

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	27
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x10b Slope, 16x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4125lqi-s432t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pinouts

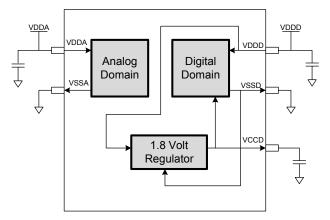
The following table provides the pin list for PSoC 4100S for the 48-pin TQFP, 44-pin TQFP, 40-pin QFN, 32-pin QFN, and 35-ball CSP packages. All port pins support GPIO.

Table 1. Pin List

48-	TQFP	44-	TQFP	40	-QFN	32	-QFN	35	-CSP
Pin	Name								
28	P0.0	24	P0.0	22	P0.0	17	P0.0	C3	P0.0
29	P0.1	25	P0.1	23	P0.1	18	P0.1	A5	P0.1
30	P0.2	26	P0.2	24	P0.2	19	P0.2	A4	P0.2
31	P0.3	27	P0.3	25	P0.3	20	P0.3	A3	P0.3
32	P0.4	28	P0.4	26	P0.4	21	P0.4	B3	P0.4
33	P0.5	29	P0.5	27	P0.5	22	P0.5	A6	P0.5
34	P0.6	30	P0.6	28	P0.6	23	P0.6	B4	P0.6
35	P0.7	31	P0.7	29	P0.7			B5	P0.7
36	XRES	32	XRES	30	XRES	24	XRES	B6	XRES
37	VCCD	33	VCCD	31	VCCD	25	VCCD	A7	VCCD
38	VSSD			DN	VSSD	26	VSSD	B7	VSS
39	VDDD	34	VDDD	32	VDDD			C7	VDD
40	VDDA	35	VDDA	33	VDDA	27	VDD	C7	VDD
41	VSSA	36	VSSA	34	VSSA	28	VSSA	B7	VSS
42	P1.0	37	P1.0	35	P1.0	29	P1.0	C4	P1.0
43	P1.1	38	P1.1	36	P1.1	30	P1.1	C5	P1.1
44	P1.2	39	P1.2	37	P1.2	31	P1.2	C6	P1.2
45	P1.3	40	P1.3	38	P1.3	32	P1.3	D7	P1.3
46	P1.4	41	P1.4	39	P1.4			D4	P1.4
47	P1.5	42	P1.5					D5	P1.5
48	P1.6	43	P1.6					D6	P1.6
1	P1.7/VREF	44	P1.7/VREF	40	P1.7/VREF	1	P1.7/VREF	E7	P1.7/VREF
		1	VSSD						
2	P2.0	2	P2.0	1	P2.0	2	P2.0		
3	P2.1	3	P2.1	2	P2.1	3	P2.1		
4	P2.2	4	P2.2	3	P2.2	4	P2.2	D3	P2.2
5	P2.3	5	P2.3	4	P2.3	5	P2.3	E4	P2.3
6	P2.4	6	P2.4	5	P2.4			E5	P2.4
7	P2.5	7	P2.5	6	P2.5	6	P2.5	E6	P2.5
8	P2.6	8	P2.6	7	P2.6	7	P2.6	E3	P2.6
9	P2.7	9	P2.7	8	P2.7	8	P2.7	E2	P2.7
10	VSSD	10	VSSD	9	VSSD				
12	P3.0	11	P3.0	10	P3.0	9	P3.0	E1	P3.0
13	P3.1	12	P3.1	11	P3.1	10	P3.1	D2	P3.1
14	P3.2	13	P3.2	12	P3.2	11	P3.2	D1	P3.2
16	P3.3	14	P3.3	13	P3.3	12	P3.3	C1	P3.3
17	P3.4	15	P3.4	14	P3.4			C2	P3.4
18	P3.5	16	P3.5	15	P3.5				

Alternate Pin Functions

Each Port pin has can be assigned to one of multiple functions; it can, for instance, be an analog I/O, a digital peripheral function, an LCD pin, or a CapSense pin. The pin assignments are shown in the following table.


