | -                                                   |

# Table 6. GPIO AC Specifications

(Guaranteed by Characterization)

| Spec ID# | Parameter          | Description                   | Min | Тур | Max | Units | Details/<br>Conditions                    |
|----------|--------------------|-------------------------------|-----|-----|-----|-------|-------------------------------------------|
| SID70    | T <sub>RISEF</sub> | Rise time in fast strong mode | 2   | 1   | 12  |       | 3.3 V V <sub>DDD</sub> , Cload =<br>25 pF |
| SID71    | T <sub>FALLF</sub> | Fall time in fast strong mode | 2   | _   | 12  |       | 3.3 V V <sub>DDD</sub> , Cload =<br>25 pF |
| SID72    | T <sub>RISES</sub> | Rise time in slow strong mode | 10  | _   | 60  |       | 3.3 V V <sub>DDD</sub> , Cload =<br>25 pF |

V<sub>IH</sub> must not exceed V<sub>DDD</sub> + 0.2 V.
 Guaranteed by characterization.



## Table 6. GPIO AC Specifications

(Guaranteed by Characterization) (continued)

| Spec ID# | Parameter            | Description                                                                    | Min | Тур | Max  | Units | Details/<br>Conditions                    |
|----------|----------------------|--------------------------------------------------------------------------------|-----|-----|------|-------|-------------------------------------------|
| SID73    | T <sub>FALLS</sub>   | Fall time in slow strong mode                                                  | 10  | -   | 60   |       | 3.3 V V <sub>DDD</sub> , Cload =<br>25 pF |
| SID74    | F <sub>GPIOUT1</sub> | GPIO $F_{OUT}$ ; 3.3 $V \le V_{DDD} \le 5.5 V$ Fast strong mode                | _   | _   | 33   |       | 90/10%, 25 pF load,<br>60/40 duty cycle   |
| SID75    | F <sub>GPIOUT2</sub> | GPIO F <sub>OUT</sub> ; 1.71 V≤ V <sub>DDD</sub> ≤ 3.3 V<br>Fast strong mode   | _   | -   | 16.7 |       | 90/10%, 25 pF load,<br>60/40 duty cycle   |
| SID76    | F <sub>GPIOUT3</sub> | GPIO $F_{OUT}$ ; 3.3 $V \le V_{DDD} \le 5.5 V$ Slow strong mode                | _   | -   | 7    | MHz   | 90/10%, 25 pF load,<br>60/40 duty cycle   |
| SID245   | F <sub>GPIOUT4</sub> | GPIO $F_{OUT}$ ; 1.71 $V \le V_{DDD} \le 3.3 V$ Slow strong mode.              | _   | -   | 3.5  |       | 90/10%, 25 pF load,<br>60/40 duty cycle   |
| SID246   | F <sub>GPIOIN</sub>  | GPIO input operating frequency;<br>1.71 V $\leq$ V <sub>DDD</sub> $\leq$ 5.5 V | _   | -   | 48   |       | 90/10% V <sub>IO</sub>                    |

#### XRES

## Table 7. XRES DC Specifications

| Spec ID#             | Parameter            | Description                                                          | Min                  | Тур | Max                  | Units | Details/<br>Conditions                                   |  |
|----------------------|----------------------|----------------------------------------------------------------------|----------------------|-----|----------------------|-------|----------------------------------------------------------|--|
| SID77                | V <sub>IH</sub>      | Input voltage high threshold                                         | $0.7 \times V_{DDD}$ | _   | _                    | V     | CMOS Input                                               |  |
| SID78                | V <sub>IL</sub>      | Input voltage low threshold                                          | _                    | _   | $0.3 \times V_{DDD}$ | V     | CiviOS input                                             |  |
| SID79                | R <sub>PULLUP</sub>  | Pull-up resistor                                                     | _                    | 60  | -                    | kΩ    | -                                                        |  |
| SID80                | C <sub>IN</sub>      | Input capacitance                                                    | _                    | _   | 7                    | pF    | -                                                        |  |
| SID81 <sup>[5]</sup> | V <sub>HYSXRES</sub> | Input voltage hysteresis                                             | -                    | 100 | _                    | mV    | Typical hysteresis is 200 mV for V <sub>DD</sub> > 4.5 V |  |
| SID82                | I <sub>DIODE</sub>   | Current through protection diode to V <sub>DD</sub> /V <sub>SS</sub> | _                    | -   | 100                  | μΑ    |                                                          |  |

## Table 8. XRES AC Specifications

| Spec ID#              | Parameter               | Description                     | Min | Тур | Max | Units | Details/<br>Conditions |
|-----------------------|-------------------------|---------------------------------|-----|-----|-----|-------|------------------------|
| SID83 <sup>[5]</sup>  | T <sub>RESETWIDTH</sub> | Reset pulse width               | 1   | _   | _   | μs    | -                      |
| BID194 <sup>[5]</sup> | T <sub>RESETWAKE</sub>  | Wake-up time from reset release | _   | -   | 2.7 | ms    | _                      |

Note
5. Guaranteed by characterization.



