

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x10b Slope, 16x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4125lqi-s423t

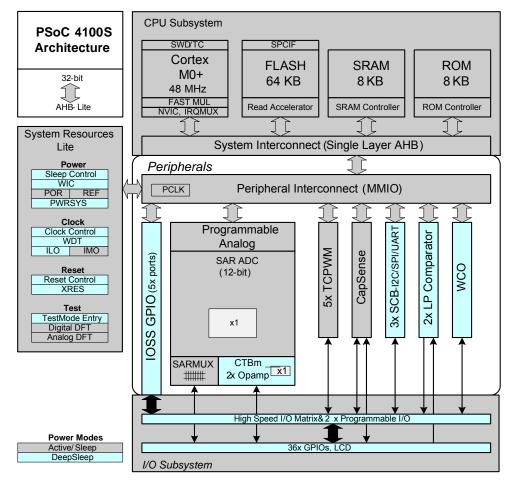


Figure 1. Block Diagram

PSoC 4100S devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM Serial-Wire Debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator IDE provides fully integrated programming and debug support for the PSoC 4100S devices. The SWD interface is fully compatible with industry-standard third-party tools. The PSoC 4100S family provides a level of security not possible with multi-chip application solutions or with microcontrollers. It has the following advantages:

- Allows disabling of debug features
- Robust flash protection
- Allows customer-proprietary functionality to be implemented in on-chip programmable blocks

The debug circuits are enabled by default and can be disabled in firmware. If they are not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging. Thus firmware control of debugging cannot be over-ridden without erasing the firmware thus providing security.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. All programming, debug, and test interfaces are disabled when maximum device security is enabled. Therefore, PSoC 4100S, with device security enabled, may not be returned for failure analysis. This is a trade-off the PSoC 4100S allows the customer to make.

Functional Definition

CPU and Memory Subsystem

CPU

The Cortex-M0+ CPU in the PSoC 4100S is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. Most instructions are 16 bits in length and the CPU executes a subset of the Thumb-2 instruction set. It includes a nested vectored interrupt controller (NVIC) block with eight interrupt inputs and also includes a Wakeup Interrupt Controller (WIC). The WIC can wake the processor from Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in Deep Sleep mode.

The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a two-wire form of JTAG. The debug configuration used for PSoC 4100S has four breakpoint (address) comparators and two watchpoint (data) comparators.

Flash

The PSoC 4100S device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The low-power flash block is designed to deliver two wait-state (WS) access time at 48 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average.

SRAM

Eight KB of SRAM are provided with zero wait-state access at 48 MHz.

SROM

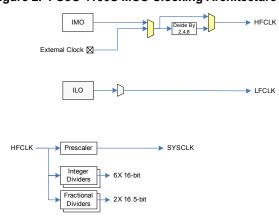
An 8 KB supervisory ROM that contains boot and configuration routines is provided.

System Resources

Power System

The power system is described in detail in the section Power on page 11. It provides assurance that voltage levels are as required for each respective mode and either delays mode entry (for example, on power-on reset (POR)) until voltage levels are as required for proper functionality, or generates resets (for example, on brown-out detection). The PSoC 4100S operates with a single external supply over the range of either 1.8 V $\pm 5\%$ (externally regulated) or 1.8 to 5.5 V (internally regulated) and has three different power modes, transitions between which are managed by the power system. The PSoC 4100S provides Active, Sleep, and Deep Sleep low-power modes.

All subsystems are operational in Active mode. The CPU subsystem (CPU, flash, and SRAM) is clock-gated off in Sleep mode, while all peripherals and interrupts are active with instantaneous wake-up on a wake-up event. In Deep Sleep mode, the high-speed clock and associated circuitry is switched off; wake-up from this mode takes 35 μs . The opamps can remain operational in Deep Sleep mode.


Clock System

The PSoC 4100S clock system is responsible for providing clocks to all subsystems that require clocks and for switching

between different clock sources without glitching. In addition, the clock system ensures that there are no metastable conditions.

The clock system for the PSoC 4100S consists of the internal main oscillator (IMO), internal low-frequency oscillator (ILO), a 32 kHz Watch Crystal Oscillator (WCO) and provision for an external clock. Clock dividers are provided to generate clocks for peripherals on a fine-grained basis. Fractional dividers are also provided to enable clocking of higher data rates for UARTs.

Figure 2. PSoC 4100S MCU Clocking Architecture

The HFCLK signal can be divided down to generate synchronous clocks for the analog and digital peripherals. There are eight clock dividers for the PSoC 4100S; two of those are fractional dividers. The 16-bit capability allows flexible generation of fine-grained frequency values and is fully supported in PSoC Creator

IMO Clock Source

The IMO is the primary source of internal clocking in the PSoC 4100S. It is trimmed during testing to achieve the specified accuracy. The IMO default frequency is 24 MHz and it can be adjusted from 24 to 48 MHz in steps of 4 MHz. The IMO tolerance with Cypress-provided calibration settings is $\pm 2\%$.

ILO Clock Source

The ILO is a very low power, nominally 40-kHz oscillator, which is primarily used to generate clocks for the watchdog timer (WDT) and peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Cypress provides a software component, which does the calibration.

Watch Crystal Oscillator (WCO)

The PSoC 4100S clock subsystem also implements a low-frequency (32-kHz watch crystal) oscillator that can be used for precision timing applications.

Watchdog Timer

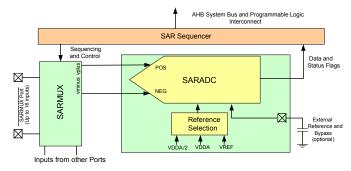
A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during Deep Sleep and generates a watchdog reset if not serviced before the set timeout occurs. The watchdog reset is recorded in a Reset Cause register, which is firmware readable.

Reset

The PSoC 4100S can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset by asserting it active low. The XRES pin has an internal pull-up resistor that is always enabled.

Analog Blocks

12-bit SAR ADC


The 12-bit, 1-Msps SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion.