Port/Pin	Analog	Smart I/O	Alternate Function 1	Alternate Function 2	Alternate Function 3	Deep Sleep 1	Deep Sleep 2
P0.0	lpcomp.in_p[0]				tcpwm.tr_in[0]	scb[2].i2c_scl:0	scb[0].spi_select1:0
P0.1	lpcomp.in_n[0]				tcpwm.tr_in[1]	scb[2].i2c_sda:0	scb[0].spi_select2:0
P0.2	lpcomp.in_p[1]						scb[0].spi_select3:0
P0.3	lpcomp.in_n[1]						scb[2].spi_select0
P0.4	wco.wco_in			scb[1].uart_rx:0	scb[2].uart_rx:0	scb[1].i2c_scl:0	scb[1].spi_mosi:1
P0.5	wco.wco_out			scb[1].uart_tx:0	scb[2].uart_tx:0	scb[1].i2c_sda:0	scb[1].spi_miso:1
P0.6			srss.ext_clk	scb[1].uart_cts:0	scb[2].uart_tx:1		scb[1].spi_clk:1
P0.7			tcpwm.line[0]:2	scb[1].uart_rts:0			scb[1].spi_select0:1
P1.0	ctb0_oa0+		tcpwm.line[2]:1	scb[0].uart_rx:1		scb[0].i2c_scl:0	scb[0].spi_mosi:1
P1.1	ctb0_oa0-		tcpwm.line_compl[2]:1	scb[0].uart_tx:1		scb[0].i2c_sda:0	scb[0].spi_miso:1
P1.2	ctb0_oa0_out		tcpwm.line[3]:1	scb[0].uart_cts:1	tcpwm.tr_in[2]	scb[2].i2c_scl:1	scb[0].spi_clk:1
P1.3	ctb0_oa1_out		tcpwm.line_compl[3]:1	scb[0].uart_rts:1	tcpwm.tr_in[3]	scb[2].i2c_sda:1	scb[0].spi_select0:1
P1.4	ctb0_oa1-						scb[0].spi_select1:1
P1.5	ctb0_oa1+						scb[0].spi_select2:1
P1.6	ctb0_oa0+						scb[0].spi_select3:1
P1.7	ctb0_oa1+ sar_ext_vref0 sar_ext_vref1						scb[2].spi_clk
P2.0	sarmux[0]	prgio[0].io[0]	tcpwm.line[4]:0	csd.comp	tcpwm.tr_in[4]	scb[1].i2c_scl:1	scb[1].spi_mosi:2
P2.1	sarmux[1]	prgio[0].io[1]	tcpwm.line_compl[4]:0		tcpwm.tr_in[5]	scb[1].i2c_sda:1	scb[1].spi_miso:2
P2.2	sarmux[2]	prgio[0].io[2]					scb[1].spi_clk:2
P2.3	sarmux[3]	prgio[0].io[3]					scb[1].spi_select0:2

Power

The following power system diagram shows the set of power supply pins as implemented for the PSoC 4100S. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DD} input.

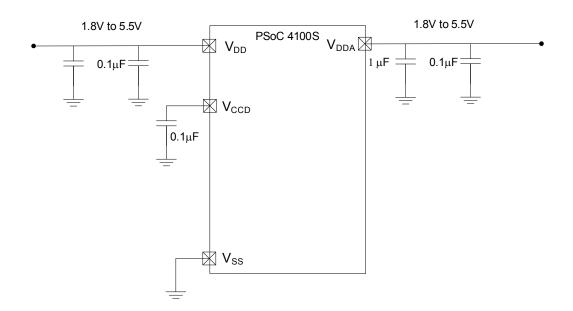
Figure 4. Power Supply Connections

There are two distinct modes of operation. In Mode 1, the supply voltage range is 1.8 V to 5.5 V (unregulated externally; internal regulator operational). In Mode 2, the supply range is $1.8 \text{ V} \pm 5\%$ (externally regulated; 1.71 to 1.89, internal regulator bypassed).

Mode 1: 1.8 V to 5.5 V External Supply

In this mode, the PSoC 4100S is powered by an external power supply that can be anywhere in the range of 1.8 to 5.5 V. This range is also designed for battery-powered operation. For example, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4100S supplies the internal logic and its output is connected to the V_{CCD} pin. The VCCD pin must be bypassed to ground via an external capacitor (0.1 μ F; X5R ceramic or better) and must not be connected to anything else.

Mode 2: 1.8 V ±5% External Supply


In this mode, the PSoC 4100S is powered by an external power supply that must be within the range of 1.71 to 1.89 V; note that this range needs to include the power supply ripple too. In this mode, the VDD and VCCD pins are shorted together and bypassed. The internal regulator can be disabled in the firmware.

Bypass capacitors must be used from VDDD to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1- μ F range, in parallel with a smaller capacitor (0.1 μ F, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

An example of a bypass scheme is shown in the following diagram.