# **Analog Peripherals**

Table 9. CTBm Opamp Specifications

| Spec ID# | Parameter                | Description                                         | Min | Тур  | Max  | Units | Details/<br>Conditions                                |
|----------|--------------------------|-----------------------------------------------------|-----|------|------|-------|-------------------------------------------------------|
|          | I <sub>DD</sub>          | Opamp block current, External load                  |     |      |      |       |                                                       |
| SID269   | I <sub>DD_HI</sub>       | power=hi                                            | -   | 1100 | 1850 |       | -                                                     |
| SID270   | I <sub>DD_MED</sub>      | power=med                                           | -   | 550  | 950  | μA    | _                                                     |
| SID271   | I <sub>DD_LOW</sub>      | power=lo                                            | 1   | 150  | 350  |       | _                                                     |
|          | G <sub>BW</sub>          | Load = 20 pF, 0.1 mA<br>V <sub>DDA</sub> = 2.7 V    |     |      |      |       |                                                       |
| SID272   | G <sub>BW_HI</sub>       | power=hi                                            | 6   | _    | _    |       | Input and output are 0.2 V to V <sub>DDA</sub> -0.2 V |
| SID273   | G <sub>BW_MED</sub>      | power=med                                           | 3   | -    | _    | MHz   | Input and output are 0.2 V to V <sub>DDA</sub> -0.2 V |
| SID274   | G <sub>BW_LO</sub>       | power=lo                                            | -   | 1    | _    |       | Input and output are 0.2 V to V <sub>DDA</sub> -0.2 V |
|          | I <sub>OUT_MAX</sub>     | $V_{DDA} = 2.7 \text{ V}, 500 \text{ mV from rail}$ |     | , ,  |      |       |                                                       |
| SID275   | I <sub>OUT_MAX_HI</sub>  | power=hi                                            | 10  | -    | _    |       | Output is 0.5 V<br>V <sub>DDA</sub> -0.5 V            |
| SID276   | I <sub>OUT_MAX_MID</sub> | power=mid                                           | 10  | -    | _    | mA    | Output is 0.5 V<br>V <sub>DDA</sub> -0.5 V            |
| SID277   | I <sub>OUT_MAX_LO</sub>  | power=lo                                            | -   | 5    | _    |       | Output is 0.5 V<br>V <sub>DDA</sub> -0.5 V            |
|          | I <sub>OUT</sub>         | $V_{DDA}$ = 1.71 V, 500 mV from rail                |     |      |      |       |                                                       |
| SID278   | I <sub>OUT_MAX_HI</sub>  | power=hi                                            | 4   | -    | -    |       | Output is 0.5 V<br>V <sub>DDA</sub> -0.5 V            |
| SID279   | I <sub>OUT_MAX_MID</sub> | power=mid                                           | 4   | _    | -    | mA    | Output is 0.5 V<br>V <sub>DDA</sub> -0.5 V            |
| SID280   | I <sub>OUT_MAX_LO</sub>  | power=lo                                            | ı   | 2    | _    |       | Output is 0.5 V<br>V <sub>DDA</sub> -0.5 V            |
|          | I <sub>DD_Int</sub>      | Opamp block current Internal Load                   |     |      |      |       |                                                       |
| SID269_I | I <sub>DD_HI_Int</sub>   | power=hi                                            | ı   | 1500 | 1700 |       | _                                                     |
| SID270_I | I <sub>DD_MED_Int</sub>  | power=med                                           | _   | 700  | 900  | μA    | _                                                     |
| CIDO74   | I <sub>DD_LOW_Int</sub>  | power=lo                                            | -   | -    | _    |       | -                                                     |
| SID271_I | G <sub>BW</sub>          | V <sub>DDA</sub> = 2.7 V                            | -   | _    | -    |       | -                                                     |
| SID272_I | G <sub>BW_HI_Int</sub>   | power=hi                                            | 8   | -    | _    | MHz   | Output is 0.25 V to V <sub>DDA</sub> -0.25 V          |



Table 9. CTBm Opamp Specifications (continued)

| Spec ID# | Parameter             | Description                                              | Min   | Тур  | Max                   | Units   | Details/<br>Conditions                                                                        |  |
|----------|-----------------------|----------------------------------------------------------|-------|------|-----------------------|---------|-----------------------------------------------------------------------------------------------|--|
|          |                       | General opamp specs for both internal and external modes |       |      |                       |         |                                                                                               |  |
| SID281   | V <sub>IN</sub>       | Charge-pump on, $V_{DDA} = 2.7 \text{ V}$                | -0.05 | -    | V <sub>DDA</sub> -0.2 | V       | _                                                                                             |  |
| SID282   | V <sub>CM</sub>       | Charge-pump on, V <sub>DDA</sub> = 2.7 V                 | -0.05 | _    | V <sub>DDA</sub> -0.2 |         | _                                                                                             |  |
|          | V <sub>OUT</sub>      | V <sub>DDA</sub> = 2.7 V                                 |       | l    | •                     |         | ,                                                                                             |  |
| SID283   | V <sub>OUT_1</sub>    | power=hi, Iload=10 mA                                    | 0.5   | _    | V <sub>DDA</sub> -0.5 |         | _                                                                                             |  |
| SID284   | V <sub>OUT_2</sub>    | power=hi, Iload=1 mA                                     | 0.2   | _    | V <sub>DDA</sub> -0.2 | V       | _                                                                                             |  |
| SID285   | V <sub>OUT_3</sub>    | power=med, Iload=1 mA                                    | 0.2   | _    | V <sub>DDA</sub> -0.2 | v       | _                                                                                             |  |
| SID286   | V <sub>OUT_4</sub>    | power=lo, Iload=0.1 mA                                   | 0.2   | _    | V <sub>DDA</sub> -0.2 |         | _                                                                                             |  |
| SID288   | V <sub>OS_TR</sub>    | Offset voltage, trimmed                                  | -1.0  | ±0.5 | 1.0                   |         | High mode, input 0 V to V <sub>DDA</sub> -0.2 V                                               |  |
| SID288A  | V <sub>OS_TR</sub>    | Offset voltage, trimmed                                  | _     | ±1   | _                     | mV      | Medium mode, input 0 V to V <sub>DDA</sub> -0.2 V                                             |  |
| SID288B  | V <sub>OS_TR</sub>    | Offset voltage, trimmed                                  | -     | ±2   | _                     |         | Low mode, input 0 V to V <sub>DDA</sub> -0.2 V                                                |  |
| SID290   | V <sub>OS_DR_TR</sub> | Offset voltage drift, trimmed                            | -10   | ±3   | 10                    | μV/C    | High mode                                                                                     |  |
| SID290A  | V <sub>OS_DR_TR</sub> | Offset voltage drift, trimmed                            | -     | ±10  | _                     | μV/C    | Medium mode                                                                                   |  |
| SID290B  | V <sub>OS_DR_TR</sub> | Offset voltage drift, trimmed                            | _     | ±10  | _                     | μν/Ο    | Low mode                                                                                      |  |
| SID291   | CMRR                  | DC                                                       | 70    | 80   | _                     |         | Input is 0 V to V <sub>DDA</sub> -0.2 V, Output is 0.2 V to V <sub>DDA</sub> -0.2 V           |  |
| SID292   | PSRR                  | At 1 kHz, 10-mV ripple                                   | 70    | 85   | -                     | dB      | V <sub>DDD</sub> = 3.6 V,<br>high-power mode,<br>input is 0.2 V to<br>V <sub>DDA</sub> -0.2 V |  |
|          | Noise                 |                                                          |       |      |                       |         |                                                                                               |  |
| SID294   | VN2                   | Input-referred, 1 kHz, power=Hi                          | _     | 72   | _                     |         | 3                                                                                             |  |
| SID295   | VN3                   | Input-referred, 10 kHz, power=Hi                         | -     | 28   | _                     | nV/rtHz | Input and output are at 0.2 V to V <sub>DDA</sub> -0.2 V                                      |  |
| SID296   | VN4                   | Input-referred, 100 kHz, power=Hi                        | -     | 15   | _                     |         | Input and output are at 0.2 V to V <sub>DDA</sub> -0.2 V                                      |  |
| SID297   | C <sub>LOAD</sub>     | Stable up to max. load.<br>Performance specs at 50 pF.   | -     | -    | 125                   | pF      | -                                                                                             |  |
| SID298   | SLEW_RATE             | Cload = 50 pF, Power = High,<br>V <sub>DDA</sub> = 2.7 V | 6     | -    | _                     | V/µs    | _                                                                                             |  |