The Sample-and-Hold (S/H) aperture is programmable allowing the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. It is possible to provide an external bypass (through a fixed pin location) for the internal reference amplifier.

The SAR is connected to a fixed set of pins through an 8-input sequencer. The sequencer cycles through selected channels autonomously (sequencer scan) with zero switching overhead (that is, aggregate sampling bandwidth is equal to 1 Msps whether it is for a single channel or distributed over several channels). The sequencer switching is effected through a state machine or through firmware driven switching. A feature provided by the sequencer is buffering of each channel to reduce CPU interrupt service requirements. To accommodate signals with varying source impedance and frequency, it is possible to have different sample times programmable for each channel. Also, signal range specification through a pair of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast detection of out-of-range values without the necessity of having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software.

The SAR is not available in Deep Sleep mode as it requires a high-speed clock (up to 18 MHz). The SAR operating range is 1.71 V to 5.5 V.

Figure 3. SAR ADC

Two Opamps (Continuous-Time Block; CTB)

The PSoC 4100S has two opamps with Comparator modes which allow most common analog functions to be performed on-chip eliminating external components; PGAs, Voltage

Buffers, Filters, Trans-Impedance Amplifiers, and other functions can be realized, in some cases with external passives. saving power, cost, and space. The on-chip opamps are designed with enough bandwidth to drive the Sample-and-Hold circuit of the ADC without requiring external buffering.

Low-power Comparators (LPC)

The PSoC 4100S has a pair of low-power comparators, which can also operate in Deep Sleep modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode where the system wake-up circuit is activated by a comparator switch event. The LPC outputs can be routed to pins.

Current DACs

The PSoC 4100S has two IDACs, which can drive any of the pins on the chip. These IDACs have programmable current ranges.

Analog Multiplexed Buses

The PSoC 4100S has two concentric independent buses that go around the periphery of the chip. These buses (called amux buses) are connected to firmware-programmable analog switches that allow the chip's internal resources (IDACs, comparator) to connect to any pin on the I/O Ports.

Programmable Digital Blocks

The Programmable I/O (Smart I/O) block is a fabric of switches and LUTs that allows Boolean functions to be performed in signals being routed to the pins of a GPIO port. The Smart I/O can perform logical operations on input pins to the chip and on signals going out as outputs.

Fixed Function Digital

Timer/Counter/PWM (TCPWM) Block

The TCPWM block consists of a 16-bit counter with user-programmable period length. There is a capture register to record the count value at the time of an event (which may be an I/O event), a period register that is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals that are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as dead-band programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an over-current state is indicated and the PWM driving the FETs needs to be shut off immediately with no time for software intervention. There are five TCPWM blocks in the PSoC 4100S.

Serial Communication Block (SCB)

The PSoC 4100S has three serial communication blocks, which can be programmed to have SPI, I2C, or UART functionality.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multi-master arbitration). This block is capable of operating at speeds of up to 400 kbps (Fast Mode) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. It also

Pinouts

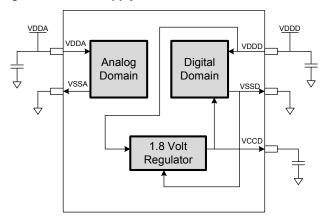
The following table provides the pin list for PSoC 4100S for the 48-pin TQFP, 44-pin TQFP, 40-pin QFN, 32-pin QFN, and 35-ball CSP packages. All port pins support GPIO.

Table 1. Pin List

48-1	TQFP	44-	TQFP	40	-QFN	32	-QFN	35	5-CSP
Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name
28	P0.0	24	P0.0	22	P0.0	17	P0.0	C3	P0.0
29	P0.1	25	P0.1	23	P0.1	18	P0.1	A5	P0.1
30	P0.2	26	P0.2	24	P0.2	19	P0.2	A4	P0.2
31	P0.3	27	P0.3	25	P0.3	20	P0.3	A3	P0.3
32	P0.4	28	P0.4	26	P0.4	21	P0.4	В3	P0.4
33	P0.5	29	P0.5	27	P0.5	22	P0.5	A6	P0.5
34	P0.6	30	P0.6	28	P0.6	23	P0.6	B4	P0.6
35	P0.7	31	P0.7	29	P0.7			B5	P0.7
36	XRES	32	XRES	30	XRES	24	XRES	В6	XRES
37	VCCD	33	VCCD	31	VCCD	25	VCCD	A7	VCCD
38	VSSD			DN	VSSD	26	VSSD	В7	VSS
39	VDDD	34	VDDD	32	VDDD			C7	VDD
40	VDDA	35	VDDA	33	VDDA	27	VDD	C7	VDD
41	VSSA	36	VSSA	34	VSSA	28	VSSA	В7	VSS
42	P1.0	37	P1.0	35	P1.0	29	P1.0	C4	P1.0
43	P1.1	38	P1.1	36	P1.1	30	P1.1	C5	P1.1
44	P1.2	39	P1.2	37	P1.2	31	P1.2	C6	P1.2
45	P1.3	40	P1.3	38	P1.3	32	P1.3	D7	P1.3
46	P1.4	41	P1.4	39	P1.4			D4	P1.4
47	P1.5	42	P1.5					D5	P1.5
48	P1.6	43	P1.6					D6	P1.6
1	P1.7/VREF	44	P1.7/VREF	40	P1.7/VREF	1	P1.7/VREF	E7	P1.7/VRE
		1	VSSD						
2	P2.0	2	P2.0	1	P2.0	2	P2.0		
3	P2.1	3	P2.1	2	P2.1	3	P2.1		
4	P2.2	4	P2.2	3	P2.2	4	P2.2	D3	P2.2
5	P2.3	5	P2.3	4	P2.3	5	P2.3	E4	P2.3
6	P2.4	6	P2.4	5	P2.4			E5	P2.4
7	P2.5	7	P2.5	6	P2.5	6	P2.5	E6	P2.5
8	P2.6	8	P2.6	7	P2.6	7	P2.6	E3	P2.6
9	P2.7	9	P2.7	8	P2.7	8	P2.7	E2	P2.7
10	VSSD	10	VSSD	9	VSSD		1		
12	P3.0	11	P3.0	10	P3.0	9	P3.0	E1	P3.0
13	P3.1	12	P3.1	11	P3.1	10	P3.1	D2	P3.1
14	P3.2	13	P3.2	12	P3.2	11	P3.2	D1	P3.2
16	P3.3	14	P3.3	13	P3.3	12	P3.3	C1	P3.3
17	P3.4	15	P3.4	14	P3.4			C2	P3.4
18	P3.5	16	P3.5	15	P3.5				

Alternate Pin Functions

Each Port pin has can be assigned to one of multiple functions; it can, for instance, be an analog I/O, a digital peripheral function, an LCD pin, or a CapSense pin. The pin assignments are shown in the following table.