Figure 5. External Supply Range from 1.8 V to 5.5 V with Internal Regulator Active

Power supply bypass connections example

Development Support

The PSoC 4100S family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4100S family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers. The TRM is available in the Documentation section at www.cypress.com/psoc4.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4100S family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Analog Peripherals

Table 9. CTBm Opamp Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
	I _{DD}	Opamp block current, External load					
SID269	I _{DD_HI}	power=hi	-	1100	1850		-
SID270	I _{DD_MED}	power=med	-	550	950	- μΑ	_
SID271	I _{DD_LOW}	power=lo	_	150	350	-	_
	G _{BW}	Load = 20 pF, 0.1 mA V _{DDA} = 2.7 V					
SID272	G _{BW_HI}	power=hi	6	_	_		Input and output are 0.2 V to V_{DDA} -0.2 V
SID273	G _{BW_MED}	power=med	3	-	-	MHz	Input and output are 0.2 V to V _{DDA} -0.2 V
SID274	G _{BW_LO}	power=lo	_	1	_		Input and output are 0.2 V to V _{DDA} -0.2 V
	I _{OUT_MAX}	V_{DDA} = 2.7 V, 500 mV from rail					
SID275	I _{OUT_MAX_HI}	power=hi	10	-	-		Output is 0.5 V V _{DDA} -0.5 V
SID276	I _{OUT_MAX_MID}	power=mid	10	-	-	mA	Output is 0.5 V V _{DDA} -0.5 V
SID277	I _{OUT_MAX_LO}	power=lo	-	5	_		Output is 0.5 V V _{DDA} -0.5 V
	I _{OUT}	V _{DDA} = 1.71 V, 500 mV from rail					
SID278	I _{OUT_MAX_HI}	power=hi	4	-	_		Output is 0.5 V V _{DDA} -0.5 V
SID279	IOUT_MAX_MID	power=mid	4	-	_	mA	Output is 0.5 V V _{DDA} -0.5 V
SID280	IOUT_MAX_LO	power=lo	-	2	_		Output is 0.5 V V _{DDA} -0.5 V
	I _{DD_Int}	Opamp block current Internal Load					
SID269_I	I _{DD_HI_Int}	power=hi	-	1500	1700		-
SID270_I	I _{DD_MED_Int}	power=med	_	700	900	μA	-
	I _{DD_LOW_Int}	power=lo	_	-	_		_
SID271_I	G _{BW}	V _{DDA} = 2.7 V	_	-	_		_
SID272_I	G _{BW_HI_Int}	power=hi	8	-	_	MHz	Output is 0.25 V to V _{DDA} -0.25 V

Table 9. CTBm Opamp Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
		General opamp specs for both internal and external modes		1		1	
SID281	V _{IN}	Charge-pump on, V _{DDA} = 2.7 V	-0.05	_	V _{DDA} -0.2	v	-
SID282	V _{CM}	Charge-pump on, V _{DDA} = 2.7 V	-0.05	_	V _{DDA} -0.2		_
	V _{OUT}	V _{DDA} = 2.7 V			1	1	
SID283	V _{OUT_1}	power=hi, lload=10 mA	0.5	_	V _{DDA} -0.5		_
SID284	V _{OUT_2}	power=hi, lload=1 mA	0.2	-	V _{DDA} -0.2	v	_
SID285	V _{OUT_3}	power=med, lload=1 mA	0.2	_	V _{DDA} -0.2	v	_
SID286	V _{OUT_4}	power=lo, lload=0.1 mA	0.2	_	V _{DDA} -0.2		_
SID288	V _{OS_TR}	Offset voltage, trimmed	-1.0	±0.5	1.0		High mode, input 0 V to V _{DDA} -0.2 V
SID288A	V _{OS_TR}	Offset voltage, trimmed	_	±1	-	mV	Medium mode, input 0 V to V _{DDA} -0.2 V
SID288B	V _{OS_TR}	Offset voltage, trimmed	-	±2	-		Low mode, input 0 V to V _{DDA} -0.2 V
SID290	V _{OS_DR_TR}	Offset voltage drift, trimmed	-10	±3	10	μV/C	High mode
SID290A	V _{OS_DR_TR}	Offset voltage drift, trimmed	_	±10	-		Medium mode
SID290B	V _{OS_DR_TR}	Offset voltage drift, trimmed	_	±10	_	μV/C	Low mode
SID291	CMRR	DC	70	80	_		Input is 0 V to V _{DDA} -0.2 V, Output is 0.2 V to V _{DDA} -0.2 V
SID292	PSRR	At 1 kHz, 10-mV ripple	70	85	_	dB	V_{DDD} = 3.6 V, high-power mode, input is 0.2 V to V_{DDA} -0.2 V
	Noise						
SID294	VN2	Input-referred, 1 kHz, power=Hi	_	72	_		3
SID295	VN3	Input-referred, 10 kHz, power=Hi	_	28	_	nV/rtHz	Input and output are at 0.2 V to V _{DDA} -0.2 V
SID296	VN4	Input-referred, 100 kHz, power=Hi	_	15	_		Input and output are at 0.2 V to V _{DDA} -0.2 V
SID297	C _{LOAD}	Stable up to max. load. Performance specs at 50 pF.	-	_	125	pF	-
SID298	SLEW_RATE	Cload = 50 pF, Power = High, V_{DDA} = 2.7 V	6	_	-	V/µs	_