Table 10. Comparator DC Specifications

| Spec ID# | Parameter            | Description                                       | Min | Тур | Max                    | Units | Details/<br>Conditions                |
|----------|----------------------|---------------------------------------------------|-----|-----|------------------------|-------|---------------------------------------|
| SID84    | V <sub>OFFSET1</sub> | Input offset voltage, Factory trim                | _   | _   | ±10                    |       |                                       |
| SID85    | V <sub>OFFSET2</sub> | Input offset voltage, Custom trim                 | _   | _   | ±4                     | mV    |                                       |
| SID86    | V <sub>HYST</sub>    | Hysteresis when enabled                           | _   | 10  | 35                     |       |                                       |
| SID87    | V <sub>ICM1</sub>    | Input common mode voltage in normal mode          | 0   | _   | V <sub>DDD</sub> -0.1  |       | Modes 1 and 2                         |
| SID247   | V <sub>ICM2</sub>    | Input common mode voltage in low power mode       | 0   | _   | $V_{DDD}$              | V     |                                       |
| SID247A  | V <sub>ICM3</sub>    | Input common mode voltage in ultra low power mode | 0   | -   | V <sub>DDD</sub> -1.15 | ·     | V <sub>DDD</sub> ≥ 2.2 V at<br>-40 °C |
| SID88    | C <sub>MRR</sub>     | Common mode rejection ratio                       | 50  | _   | _                      | dB    | V <sub>DDD</sub> ≥ 2.7V               |
| SID88A   | C <sub>MRR</sub>     | Common mode rejection ratio                       | 42  | _   | -                      | uБ    | V <sub>DDD</sub> ≤ 2.7V               |
| SID89    | I <sub>CMP1</sub>    | Block current, normal mode                        | _   | _   | 400                    |       |                                       |
| SID248   | I <sub>CMP2</sub>    | Block current, low power mode                     | _   | _   | 100                    | μA    |                                       |
| SID259   | I <sub>CMP3</sub>    | Block current in ultra low-power mode             | -   | -   | 6                      | , h., | V <sub>DDD</sub> ≥ 2.2 V at<br>–40 °C |
| SID90    | Z <sub>CMP</sub>     | DC Input impedance of comparator                  | 35  | _   | _                      | ΜΩ    |                                       |

**Table 11. Comparator AC Specifications** 

| Spec ID# | Parameter | Description                                           | Min | Тур | Max | Units | Details/<br>Conditions                |
|----------|-----------|-------------------------------------------------------|-----|-----|-----|-------|---------------------------------------|
| SID91    | TRESP1    | Response time, normal mode, 50 mV overdrive           | -   | 38  | 110 |       |                                       |
| SID258   | TRESP2    | Response time, low power mode, 50 mV overdrive        | -   | 70  | 200 | ns    |                                       |
| SID92    | TRESP3    | Response time, ultra-low power mode, 200 mV overdrive | -   | 2.3 | 15  | μs    | V <sub>DDD</sub> ≥ 2.2 V at<br>-40 °C |

## **Table 12. Temperature Sensor Specifications**

| Spec ID# | Parameter | Description                 | Min        | Тур | Max | Units | Details /<br>Conditions |
|----------|-----------|-----------------------------|------------|-----|-----|-------|-------------------------|
| SID93    | TSENSACC  | Temperature sensor accuracy | <b>-</b> 5 | ±1  | 5   | °C    | –40 to +85 °C           |

Table 13. SAR Specifications

| Spec ID# | Parameter     | Description                       | Min | Тур | Max  | Units | Details/<br>Conditions          |
|----------|---------------|-----------------------------------|-----|-----|------|-------|---------------------------------|
| SAR ADC  | DC Specificat | ions                              |     |     |      | •     |                                 |
| SID94    | A_RES         | Resolution                        | -   | _   | 12   | bits  |                                 |
| SID95    | A_CHNLS_S     | Number of channels - single ended | -   | _   | 16   |       |                                 |
| SID96    | A-CHNKS_D     | Number of channels - differential | -   | -   | 4    |       | Diff inputs use neighboring I/O |
| SID97    | A-MONO        | Monotonicity                      | -   | -   | _    |       | Yes.                            |
| SID98    | A_GAINERR     | Gain error                        | -   | _   | ±0.1 | %     | With external reference.        |