Port/Pin	Analog	Smart I/O	Alternate Function 1	Alternate Function 2	Alternate Function 3	Deep Sleep 1	Deep Sleep 2
P0.0	lpcomp.in_p[0]				tcpwm.tr_in[0]	scb[2].i2c_scl:0	scb[0].spi_select1:0
P0.1	lpcomp.in_n[0]				tcpwm.tr_in[1]	scb[2].i2c_sda:0	scb[0].spi_select2:0
P0.2	lpcomp.in_p[1]						scb[0].spi_select3:0
P0.3	lpcomp.in_n[1]						scb[2].spi_select0
P0.4	wco.wco_in			scb[1].uart_rx:0	scb[2].uart_rx:0	scb[1].i2c_scl:0	scb[1].spi_mosi:1
P0.5	wco.wco_out			scb[1].uart_tx:0	scb[2].uart_tx:0	scb[1].i2c_sda:0	scb[1].spi_miso:1
P0.6			srss.ext_clk	scb[1].uart_cts:0	scb[2].uart_tx:1		scb[1].spi_clk:1
P0.7			tcpwm.line[0]:2	scb[1].uart_rts:0			scb[1].spi_select0:1
P1.0	ctb0_oa0+		tcpwm.line[2]:1	scb[0].uart_rx:1		scb[0].i2c_scl:0	scb[0].spi_mosi:1
P1.1	ctb0_oa0-		tcpwm.line_compl[2]:1	scb[0].uart_tx:1		scb[0].i2c_sda:0	scb[0].spi_miso:1
P1.2	ctb0_oa0_out		tcpwm.line[3]:1	scb[0].uart_cts:1	tcpwm.tr_in[2]	scb[2].i2c_scl:1	scb[0].spi_clk:1
P1.3	ctb0_oa1_out		tcpwm.line_compl[3]:1	scb[0].uart_rts:1	tcpwm.tr_in[3]	scb[2].i2c_sda:1	scb[0].spi_select0:1
P1.4	ctb0_oa1-						scb[0].spi_select1:1
P1.5	ctb0_oa1+						scb[0].spi_select2:1
P1.6	ctb0_oa0+						scb[0].spi_select3:1
P1.7	ctb0_oa1+ sar_ext_vref0 sar_ext_vref1						scb[2].spi_clk
P2.0	sarmux[0]	prgio[0].io[0]	tcpwm.line[4]:0	csd.comp	tcpwm.tr_in[4]	scb[1].i2c_scl:1	scb[1].spi_mosi:2
P2.1	sarmux[1]	prgio[0].io[1]	tcpwm.line_compl[4]:0		tcpwm.tr_in[5]	scb[1].i2c_sda:1	scb[1].spi_miso:2
P2.2	sarmux[2]	prgio[0].io[2]					scb[1].spi_clk:2
P2.3	sarmux[3]	prgio[0].io[3]					scb[1].spi_select0:2

Power

The following power system diagram shows the set of power supply pins as implemented for the PSoC 4100S. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DD} input.

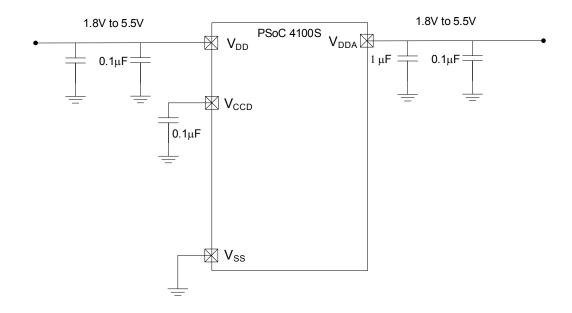
Figure 4. Power Supply Connections

There are two distinct modes of operation. In Mode 1, the supply voltage range is 1.8 V to 5.5 V (unregulated externally; internal regulator operational). In Mode 2, the supply range is 1.8 V ±5% (externally regulated; 1.71 to 1.89, internal regulator bypassed).

Mode 1: 1.8 V to 5.5 V External Supply

In this mode, the PSoC 4100S is powered by an external power supply that can be anywhere in the range of 1.8 to 5.5 V. This range is also designed for battery-powered operation. For example, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4100S supplies the internal logic and its output is connected to the $V_{\rm CCD}$ pin. The VCCD pin must be bypassed to ground via an external capacitor (0.1 μ F; X5R ceramic or better) and must not be connected to anything else.

Mode 2: 1.8 V ±5% External Supply


In this mode, the PSoC 4100S is powered by an external power supply that must be within the range of 1.71 to 1.89 V; note that this range needs to include the power supply ripple too. In this mode, the VDD and VCCD pins are shorted together and bypassed. The internal regulator can be disabled in the firmware.

Bypass capacitors must be used from VDDD to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1- μ F range, in parallel with a smaller capacitor (0.1 μ F, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

An example of a bypass scheme is shown in the following diagram.

Figure 5. External Supply Range from 1.8 V to 5.5 V with Internal Regulator Active

Power supply bypass connections example

Page 12 of 41

Development Support

The PSoC 4100S family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4100S family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers. The TRM is available in the Documentation section at www.cypress.com/psoc4.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4100S family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Table 3. DC Specifications (continued)

Typical values measured at V_{DD} = 3.3 V and 25 °C.