Table 9. CTBm Opamp Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID299	T_OP_WAKE	From disable to enable, no external RC dominating	_	-	25	μs	-
SID299A	OL_GAIN	Open Loop Gain	-	90	_	dB	
	COMP_MODE	Comparator mode; 50 mV drive, T _{rise} =T _{fall} (approx.)					
SID300	TPD1	Response time; power=hi	-	150	-		Input is 0.2 V to V _{DDA} -0.2 V
SID301	TPD2	Response time; power=med	-	500	Ι	ns	Input is 0.2 V to V _{DDA} -0.2 V
SID302	TPD3	Response time; power=lo	_	2500	_		Input is 0.2 V to V _{DDA} -0.2 V
SID303	VHYST_OP	Hysteresis	-	10	-	mV	-
SID304	WUP_CTB	Wake-up time from Enabled to Usable	-	-	25	μs	-
	Deep Sleep Mode	Mode 2 is lowest current range. Mode 1 has higher GBW.					
SID_DS_1	I _{DD_HI_M1}	Mode 1, High current	_	1400	_		25 °C
SID_DS_2	I _{DD_MED_M1}	Mode 1, Medium current	-	700	-		25 °C
SID_DS_3	I _{DD_LOW_M1}	Mode 1, Low current	-	200	-		25 °C
SID_DS_4	I _{DD_HI_M2}	Mode 2, High current	-	120	_	μA	25 °C
SID_DS_5	IDD_MED_M2	Mode 2, Medium current	-	60	-		25 °C
SID_DS_6	I _{DD_LOW_M2}	Mode 2, Low current	-	15	-		25 °C

Table 9. CTBm Opamp Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID_DS_7	G _{BW_HI_M1}	Mode 1, High current	_	4	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_8	G _{BW_MED_M1}	Mode 1, Medium current	_	2	_		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_9	G _{BW_LOW_M!}	Mode 1, Low current	_	0.5	_	MHz	20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_10	G _{BW_HI_M2}	Mode 2, High current	_	0.5	_	IVITIZ	20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_11	G _{BW_MED_M2}	Mode 2, Medium current	_	0.2	_		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_12	G _{BW_Low_M2}	Mode 2, Low current	_	0.1	_		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_13	V _{OS_HI_M1}	Mode 1, High current	-	5	-		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V
SID_DS_14	V _{OS_MED_M1}	Mode 1, Medium current	-	5	-		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_15	V _{OS_LOW_M2}	Mode 1, Low current	-	5	-		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_16	V _{OS_HI_M2}	Mode 2, High current	-	5	-	mV	With trim 25 °C, 0.2V to V _{DDA} -0.2 V
SID_DS_17	V _{OS_MED_M2}	Mode 2, Medium current	_	5	-		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_18	V _{OS_LOW_M2}	Mode 2, Low current	-	5	-		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_19	I _{OUT_HI_M!}	Mode 1, High current	-	10	-		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_20	IOUT_MED_M1	Mode 1, Medium current	-	10	-		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_21	I _{OUT_LOW_M1}	Mode 1, Low current	_	4	-		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_22	I _{OUT_HI_M2}	Mode 2, High current	-	1	-	mA	
SID_DS_23	I _{OU_MED_M2}	Mode 2, Medium current	_	1	-		
SID_DS_24	I _{OU_LOW_M2}	Mode 2, Low current	_	0.5	-		

Note 6. Guaranteed by characterization.