Document Number: 002-00122 Rev. \*H Page 21 of 41



CSD

Table 14. CSD and IDAC Specifications

| SPEC ID#    | Parameter        | Description                                                           | Min  | Тур | Max                    | Units | Details / Conditions                                                                                                                 |
|-------------|------------------|-----------------------------------------------------------------------|------|-----|------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------|
| SYS.PER#3   | VDD_RIPPLE       | Max allowed ripple on power supply, DC to 10 MHz                      | ı    | _   | ±50                    | mV    | V <sub>DD</sub> > 2 V (with ripple),<br>25 °C T <sub>A</sub> , Sensitivity =<br>0.1 pF                                               |
| SYS.PER#16  | VDD_RIPPLE_1.8   | Max allowed ripple on power supply, DC to 10 MHz                      | -    | _   | ±25                    | mV    | $V_{DD}$ > 1.75V (with ripple),<br>25 °C T <sub>A</sub> , Parasitic Capacitance (C <sub>P</sub> ) < 20 pF,<br>Sensitivity ≥ 0.4 pF   |
| SID.CSD.BLK | ICSD             | Maximum block current                                                 | -    | -   | 4000                   | μA    | Maximum block current for<br>both IDACs in dynamic<br>(switching) mode including<br>comparators, buffer, and<br>reference generator. |
| SID.CSD#15  | V <sub>REF</sub> | Voltage reference for CSD and Comparator                              | 0.6  | 1.2 | V <sub>DDA</sub> - 0.6 | V     | V <sub>DDA</sub> - 0.06 or 4.4,<br>whichever is lower                                                                                |
| SID.CSD#15A | VREF_EXT         | External Voltage reference for CSD and Comparator                     | 0.6  |     | V <sub>DDA</sub> - 0.6 | V     | V <sub>DDA</sub> - 0.06 or 4.4,<br>whichever is lower                                                                                |
| SID.CSD#16  | IDAC1IDD         | IDAC1 (7-bits) block current                                          | _    | -   | 1750                   | μΑ    |                                                                                                                                      |
| SID.CSD#17  | IDAC2IDD         | IDAC2 (7-bits) block current                                          | _    | -   | 1750                   | μΑ    |                                                                                                                                      |
| SID308      | VCSD             | Voltage range of operation                                            | 1.71 | -   | 5.5                    | V     | 1.8 V ±5% or 1.8 V to 5.5 \                                                                                                          |
| SID308A     | VCOMPIDAC        | Voltage compliance range of IDAC                                      | 0.6  | -   | V <sub>DDA</sub> -0.6  | V     | V <sub>DDA</sub> - 0.06 or 4.4,<br>whichever is lower                                                                                |
| SID309      | IDAC1DNL         | DNL                                                                   | -1   | -   | 1                      | LSB   |                                                                                                                                      |
| SID310      | IDAC1INL         | INL                                                                   | -2   | _   | 2                      | LSB   | INL is $\pm 5.5$ LSB for $V_{DDA} < 2$ V                                                                                             |
| SID311      | IDAC2DNL         | DNL                                                                   | -1   | -   | 1                      | LSB   |                                                                                                                                      |
| SID312      | IDAC2INL         | INL                                                                   | -2   | _   | 2                      | LSB   | INL is $\pm 5.5$ LSB for $V_{DDA} < 2$ V                                                                                             |
| SID313      | SNR              | Ratio of counts of finger to noise.<br>Guaranteed by characterization | 5    | _   | _                      | Ratio | Capacitance range of 5 to 35 pF, 0.1-pF sensitivity. All use cases. V <sub>DDA</sub> > 2 V.                                          |
| SID314      | IDAC1CRT1        | Output current of IDAC1 (7 bits) in low range                         | 4.2  | _   | 5.4                    | μA    | LSB = 37.5-nA typ.                                                                                                                   |
| SID314A     | IDAC1CRT2        | Output current of IDAC1(7 bits) in medium range                       | 34   | _   | 41                     | μA    | LSB = 300-nA typ.                                                                                                                    |
| SID314B     | IDAC1CRT3        | Output current of IDAC1(7 bits) in high range                         | 275  | _   | 330                    | μA    | LSB = 2.4-μA typ.                                                                                                                    |
| SID314C     | IDAC1CRT12       | Output current of IDAC1 (7 bits) in low range, 2X mode                | 8    | -   | 10.5                   | μA    | LSB = 75-nA typ.                                                                                                                     |
| SID314D     | IDAC1CRT22       | Output current of IDAC1(7 bits) in medium range, 2X mode              | 69   | -   | 82                     | μA    | LSB = 600-nA typ.                                                                                                                    |
| SID314E     | IDAC1CRT32       | Output current of IDAC1(7 bits) in high range, 2X mode                | 540  | -   | 660                    | μA    | LSB = 4.8-μA typ.                                                                                                                    |
| SID315      | IDAC2CRT1        | Output current of IDAC2 (7 bits) in low range                         | 4.2  | _   | 5.4                    | μA    | LSB = 37.5-nA typ.                                                                                                                   |
| SID315A     | IDAC2CRT2        | Output current of IDAC2 (7 bits) in medium range                      | 34   | _   | 41                     | μA    | LSB = 300-nA typ.                                                                                                                    |
| SID315B     | IDAC2CRT3        | Output current of IDAC2 (7 bits) in high range                        | 275  | _   | 330                    | μA    | LSB = 2.4-µA typ.                                                                                                                    |
| SID315C     | IDAC2CRT12       | Output current of IDAC2 (7 bits) in low range, 2X mode                | 8    | _   | 10.5                   | μA    | LSB = 75-nA typ.                                                                                                                     |
| SID315D     | IDAC2CRT22       | Output current of IDAC2(7 bits) in medium range, 2X mode              | 69   | _   | 82                     | μA    | LSB = 600-nA typ.                                                                                                                    |
| SID315E     | IDAC2CRT32       | Output current of IDAC2(7 bits) in high range, 2X mode                | 540  | _   | 660                    | μA    | LSB = 4.8-μA typ.                                                                                                                    |
| SID315F     | IDAC3CRT13       | Output current of IDAC in 8-bit mode in low range                     | 8    | _   | 10.5                   | μA    | LSB = 37.5-nA typ.                                                                                                                   |



Table 15. 10-bit CapSense ADC Specifications (continued)

| Spec ID# | Parameter | Description                                  | Min | Тур | Max  | Units | Details/<br>Conditions                                                                       |
|----------|-----------|----------------------------------------------|-----|-----|------|-------|----------------------------------------------------------------------------------------------|
| SIDA109  | A_SND     | Signal-to-noise and Distortion ratio (SINAD) | _   | 61  | -    |       | With 10-Hz input sine<br>wave, external 2.4-V<br>reference, V <sub>REF</sub> (2.4 V)<br>mode |
| SIDA110  | A_BW      | Input bandwidth without aliasing             | _   | _   | 22.4 | KHz   | 8-bit resolution                                                                             |
| SIDA111  | A_INL     | Integral Non Linearity. 1 ksps               | -   | _   | 2    | LSB   | V <sub>REF</sub> = 2.4 V or greater                                                          |
| SIDA112  | A_DNL     | Differential Non Linearity. 1 ksps           | _   | _   | 1    | LSB   |                                                                                              |