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
Sleep Mode,	VDDD = 1.8 V to	5.5 V (Regulator on)					
SID22	IDD17	I ² C wakeup WDT, and Comparators on	_	1.7	2.2	mA	6 MHZ. Max is at 85 °C and 5.5 V.
SID25	IDD20	I ² C wakeup, WDT, and Comparators on.	_	2.2	2.5		12 MHZ. Max is at 85 °C and 5.5 V.
Sleep Mode,	V _{DDD} = 1.71 V to	o 1.89 V (Regulator bypassed)				· •	
SID28	IDD23	I ² C wakeup, WDT, and Comparators on	_	0.7	0.9	mA	6 MHZ. Max is at 85 °C and 5.5 V.
SID28A	IDD23A	I ² C wakeup, WDT, and Comparators on	_	1	1.2	mA	12 MHZ. Max is at 85 °C and 5.5 V.
Deep Sleep	Mode, V _{DD} = 1.8	V to 3.6 V (Regulator on)		•			
SID31	I _{DD26}	I ² C wakeup and WDT on	_	2.5	60	μA	Max is at 3.6 V and 85 °C.
Deep Sleep	Mode, V _{DD} = 3.6	V to 5.5 V (Regulator on)				1	
SID34	I _{DD29}	I ² C wakeup and WDT on	_	2.5	60	μА	Max is at 5.5 V and 85 °C.
Deep Sleep	Mode, V _{DD} = V _{CO}	_{CD} = 1.71 V to 1.89 V (Regulator bypasse	ed)			1	
SID37	I _{DD32}	I ² C wakeup and WDT on	_	2.5	65	μΑ	Max is at 1.89 V and 85 °C.
XRES Curre	nt			•		•	
SID307	I _{DD_XR}	Supply current while XRES asserted	_	2	5	mA	_

Table 4. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	_	48	MHz	$1.71 \le V_{DD} \le 5.5$
SID49 ^[3]	T _{SLEEP}	Wakeup from Sleep mode	_	0	_	us	
SID50 ^[3]	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	_	35	1	μδ	

Note
2. Guaranteed by characterization.

GPIO

Table 5. GPIO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID57	V _{IH} [3]	Input voltage high threshold	$0.7 \times V_{DDD}$	-	_		CMOS Input
SID58	V _{IL}	Input voltage low threshold	-	_	$0.3 \times V_{DDD}$		CMOS Input
SID241	V _{IH} [3]	LVTTL input, V _{DDD} < 2.7 V	$0.7 \times V_{DDD}$	-	_		_
SID242	V _{IL}	LVTTL input, V _{DDD} < 2.7 V	-	_	$0.3 \times V_{DDD}$		_
SID243	V _{IH} [3]	LVTTL input, $V_{DDD} \ge 2.7 \text{ V}$	2.0	-	_		_
SID244	V _{IL}	LVTTL input, $V_{DDD} \ge 2.7 \text{ V}$	_	-	8.0	V	_
SID59	V _{OH}	Output voltage high level	V _{DDD} -0.6	-	_		I_{OH} = 4 mA at 3 V V_{DDD}
SID60	V _{OH}	Output voltage high level	V _{DDD} -0.5	-	_		I _{OH} = 1 mA at 1.8 V V _{DDD}
SID61	V _{OL}	Output voltage low level	-	_	0.6		I _{OL} = 4 mA at 1.8 V V _{DDD}
SID62	V _{OL}	Output voltage low level	_	-	0.6		I_{OL} = 10 mA at 3 V V_{DDD}
SID62A	V _{OL}	Output voltage low level	-	-	0.4		I_{OL} = 3 mA at 3 V V_{DDD}
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	_
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	N22	_
SID65	I _{IL}	Input leakage current (absolute value)	_	_	2	nA	25 °C, V _{DDD} = 3.0 V
SID66	C _{IN}	Input capacitance	_	-	7	pF	_
SID67 ^[4]	V _{HYSTTL}	Input hysteresis LVTTL	25	40	_		$V_{DDD} \ge 2.7 \text{ V}$
SID68 ^[4]	V _{HYSCMOS}	Input hysteresis CMOS	$0.05 \times V_{DDD}$	-	_	mV	V _{DD} < 4.5 V
SID68A ^[4]	V _{HYSCMOS5V5}	Input hysteresis CMOS	200	-	_		V _{DD} > 4.5 V
SID69 ^[4]	I _{DIODE}	Current through protection diode to V_{DD}/V_{SS}	-	_	100	μA	_
SID69A ^[4]	I _{TOT_GPIO}	Maximum total source or sink chip current	_	_	200	mA	-

Table 6. GPIO AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID70	T _{RISEF}	Rise time in fast strong mode	2	1	12		3.3 V V _{DDD} , Cload = 25 pF
SID71	T _{FALLF}	Fall time in fast strong mode	2	_	12		3.3 V V _{DDD} , Cload = 25 pF
SID72	T _{RISES}	Rise time in slow strong mode	10	_	60		3.3 V V _{DDD} , Cload = 25 pF

V_{IH} must not exceed V_{DDD} + 0.2 V.
 Guaranteed by characterization.

Table 9. CTBm Opamp Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID_DS_7	G _{BW_HI_M1}	Mode 1, High current	-	4	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_8	G _{BW_MED_M1}	Mode 1, Medium current	_	2	Ι		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_9	G _{BW_LOW_M!}	Mode 1, Low current	_	0.5	1	NALI-7	20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_10	G _{BW_HI_M2}	Mode 2, High current	_	0.5	ı	MHz	20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_11	G _{BW_MED_M2}	Mode 2, Medium current	_	0.2	I		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_12	G _{BW_Low_M2}	Mode 2, Low current	_	0.1	I		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_13	V _{OS_HI_M1}	Mode 1, High current	_	5	1		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_14	V _{OS_MED_M1}	Mode 1, Medium current	_	5	_		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_15	V _{OS_LOW_M2}	Mode 1, Low current	_	5	_	>/	With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_16	V _{OS_HI_M2}	Mode 2, High current	_	5	_	- mV	With trim 25 °C, 0.2V to V _{DDA} -0.2 V
SID_DS_17	V _{OS_MED_M2}	Mode 2, Medium current	_	5	_		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_18	V _{OS_LOW_M2}	Mode 2, Low current	_	5	_		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_19	I _{OUT_HI_M!}	Mode 1, High current	_	10	_		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_20	I _{OUT_MED_M1}	Mode 1, Medium current	_	10	_		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_21	I _{OUT_LOW_M1}	Mode 1, Low current	_	4	_	mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_22	I _{OUT_HI_M2}	Mode 2, High current	_	1	-		
SID_DS_23	I _{OU_MED_M2}	Mode 2, Medium current	_	1	-		
SID_DS_24	I _{OU_LOW_M2}	Mode 2, Low current	_	0.5	-		

Note6. Guaranteed by characterization.