# **Digital Peripherals**

Timer Counter Pulse-Width Modulator (TCPWM)

## **Table 16. TCPWM Specifications**

| Spec ID      | Parameter             | Description                         | Min  | Тур | Max | Units | Details/Conditions                                                                                    |
|--------------|-----------------------|-------------------------------------|------|-----|-----|-------|-------------------------------------------------------------------------------------------------------|
| SID.TCPWM.1  | ITCPWM1               | Block current consumption at 3 MHz  | _    | -   | 45  |       | All modes (TCPWM)                                                                                     |
| SID.TCPWM.2  | ITCPWM2               | Block current consumption at 12 MHz | _    | -   | 155 | μΑ    | All modes (TCPWM)                                                                                     |
| SID.TCPWM.2A | ITCPWM3               | Block current consumption at 48 MHz | _    | -   | 650 |       | All modes (TCPWM)                                                                                     |
| SID.TCPWM.3  | TCPWM <sub>FREQ</sub> | Operating frequency                 | _    | _   | Fc  | MHz   | Fc max = CLK_SYS<br>Maximum = 48 MHz                                                                  |
| SID.TCPWM.4  | TPWM <sub>ENEXT</sub> | Input trigger pulse width           | 2/Fc | -   | _   |       | For all trigger events <sup>[7]</sup>                                                                 |
| SID.TCPWM.5  | TPWM <sub>EXT</sub>   | Output trigger pulse widths         | 2/Fc | -   | _   |       | Minimum possible width<br>of Overflow, Underflow,<br>and CC (Counter equals<br>Compare value) outputs |
| SID.TCPWM.5A | TC <sub>RES</sub>     | Resolution of counter               | 1/Fc | 1   | -   | ns    | Minimum time between successive counts                                                                |
| SID.TCPWM.5B | PWM <sub>RES</sub>    | PWM resolution                      | 1/Fc | ı   | -   |       | Minimum pulse width of PWM Output                                                                     |
| SID.TCPWM.5C | Q <sub>RES</sub>      | Quadrature inputs resolution        | 1/Fc | _   | _   |       | Minimum pulse width between Quadrature phase inputs                                                   |

РC

Table 17. Fixed I<sup>2</sup>C DC Specifications<sup>[8]</sup>

| Spec ID | Parameter         | Description                                 | Min | Тур | Max | Units | Details/Conditions |
|---------|-------------------|---------------------------------------------|-----|-----|-----|-------|--------------------|
| SID149  | I <sub>I2C1</sub> | Block current consumption at 100 kHz        | -   | _   | 50  |       | _                  |
| SID150  | I <sub>I2C2</sub> | Block current consumption at 400 kHz        | -   | _   | 135 | μΑ    | -                  |
| SID151  | I <sub>I2C3</sub> | Block current consumption at 1 Mbps         | -   | _   | 310 |       | -                  |
| SID152  | I <sub>I2C4</sub> | I <sup>2</sup> C enabled in Deep Sleep mode | _   | _   | 1.4 |       |                    |

## Table 18. Fixed I<sup>2</sup>C AC Specifications<sup>[8]</sup>

| Spec ID | Parameter         | Description | Min | Тур | Max | Units | Details/Conditions |
|---------|-------------------|-------------|-----|-----|-----|-------|--------------------|
| SID153  | F <sub>I2C1</sub> | Bit rate    | _   | _   | 1   | Msps  | -                  |

#### Notes

#### Note

<sup>7.</sup> Trigger events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected.

<sup>8.</sup> Guaranteed by characterization.



## Table 34. Watch Crystal Oscillator (WCO) Specifications

| Spec ID# | Parameter | Description                         | Min | Тур    | Max  | Units | Details / Conditions |
|----------|-----------|-------------------------------------|-----|--------|------|-------|----------------------|
| SID398   | FWCO      | Crystal Frequency                   | -   | 32.768 | _    | kHz   |                      |
| SID399   | FTOL      | Frequency tolerance                 | -   | 50     | 250  | ppm   | With 20-ppm crystal  |
| SID400   | ESR       | Equivalent series resistance        | -   | 50     | _    | kΩ    |                      |
| SID401   | PD        | Drive Level                         | -   | _      | 1    | μW    |                      |
| SID402   | TSTART    | Startup time                        | -   | _      | 500  | ms    |                      |
| SID403   | CL        | Crystal Load Capacitance            | 6   | _      | 12.5 | pF    |                      |
| SID404   | C0        | Crystal Shunt Capacitance           | -   | 1.35   | _    | pF    |                      |
| SID405   | IWCO1     | Operating Current (high power mode) | _   | _      | 8    | uA    |                      |
| SID406   | IWCO2     | Operating Current (low power mode)  | -   | _      | 1    | uA    |                      |

# Table 35. External Clock Specifications

| Spec ID                | Parameter  | Description                               | Min | Тур | Max | Units | Details/Conditions |
|------------------------|------------|-------------------------------------------|-----|-----|-----|-------|--------------------|
|                        | •          | External clock input frequency            | 0   | _   | 48  | MHz   | _                  |
| SID306 <sup>[13]</sup> | ExtClkDuty | Duty cycle; measured at V <sub>DD/2</sub> | 45  | _   | 55  | %     | -                  |

## Table 36. Block Specs

| Spec ID                | Parameter              | Description                        | Min | Тур | Max | Units   | Details/Conditions |
|------------------------|------------------------|------------------------------------|-----|-----|-----|---------|--------------------|
| SID262 <sup>[13]</sup> | T <sub>CLKSWITCH</sub> | System clock source switching time | 3   | 1   | 4   | Periods | _                  |

# Table 37. Smart I/O Pass-through Time (Delay in Bypass Mode)

| Spec ID# | Parameter  | Description                                 | Min | Тур | Max | Units | Details / Conditions |
|----------|------------|---------------------------------------------|-----|-----|-----|-------|----------------------|
| SID252   | PRG_BYPASS | Max delay added by Smart I/O in bypass mode | -   | 1   | 1.6 | ns    |                      |

**Note** 13. Guaranteed by characterization.



# **Ordering Information**

The marketing part numbers for the PSoC 4100S family are listed in the following table.

|          | MPN              | Features            |            |           |              |     |                |                |                 | Package        |              |            |            |      |                         |        |        |         |          |
|----------|------------------|---------------------|------------|-----------|--------------|-----|----------------|----------------|-----------------|----------------|--------------|------------|------------|------|-------------------------|--------|--------|---------|----------|
| Category |                  | Max CPU Speed (MHz) | Flash (KB) | SRAM (KB) | Opamp (CTBm) | CSD | 10-bit CSD ADC | 12-bit SAR ADC | ADC Sample Rate | LP Comparators | TCPWM Blocks | SCB Blocks | Smart I/Os | GPIO | 35-WLCSP (0.35mm pitch) | 32-QFN | 40-QFN | 48-TQFP | 44-TQFP  |
|          | CY8C4124FNI-S403 | 24                  | 16         | 4         | 2            | 0   | 1              | 0              |                 | 2              | 5            | 2          | 8          | 31   | Χ                       |        |        |         |          |
|          | CY8C4124FNI-S413 | 24                  | 16         | 4         | 2            | 1   | 1              | 0              |                 | 2              | 5            | 2          | 16         | 31   | Х                       |        |        |         |          |
|          | CY8C4124LQI-S412 | 24                  | 16         | 4         | 2            | 1   | 1              | 0              |                 | 2              | 5            | 2          | 16         | 27   |                         | Х      |        |         |          |
|          | CY8C4124LQI-S413 | 24                  | 16         | 4         | 2            | 1   | 1              | 0              |                 | 2              | 5            | 2          | 16         | 34   |                         |        | Х      |         |          |
| 4124     | CY8C4124AZI-S413 | 24                  | 16         | 4         | 2            | 1   | 1              | 0              |                 | 2              | 5            | 2          | 16         | 36   |                         |        |        | Х       |          |
|          | CY8C4124FNI-S433 | 24                  | 16         | 4         | 2            | 1   | 1              | 1              | 806 ksps        | 2              | 5            | 2          | 16         | 31   | Х                       |        |        |         |          |
|          | CY8C4124LQI-S432 | 24                  | 16         | 4         | 2            | 1   | 1              | 1              | 806 ksps        | 2              | 5            | 2          | 16         | 27   |                         | Х      |        |         |          |
|          | CY8C4124LQI-S433 | 24                  | 16         | 4         | 2            | 1   | 1              | 1              | 806 ksps        | 2              | 5            | 2          | 16         | 34   |                         |        | Х      |         |          |
|          | CY8C4124AZI-S433 | 24                  | 16         | 4         | 2            | 1   | 1              | 1              | 806 ksps        | 2              | 5            | 2          | 16         | 36   |                         |        |        | Х       |          |
|          | CY8C4125FNI-S423 | 24                  | 32         | 4         | 2            | 0   | 1              | 1              | 806 ksps        | 2              | 5            | 2          | 16         | 31   | Х                       |        |        |         |          |
| •        | CY8C4125LQI-S422 | 24                  | 32         | 4         | 2            | 0   | 1              | 1              | 806 ksps        | 2              | 5            | 2          | 16         | 27   |                         | Х      |        |         |          |
| -        | CY8C4125LQI-S423 | 24                  | 32         | 4         | 2            | 0   | 1              | 1              | 806 ksps        | 2              | 5            | 2          | 16         | 34   |                         |        | Х      |         |          |
| -        | CY8C4125AZI-S423 | 24                  | 32         | 4         | 2            | 0   | 1              | 1              | 806 ksps        | 2              | 5            | 2          | 16         | 36   |                         |        |        | Х       |          |
| -        | CY8C4125AXI-S423 | 24                  | 32         | 4         | 2            | 0   | 1              | 1              | 806 ksps        | 2              | 5            | 2          | 16         | 36   |                         |        |        |         | Х        |
| -        | CY8C4125FNI-S413 | 24                  | 32         | 4         | 2            | 1   | 1              | 0              |                 | 2              | 5            | 2          | 16         | 31   | Х                       |        |        |         |          |
|          | CY8C4125LQI-S412 | 24                  | 32         | 4         | 2            | 1   | 1              | 0              |                 | 2              | 5            | 2          | 16         | 27   |                         | Х      |        |         |          |
| 4125     | CY8C4125LQI-S413 | 24                  | 32         | 4         | 2            | 1   | 1              | 0              |                 | 2              | 5            | 2          | 16         | 34   |                         |        | Х      |         |          |
| -        | CY8C4125AZI-S413 | 24                  | 32         | 4         | 2            | 1   | 1              | 0              |                 | 2              | 5            | 2          | 16         | 36   |                         |        |        | Х       |          |
|          | CY8C4125FNI-S433 | 24                  | 32         | 4         | 2            | 1   | 1              | 1              | 806 ksps        | 2              | 5            | 2          | 16         | 31   | Х                       |        |        |         |          |
|          | CY8C4125LQI-S432 | 24                  | 32         | 4         | 2            | 1   | 1              | 1              | 806 ksps        | 2              | 5            | 2          | 16         | 27   |                         | Х      |        |         |          |
|          | CY8C4125LQI-S433 | 24                  | 32         | 4         | 2            | 1   | 1              | 1              | 806 ksps        | 2              | 5            | 2          | 16         | 34   |                         |        | Х      |         |          |
|          | CY8C4125AZI-S433 | 24                  | 32         | 4         | 2            | 1   | 1              | 1              | 806 ksps        | 2              | 5            | 2          | 16         | 36   |                         |        |        | Х       |          |
|          | CY8C4125AXI-S433 | 24                  | 32         | 4         | 2            | 1   | 1              | 1              | 806 ksps        | 2              | 5            | 2          | 16         | 36   |                         |        |        |         | Х        |
|          | CY8C4126AZI-S423 | 24                  | 64         | 8         | 2            | 0   | 1              | 1              | 806 ksps        | 2              | 5            | 3          | 16         | 36   |                         |        |        | Х       |          |
|          | CY8C4126AXI-S423 | 24                  | 64         | 8         | 2            | 0   | 1              | 1              | 806 ksps        | 2              | 5            | 3          | 16         | 36   |                         |        |        |         | Х        |
| 4126     | CY8C4126AZI-S433 | 24                  | 64         | 8         | 2            | 1   | 1              | 1              | 806 ksps        | 2              | 5            | 3          | 16         | 36   |                         |        |        | Х       |          |
|          | CY8C4126AXI-S433 | 24                  | 64         | 8         | 2            | 1   | 1              | 1              | 806 ksps        | 2              | 5            | 3          | 16         | 36   |                         |        |        |         | Х        |
|          | CY8C4145AZI-S423 | 48                  | 32         | 4         | 2            | 0   | 1              | 1              | 1 Msps          | 2              | 5            | 2          | 16         | 36   |                         |        |        | Х       |          |
| 4145     | CY8C4145AXI-S423 | 48                  | 32         | 4         | 2            | 0   | 1              | 1              | 1 Msps          | 2              | 5            | 2          | 16         | 36   |                         |        |        |         | Х        |
|          | CY8C4145AXI-S433 | 48                  | 32         | 4         | 2            | 1   | 1              | 1              | 1 Msps          | 2              | 5            | 2          | 16         | 36   |                         |        |        |         | Х        |
| 4146     | CY8C4146FNI-S423 | 48                  | 64         | 8         | 2            | 0   | 1              | 1              | 1 Msps          | 2              | 5            | 3          | 16         | 31   | Х                       |        |        |         |          |
|          | CY8C4146LQI-S422 | 48                  | 64         | 8         | 2            | 0   | 1              | 1              | 1 Msps          | 2              | 5            | 3          | 16         | 27   |                         | Х      |        |         |          |
|          | CY8C4146LQI-S423 | 48                  | 64         | 8         | 2            | 0   | 1              | 1              | 1 Msps          | 2              | 5            | 3          | 16         | 34   |                         |        | Х      |         | $\vdash$ |
|          | CY8C4146AZI-S423 | 48                  | 64         | 8         | 2            | 0   | 1              | 1              | 1 Msps          | 2              | 5            | 3          | 16         | 36   |                         |        |        | Х       |          |
|          | CY8C4146AXI-S423 | 48                  | 64         | 8         | 2            | 0   | 1              | 1              | 1 Msps          | 2              | 5            | 3          | 16         | 36   |                         |        |        |         | Х        |
|          | CY8C4146FNI-S433 | 48                  | 64         | 8         | 2            | 1   | 1              | 1              | 1 Msps          | 2              | 5            | 3          | 16         | 31   | Х                       |        |        |         |          |
|          | CY8C4146LQI-S432 | 48                  | 64         | 8         | 2            | 1   | 1              | 1              | 1 Msps          | 2              | 5            | 3          | 16         | 27   |                         | Х      |        |         | $\vdash$ |
|          | CY8C4146LQI-S433 | 48                  | 64         | 8         | 2            | 1   | 1              | 1              | 1 Msps          | 2              | 5            | 3          | 16         | 34   |                         |        | Х      |         | $\vdash$ |
|          | CY8C4146AZI-S433 | 48                  | 64         | 8         | 2            | 1   | 1              | 1              | 1 Msps          | 2              | 5            | 3          | 16         | 36   |                         |        |        | Х       | $\vdash$ |
|          | CY8C4146AXI-S433 | 48                  | 64         | 8         | 2            | 1   | 1              | 1              | 1 Msps          | 2              | 5            | 3          | 16         | 36   |                         |        |        |         | Х        |