CSD

Table 14. CSD and IDAC Specifications

SPEC ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SYS.PER#3	VDD_RIPPLE	Max allowed ripple on power supply, DC to 10 MHz	ı	_	±50	mV	V _{DD} > 2 V (with ripple), 25 °C T _A , Sensitivity = 0.1 pF
SYS.PER#16	VDD_RIPPLE_1.8	Max allowed ripple on power supply, DC to 10 MHz	-	_	±25	mV	V_{DD} > 1.75V (with ripple), 25 °C T _A , Parasitic Capacitance (C _P) < 20 pF, Sensitivity ≥ 0.4 pF
SID.CSD.BLK	ICSD	Maximum block current	-	-	4000	μA	Maximum block current for both IDACs in dynamic (switching) mode including comparators, buffer, and reference generator.
SID.CSD#15	V_{REF}	Voltage reference for CSD and Comparator	0.6	1.2	V _{DDA} - 0.6	V	V _{DDA} - 0.06 or 4.4, whichever is lower
SID.CSD#15A	VREF_EXT	External Voltage reference for CSD and Comparator	0.6		V _{DDA} - 0.6	V	V _{DDA} - 0.06 or 4.4, whichever is lower
SID.CSD#16	IDAC1IDD	IDAC1 (7-bits) block current	_	-	1750	μΑ	
SID.CSD#17	IDAC2IDD	IDAC2 (7-bits) block current	_	-	1750	μΑ	
SID308	VCSD	Voltage range of operation	1.71	-	5.5	V	1.8 V ±5% or 1.8 V to 5.5 \
SID308A	VCOMPIDAC	Voltage compliance range of IDAC	0.6	-	V _{DDA} -0.6	V	V _{DDA} - 0.06 or 4.4, whichever is lower
SID309	IDAC1DNL	DNL	-1	-	1	LSB	
SID310	IDAC1INL	INL	-2	_	2	LSB	INL is ± 5.5 LSB for $V_{DDA} < 2$ V
SID311	IDAC2DNL	DNL	-1	-	1	LSB	
SID312	IDAC2INL	INL	-2	_	2	LSB	INL is ± 5.5 LSB for $V_{DDA} < 2$ V
SID313	SNR	Ratio of counts of finger to noise. Guaranteed by characterization	5	_	_	Ratio	Capacitance range of 5 to 35 pF, 0.1-pF sensitivity. All use cases. V _{DDA} > 2 V.
SID314	IDAC1CRT1	Output current of IDAC1 (7 bits) in low range	4.2	_	5.4	μA	LSB = 37.5-nA typ.
SID314A	IDAC1CRT2	Output current of IDAC1(7 bits) in medium range	34	_	41	μA	LSB = 300-nA typ.
SID314B	IDAC1CRT3	Output current of IDAC1(7 bits) in high range	275	_	330	μA	LSB = 2.4-µA typ.
SID314C	IDAC1CRT12	Output current of IDAC1 (7 bits) in low range, 2X mode	8	-	10.5	μA	LSB = 75-nA typ.
SID314D	IDAC1CRT22	Output current of IDAC1(7 bits) in medium range, 2X mode	69	-	82	μA	LSB = 600-nA typ.
SID314E	IDAC1CRT32	Output current of IDAC1(7 bits) in high range, 2X mode	540	-	660	μA	LSB = 4.8-μA typ.
SID315	IDAC2CRT1	Output current of IDAC2 (7 bits) in low range	4.2	_	5.4	μA	LSB = 37.5-nA typ.
SID315A	IDAC2CRT2	Output current of IDAC2 (7 bits) in medium range	34	_	41	μA	LSB = 300-nA typ.
SID315B	IDAC2CRT3	Output current of IDAC2 (7 bits) in high range	275	_	330	μA	LSB = 2.4-µA typ.
SID315C	IDAC2CRT12	Output current of IDAC2 (7 bits) in low range, 2X mode	8	_	10.5	μA	LSB = 75-nA typ.
SID315D	IDAC2CRT22	Output current of IDAC2(7 bits) in medium range, 2X mode	69	_	82	μA	LSB = 600-nA typ.
SID315E	IDAC2CRT32	Output current of IDAC2(7 bits) in high range, 2X mode	540	_	660	μA	LSB = 4.8-μA typ.
SID315F	IDAC3CRT13	Output current of IDAC in 8-bit mode in low range	8	_	10.5	μA	LSB = 37.5-nA typ.

Table 14. CSD and IDAC Specifications (continued)

SPEC ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID315G	IDAC3CRT23	Output current of IDAC in 8-bit mode in medium range	69	_	82	μA	LSB = 300-nA typ.
SID315H	IDAC3CRT33	Output current of IDAC in 8-bit mode in high range	540	_	660	μA	LSB = 2.4-µA typ.
SID320	IDACOFFSET	All zeroes input	-	-	1	LSB	Polarity set by Source or Sink. Offset is 2 LSBs for 37.5 nA/LSB mode
SID321	IDACGAIN	Full-scale error less offset	_	_	±10	%	
SID322	IDACMISMATCH1	Mismatch between IDAC1 and IDAC2 in Low mode	-	-	9.2	LSB	LSB = 37.5-nA typ.
SID322A	IDACMISMATCH2	Mismatch between IDAC1 and IDAC2 in Medium mode	-	-	5.6	LSB	LSB = 300-nA typ.
SID322B	IDACMISMATCH3	Mismatch between IDAC1 and IDAC2 in High mode	-	-	6.8	LSB	LSB = 2.4-µA typ.
SID323	IDACSET8	Settling time to 0.5 LSB for 8-bit IDAC	-	-	10	μs	Full-scale transition. No external load.
SID324	IDACSET7	Settling time to 0.5 LSB for 7-bit IDAC	_	-	10	μs	Full-scale transition. No external load.
SID325	CMOD	External modulator capacitor.	-	2.2	_	nF	5-V rating, X7R or NP0 cap.

Table 15. 10-bit CapSense ADC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SIDA94	A_RES	Resolution	_	_	10	bits	Auto-zeroing is required every millisecond
SIDA95	A_CHNLS_S	Number of channels - single ended	_	-	16		Defined by AMUX Bus.
SIDA97	A-MONO	Monotonicity	_	_	-	Yes	
SIDA98	A_GAINERR	Gain error	-	_	±2	%	In V _{REF} (2.4 V) mode with V _{DDA} bypass capacitance of 10 µF
SIDA99	A_OFFSET	Input offset voltage	-	-	3	mV	In V _{REF} (2.4 V) mode with V _{DDA} bypass capacitance of 10 µF
SIDA100	A_ISAR	Current consumption	_	_	0.25	mΑ	
SIDA101	A_VINS	Input voltage range - single ended	V_{SSA}	_	V_{DDA}	V	
SIDA103	A_INRES	Input resistance	_	2.2	-	ΚΩ	
SIDA104	A_INCAP	Input capacitance	_	20	-	pF	
SIDA106	A_PSRR	Power supply rejection ratio	-	60	_	dB	In V _{REF} (2.4 V) mode with V _{DDA} bypass capacitance of 10 µF
SIDA107	A_TACQ	Sample acquisition time	_	1	-	μs	
SIDA108	A_CONV8	Conversion time for 8-bit resolution at conversion rate = Fhclk/(2^(N+2)). Clock frequency = 48 MHz.	_	_	21.3	μs	Does not include acquisition time. Equivalent to 44.8 ksps including acquisition time.
SIDA108A	A_CONV10	Conversion time for 10-bit resolution at conversion rate = Fhclk/(2^(N+2)). Clock frequency = 48 MHz.	_	_	85.3	μs	Does not include acquisition time. Equivalent to 11.6 ksps including acquisition time.

Document Number: 002-00122 Rev. *H Page 24 of 41

Table 19. SPI DC Specifications $^{[9]}$

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID163	ISPI1	Block current consumption at 1 Mbps	-	_	360		_
SID164	ISPI2	Block current consumption at 4 Mbps	-	_	560	μA	_
SID165	ISPI3	Block current consumption at 8 Mbps	_	_	600		-

Table 20. SPI AC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions	
SID166	FSPI	SPI Operating frequency (Master; 6X Oversampling)	-	_	8	MHz	SID166	
Fixed SPI Master Mode AC Specifications								
SID167	TDMO	MOSI Valid after SClock driving edge	_	_	15		_	
SID168	TDSI	MISO Valid before SClock capturing edge	20	_	_	ns	Full clock, late MISO sampling	
SID169	тнмо	Previous MOSI data hold time	0	_	_		Referred to Slave capturing edge	
Fixed SPI	Slave Mode AC	Specifications						
SID170	TDMI	MOSI Valid before Sclock Capturing edge	40	_	_		-	
SID171	TDSO	MISO Valid after Sclock driving edge	-	_	42 + 3*Tcpu	ns	T _{CPU} = 1/F _{CPU}	
SID171A	TDSO_EXT	MISO Valid after Sclock driving edge in Ext. Clk mode	_	_	48		-	
SID172	THSO	Previous MISO data hold time	0	_	_		_	
SID172A	TSSELSSCK	SSEL Valid to first SCK Valid edge	-	_	100	ns	-	

Document Number: 002-00122 Rev. *H Page 26 of 41

Memory

Table 25. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V_{PE}	Erase and program voltage	1.71	1	5.5	V	_

Table 26. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE} ^[10]	Row (block) write time (erase and program)	-	-	20		Row (block) = 128 bytes
SID175	T _{ROWERASE} ^[10]	Row erase time	-	_	16	ms	-
SID176	T _{ROWPROGRAM} ^[10]	Row program time after erase	-	_	4		-
SID178	T _{BULKERASE} ^[10]	Bulk erase time (64 KB)	-	_	35		-
SID180 ^[11]	T _{DEVPROG} ^[10]	Total device program time	_	_	7	Seconds	-
SID181 ^[11]	F _{END}	Flash endurance	100 K	_	_	Cycles	-
SID182 ^[11]	F _{RET}	Flash retention. $T_A \le 55$ °C, 100 K P/E cycles	20	_	-	Years	-
SID182A ^[11]	_	Flash retention. $T_A \le 85$ °C, 10 K P/E cycles	10	-	_	Tears	-
SID256	TWS48	Number of Wait states at 48 MHz	2	-	_		CPU execution from Flash
SID257	TWS24	Number of Wait states at 24 MHz	1	_	_		CPU execution from Flash

System Resources

Power-on Reset (POR)

Table 27. Power On Reset (PRES)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.CLK#6	SR_POWER_UP	Power supply slew rate	1	1	67	V/ms	At power-up
SID185 ^[11]	V _{RISEIPOR}	Rising trip voltage	0.80	1	1.5	V	_
SID186 ^[11]	V _{FALLIPOR}	Falling trip voltage	0.70	-	1.4		_

Table 28. Brown-out Detect (BOD) for $V_{\mbox{\scriptsize CCD}}$

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID190 ^[11]	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.48	1	1.62	V	-
SID192 ^[11]	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.11	-	1.5		_