# **Packaging**

The PSoC 4100S will be offered in 48-pin TQFP, 44-pin TQFP, 40-pin QFN, 32-pin QFN, and 35-ball WLCSP packages. Package dimensions and Cypress drawing numbers are in the following table.

Table 38. Package List

| Spec ID# | Package       | Description                                   | Package Dwg |
|----------|---------------|-----------------------------------------------|-------------|
| BID20    | 48-pin TQFP   | 7 × 7 × 1.4-mm height with 0.5-mm pitch       | 51-85135    |
| BID20A   | 44-pin TQFP   | 10 × 10 × 1.6-mm height with 0.8-mm pitch     | 51-85064    |
| BID27    | 40-pin QFN    | 6 × 6 × 0.6-mm height with 0.5-mm pitch       | 001-80659   |
| BID34A   | 32-pin QFN    | 5 × 5 × 0.6-mm height with 0.5-mm pitch       | 001-42168   |
| BID34D   | 35-ball WLCSP | 2.6 × 2.1 × 0.48-mm height with 0.35-mm pitch | 002-09958   |

**Table 39. Package Thermal Characteristics** 

| Parameter | Description                    | Package       | Min | Тур  | Max | Units   |
|-----------|--------------------------------|---------------|-----|------|-----|---------|
| TA        | Operating Ambient temperature  |               | -40 | 25   | 85  | °C      |
| TJ        | Operating junction temperature |               | -40 | _    | 100 | °C      |
| TJA       | Package θ <sub>JA</sub>        | 48-pin TQFP   | -   | 74.8 | -   | °C/Watt |
| TJC       | Package θ <sub>JC</sub>        | 48-pin TQFP   | -   | 35.7 | -   | °C/Watt |
| TJA       | Package θ <sub>JA</sub>        | 44-pin TQFP   | _   | 57.2 | _   | °C/Watt |
| TJC       | Package $\theta_{JC}$          | 44-pin TQFP   | _   | 17.5 | _   | °C/Watt |
| TJA       | Package θ <sub>JA</sub>        | 40-pin QFN    | -   | 17.8 | -   | °C/Watt |
| TJC       | Package $\theta_{JC}$          | 40-pin QFN    | _   | 2.8  | _   | °C/Watt |
| TJA       | Package $\theta_{JA}$          | 32-pin QFN    | _   | 19.9 | _   | °C/Watt |
| TJC       | Package θ <sub>JC</sub>        | 32-pin QFN    | -   | 4.3  | -   | °C/Watt |
| TJA       | Package θ <sub>JA</sub>        | 35-ball WLCSP | _   | 43   | _   | °C/Watt |
| TJC       | Package $\theta_{JC}$          | 35-ball WLCSP | _   | 0.3  | -   | °C/Watt |

Table 40. Solder Reflow Peak Temperature

| Package | Maximum Peak<br>Temperature | Maximum Time at Peak Temperature |  |  |  |  |  |
|---------|-----------------------------|----------------------------------|--|--|--|--|--|
| All     | 260 °C                      | 30 seconds                       |  |  |  |  |  |

Table 41. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-020

| Package          | MSL   |
|------------------|-------|
| All except WLCSP | MSL 3 |
| 35-ball WLCSP    | MSL 1 |