Document Number: 002-00122 Rev. *H Page 28 of 41

Notes

10. It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

SWD Interface

Table 29. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.3 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	ı	1	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID214	F_SWDCLK2	$1.71 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V}$	-	-	7		SWDCLK ≤ 1/3 CPU clock frequency
SID215 ^[12]	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	_	_		-
SID216 ^[12]	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	_	_	ns	-
SID217 ^[12]	T_SWDO_VALID	T = 1/f SWDCLK	_	_	0.5*T	115	-
SID217A ^[12]	T_SWDO_HOLD	T = 1/f SWDCLK	1	_	_		-

Internal Main Oscillator

Table 30. IMO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID218	I _{IMO1}	IMO operating current at 48 MHz	_	_	250	μΑ	_
SID219	I _{IMO2}	IMO operating current at 24 MHz	_	_	180	μΑ	_

Table 31. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID223	F _{IMOTOL1}	Frequency variation at 24, 32, and 48 MHz (trimmed)	1	_	±2	%	
SID226	T _{STARTIMO}	IMO startup time	_	_	7	μs	-
SID228	T _{JITRMSIMO2}	RMS jitter at 24 MHz	-	145	=	ps	_

Internal Low-Speed Oscillator

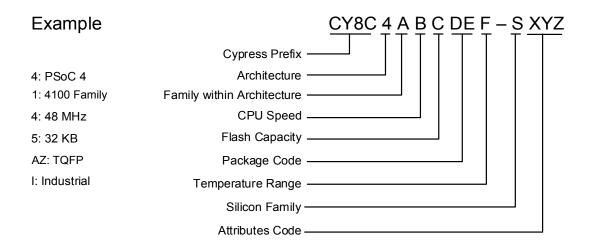
Table 32. ILO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID231 ^[12]	I _{ILO1}	ILO operating current	ı	0.3	1.05	μΑ	_

Table 33. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234 ^[12]	T _{STARTILO1}	ILO startup time	-	-	2	ms	_
SID236 ^[12]	T _{ILODUTY}	ILO duty cycle	40	50	60	%	_
SID237	F _{ILOTRIM1}	ILO frequency range	20	40	80	kHz	_


Note 12. Guaranteed by characterization.

The nomenclature used in the preceding table is based on the following part numbering convention:

Field	Description	Values	Meaning				
CY8C	Cypress Prefix						
4	Architecture	4	PSoC 4				
Α	Family	1	4100 Family				
В	CPU Speed	2	24 MHz				
	4		48 MHz				
С	Flash Capacity	4	16 KB				
		5	32 KB				
		6	64 KB				
		7	128 KB				
DE	Package Code	AX	TQFP (0.8mm pitch)				
		AZ	TQFP (0.5mm pitch)				
		LQ	QFN				
		PV	SSOP				
		FN	CSP				
F	Temperature Range	I	Industrial				
S	Silicon Family	S	PSoC 4A-S1, PSoC 4A-S2				
		М	PSoC 4A-M				
		L	PSoC 4A-L				
		BL	PSoC 4A-BLE				
XYZ	Attributes Code	000-999	Code of feature set in the specific family				

The following is an example of a part number:

Packaging

The PSoC 4100S will be offered in 48-pin TQFP, 44-pin TQFP, 40-pin QFN, 32-pin QFN, and 35-ball WLCSP packages. Package dimensions and Cypress drawing numbers are in the following table.

Table 38. Package List

Spec ID#	Package	Description	Package Dwg
BID20	48-pin TQFP	7 × 7 × 1.4-mm height with 0.5-mm pitch	51-85135
BID20A	44-pin TQFP	10 × 10 × 1.6-mm height with 0.8-mm pitch	51-85064
BID27	40-pin QFN	6 × 6 × 0.6-mm height with 0.5-mm pitch	001-80659
BID34A	32-pin QFN	5 × 5 × 0.6-mm height with 0.5-mm pitch	001-42168
BID34D	35-ball WLCSP	2.6 × 2.1 × 0.48-mm height with 0.35-mm pitch	002-09958

Table 39. Package Thermal Characteristics

Parameter	Description	Package	Min	Тур	Max	Units
TA	Operating Ambient temperature		-40	25	85	°C
TJ	Operating junction temperature		-40	_	100	°C
TJA	Package θ _{JA}	48-pin TQFP	-	74.8	-	°C/Watt
TJC	Package θ _{JC}	48-pin TQFP	-	35.7	-	°C/Watt
TJA	Package θ _{JA}	44-pin TQFP	_	57.2	_	°C/Watt
TJC	Package θ_{JC}	44-pin TQFP	_	17.5	_	°C/Watt
TJA	Package θ _{JA}	40-pin QFN	-	17.8	-	°C/Watt
TJC	Package θ_{JC}	40-pin QFN	_	2.8	_	°C/Watt
TJA	Package θ_{JA}	32-pin QFN	_	19.9	_	°C/Watt
TJC	Package θ _{JC}	32-pin QFN	-	4.3	-	°C/Watt
TJA	Package θ _{JA}	35-ball WLCSP	_	43	_	°C/Watt
TJC	Package θ_{JC}	35-ball WLCSP	_	0.3	-	°C/Watt

Table 40. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
All	260 °C	30 seconds

Table 41. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-020

Package	MSL
All except WLCSP	MSL 3
35-ball WLCSP	MSL 1

Document Number: 002-00122 Rev. *H Page 33 of 41

Package Diagrams

Figure 6. 48-pin TQFP Package Outline

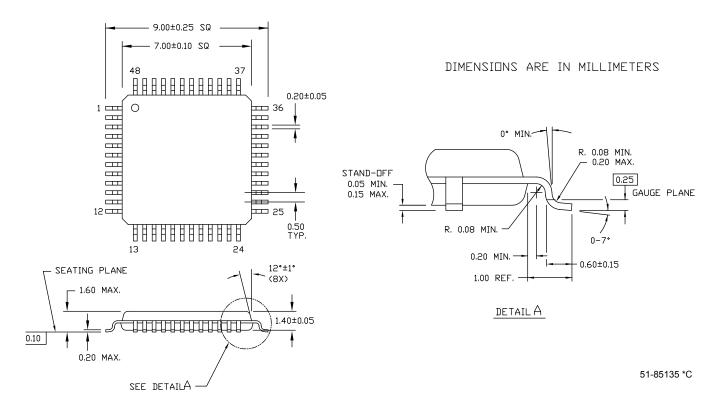
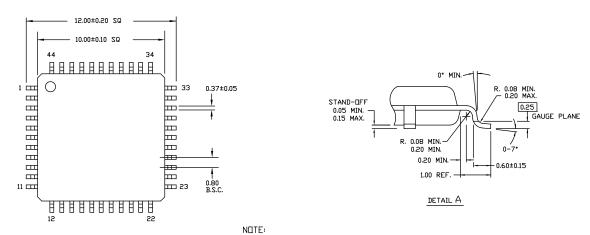