Document Number: 002-00122 Rev. \*H Page 33 of 41



#### **Package Diagrams**

Figure 6. 48-pin TQFP Package Outline

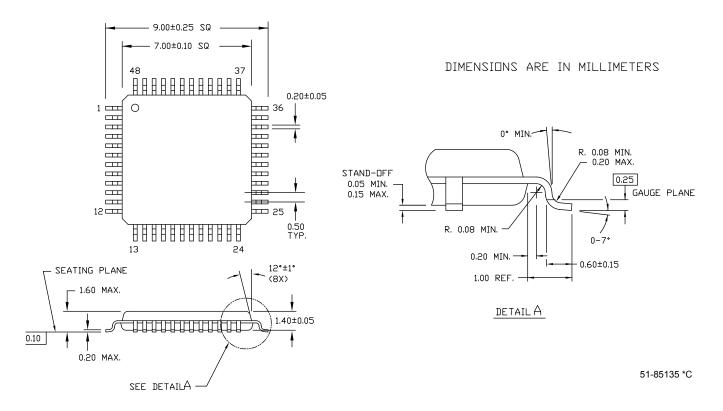
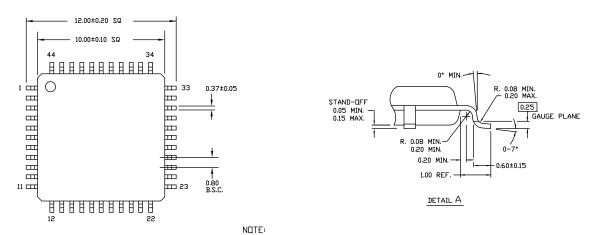




Figure 7. 44-pin TQFP Package Outline



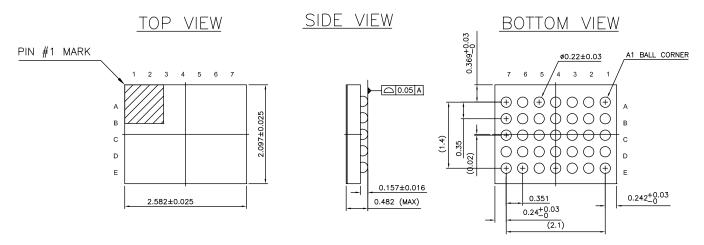
SEATING PLANE

1.60 MAX.

1.40±0.05

0.20 MAX.

SEE DETAILA


1. JEDEC STD REF MS-026

- 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH
  MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE
  BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
- 3. DIMENSIONS IN MILLIMETERS

51-85064 \*G



Figure 10. 35-Ball WLCSP Package Outline



ALL DIMENSIONS ARE IN MM JEDEC Publication 95; Design Guide 4.18 002-09958 \*C



Table 42. Acronyms Used in this Document (continued)

| Acronym           | Description                                                  |
|-------------------|--------------------------------------------------------------|
| PC                | program counter                                              |
| PCB               | printed circuit board                                        |
| PGA               | programmable gain amplifier                                  |
| PHUB              | peripheral hub                                               |
| PHY               | physical layer                                               |
| PICU              | port interrupt control unit                                  |
| PLA               | programmable logic array                                     |
| PLD               | programmable logic device, see also PAL                      |
| PLL               | phase-locked loop                                            |
| PMDD              | package material declaration data sheet                      |
| POR               | power-on reset                                               |
| PRES              | precise power-on reset                                       |
| PRS               | pseudo random sequence                                       |
| PS                | port read data register                                      |
| PSoC <sup>®</sup> | Programmable System-on-Chip™                                 |
| PSRR              | power supply rejection ratio                                 |
| PWM               | pulse-width modulator                                        |
| RAM               | random-access memory                                         |
| RISC              | reduced-instruction-set computing                            |
| RMS               | root-mean-square                                             |
| RTC               | real-time clock                                              |
| RTL               | register transfer language                                   |
| RTR               | remote transmission request                                  |
| RX                | receive                                                      |
| SAR               | successive approximation register                            |
| SC/CT             | switched capacitor/continuous time                           |
| SCL               | I <sup>2</sup> C serial clock                                |
| SDA               | I <sup>2</sup> C serial data                                 |
| S/H               | sample and hold                                              |
| SINAD             | signal to noise and distortion ratio                         |
| SIO               | special input/output, GPIO with advanced features. See GPIO. |
| SOC               | start of conversion                                          |
| SOF               | start of frame                                               |
| SPI               | Serial Peripheral Interface, a communications protocol       |
| SR                | slew rate                                                    |
| SRAM              | static random access memory                                  |
| SRES              | software reset                                               |
| SWD               | serial wire debug, a test protocol                           |

Table 42. Acronyms Used in this Document (continued)

| Acronym | Description                                                            |
|---------|------------------------------------------------------------------------|
| SWV     | single-wire viewer                                                     |
| TD      | transaction descriptor, see also DMA                                   |
| THD     | total harmonic distortion                                              |
| TIA     | transimpedance amplifier                                               |
| TRM     | technical reference manual                                             |
| TTL     | transistor-transistor logic                                            |
| TX      | transmit                                                               |
| UART    | Universal Asynchronous Transmitter Receiver, a communications protocol |
| UDB     | universal digital block                                                |
| USB     | Universal Serial Bus                                                   |
| USBIO   | USB input/output, PSoC pins used to connect to a USB port              |
| VDAC    | voltage DAC, see also DAC, IDAC                                        |
| WDT     | watchdog timer                                                         |
| WOL     | write once latch, see also NVL                                         |
| WRES    | watchdog timer reset                                                   |
| XRES    | external reset I/O pin                                                 |
| XTAL    | crystal                                                                |

Document Number: 002-00122 Rev. \*H Page 38 of 41



# Sales, Solutions, and Legal Information

#### Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/touch

cypress.com/wireless

cypress.com/usb

#### **Products**

Touch Sensing

**USB Controllers** 

Wireless Connectivity

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic

## PSoC<sup>®</sup>Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

#### **Cypress Developer Community**

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

#### **Technical Support**

cypress.com/support

© Cypress Semiconductor Corporation 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties and the countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or heazardous substances management, or other uses where the failure of the device or systems (including resuscitation equipment and surgical implants), pollution control or heazardous substances management, or other uses where the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners

Document Number: 002-00122 Rev. \*H Revised January 9, 2017 Page 41 of 41