Figure 7. 44-pin TQFP Package Outline

SEATING PLANE

1.60 MAX.

1.40±0.05

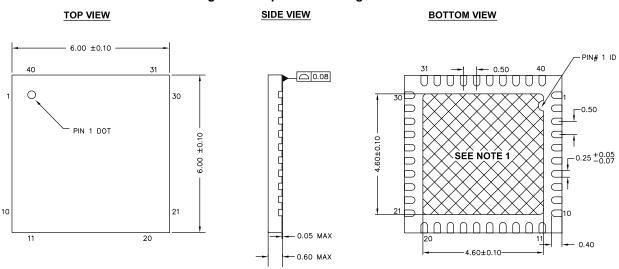
0.20 MAX.

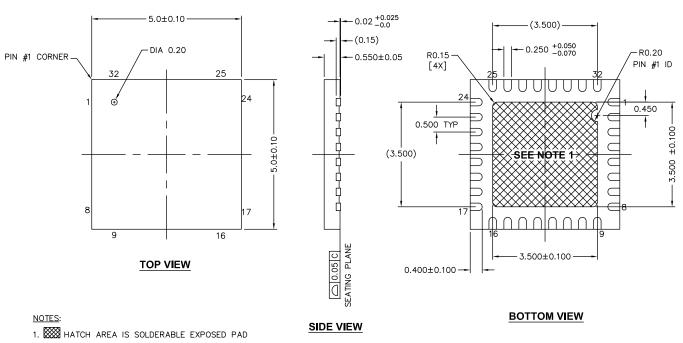
SEE DETAILA

1. JEDEC STD REF MS-026

- 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH
 MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE
 BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
- 3. DIMENSIONS IN MILLIMETERS

51-85064 *G




Figure 8. 40-pin QFN Package Outline

NOTES:

- 2. REFERENCE JEDEC # MO-248
- 3. PACKAGE WEIGHT: 68 ±2 mg
- 4. ALL DIMENSIONS ARE IN MILLIMETERS

001-80659 *A

Figure 9. 32-pin QFN Package Outline

- 2. BASED ON REF JEDEC # MO-248
- 3. PACKAGE WEIGHT: 0.0388g
- 4. DIMENSIONS ARE IN MILLIMETERS

001-42168 *E

Acronyms

Table 42. Acronyms Used in this Document

Table 42. Acronyms Used in this Document					
Acronym	Description				
abus	analog local bus				
ADC	analog-to-digital converter				
AG	analog global				
АНВ	AMBA (advanced microcontroller bus architecture) high-performance bus, an ARM data transfer bus				
ALU	arithmetic logic unit				
AMUXBUS	analog multiplexer bus				
API	application programming interface				
APSR	application program status register				
ARM [®]	advanced RISC machine, a CPU architecture				
ATM	automatic thump mode				
BW	bandwidth				
CAN	Controller Area Network, a communications protocol				
CMRR	common-mode rejection ratio				
CPU	central processing unit				
CRC	cyclic redundancy check, an error-checking protocol				
DAC	digital-to-analog converter, see also IDAC, VDAC				
DFB	digital filter block				
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.				
DMIPS	Dhrystone million instructions per second				
DMA	direct memory access, see also TD				
DNL	differential nonlinearity, see also INL				
DNU	do not use				
DR	port write data registers				
DSI	digital system interconnect				
DWT	data watchpoint and trace				
ECC	error correcting code				
ECO	external crystal oscillator				
EEPROM	electrically erasable programmable read-only memory				
EMI	electromagnetic interference				
EMIF	external memory interface				
EOC	end of conversion				
EOF	end of frame				
EPSR	execution program status register				
ESD	electrostatic discharge				

Table 42. Acronyms Used in this Document (continued)

Acronym	Description		
ETM	embedded trace macrocell		
FIR	finite impulse response, see also IIR		
FPB	flash patch and breakpoint		
FS	full-speed		
GPIO	general-purpose input/output, applies to a PSoC pin		
HVI	high-voltage interrupt, see also LVI, LVD		
IC	integrated circuit		
IDAC	current DAC, see also DAC, VDAC		
IDE	integrated development environment		
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol		
IIR	infinite impulse response, see also FIR		
ILO	internal low-speed oscillator, see also IMO		
IMO	internal main oscillator, see also ILO		
INL	integral nonlinearity, see also DNL		
I/O	input/output, see also GPIO, DIO, SIO, USBIO		
IPOR	initial power-on reset		
IPSR	interrupt program status register		
IRQ	interrupt request		
ITM	instrumentation trace macrocell		
LCD	liquid crystal display		
LIN	Local Interconnect Network, a communications protocol.		
LR	link register		
LUT	lookup table		
LVD	low-voltage detect, see also LVI		
LVI	low-voltage interrupt, see also HVI		
LVTTL	low-voltage transistor-transistor logic		
MAC	multiply-accumulate		
MCU	microcontroller unit		
MISO	master-in slave-out		
NC	no connect		
NMI	nonmaskable interrupt		
NRZ	non-return-to-zero		
NVIC	nested vectored interrupt controller		
	nonvolatile latch, see also WOL		
NVL	Horrodatile lateri, eee also vvol		
opamp	operational amplifier		

Document Number: 002-00122 Rev. *H Page 37 of 41