Table 10. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID84	V _{OFFSET1}	Input offset voltage, Factory trim	-	_	±10		
SID85	V _{OFFSET2}	Input offset voltage, Custom trim	-	_	±4	mV	
SID86	V _{HYST}	Hysteresis when enabled	-	10	35		
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	-	V _{DDD} -0.1		Modes 1 and 2
SID247	V _{ICM2}	Input common mode voltage in low power mode	0	-	V _{DDD}	V	
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode	0	-	V _{DDD} -1.15	-	V _{DDD} ≥ 2.2 V at _40 °C
SID88	C _{MRR}	Common mode rejection ratio	50	_	_	dB	V _{DDD} ≥ 2.7V
SID88A	C _{MRR}	Common mode rejection ratio	42	_	_	uБ	$V_{DDD} \le 2.7V$
SID89	I _{CMP1}	Block current, normal mode	-	_	400		
SID248	I _{CMP2}	Block current, low power mode	-	_	100	μA	
SID259	I _{CMP3}	Block current in ultra low-power mode	_	-	6	. т.	V _{DDD} ≥ 2.2 V at _40 °C
SID90	Z _{CMP}	DC Input impedance of comparator	35	-	-	MΩ	

Table 11. Comparator AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID91	TRESP1	Response time, normal mode, 50 mV overdrive	-	38	110		
SID258	TRESP2	Response time, low power mode, 50 mV overdrive	-	70	200	ns	
SID92	TRESP3	Response time, ultra-low power mode, 200 mV overdrive	_	2.3	15	μs	V _{DDD} ≥ 2.2 V at _40 °C

Table 12. Temperature Sensor Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details / Conditions
SID93	TSENSACC	Temperature sensor accuracy	-5	±1	5	°C	–40 to +85 °C

Table 13. SAR Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions			
SAR ADC	SAR ADC DC Specifications									
SID94	A_RES	Resolution	-	-	12	bits				
SID95	A_CHNLS_S	Number of channels - single ended	-	-	16					
SID96	A-CHNKS_D	Number of channels - differential	-	-	4		Diff inputs use neighboring I/O			
SID97	A-MONO	Monotonicity	-	-	-		Yes.			
SID98	A_GAINERR	Gain error	Ι	-	±0.1	%	With external reference.			

Table 13. SAR Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID99	A_OFFSET	Input offset voltage	_	-	2	mV	Measured with 1-V reference
SID100	A_ISAR	Current consumption	-	-	1	mA	
SID101	A_VINS	Input voltage range - single ended	V_{SS}	-	V _{DDA}	V	
SID102	A_VIND	Input voltage range - differential[V_{SS}	-	V _{DDA}	V	
SID103	A_INRES	Input resistance	-	-	2.2	KΩ	
SID104	A_INCAP	Input capacitance	-	-	10	pF	
SID260	VREFSAR	Trimmed internal reference to SAR	-	-	TBD	V	
SAR ADC	AC Specificati	ions					•
SID106	A_PSRR	Power supply rejection ratio	70	-	-	dB	
SID107	A_CMRR	Common mode rejection ratio	66	-	-	dB	Measured at 1 V
SID108	A_SAMP	Sample rate	-	-	1	Msps	
SID109	A_SNR	Signal-to-noise and distortion ratio (SINAD)	65	-	-	dB	F _{IN} = 10 kHz
SID110	A_BW	Input bandwidth without aliasing	-	-	A_samp/2	kHz	
SID111	A_INL	Integral non linearity. V_{DD} = 1.71 to 5.5, 1 Msps	-1.7	-	2	LSB	V_{REF} = 1 to V_{DD}
SID111A	A_INL	Integral non linearity. V _{DDD} = 1.71 to 3.6, 1 Msps	-1.5	-	1.7	LSB	V _{REF} = 1.71 to V _{DD}
SID111B	A_INL	Integral non linearity. V_{DD} = 1.71 to 5.5, 500 ksps	-1.5	-	1.7	LSB	V _{REF} = 1 to V _{DD}
SID112	A_DNL	Differential non linearity. V _{DD} = 1.71 to 5.5, 1 Msps	–1	-	2.2	LSB	V_{REF} = 1 to V_{DD}
SID112A	A_DNL	Differential non linearity. V _{DD} = 1.71 to 3.6, 1 Msps	–1	-	2	LSB	V _{REF} = 1.71 to V _{DD}
SID112B	A_DNL	Differential non linearity. V _{DD} = 1.71 to 5.5, 500 ksps	-1	-	2.2	LSB	V_{REF} = 1 to V_{DD}
SID113	A_THD	Total harmonic distortion	-	-	-65	dB	Fin = 10 kHz
SID261	FSARINTRE F	SAR operating speed without external ref. bypass	_	_	100	ksps	12-bit resolution

CSD

Table 14. CSD and IDAC Specifications

SPEC ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SYS.PER#3	VDD_RIPPLE	Max allowed ripple on power supply, DC to 10 MHz	-	-	±50	mV	V _{DD} > 2 V (with ripple), 25 °C T _A , Sensitivity = 0.1 pF
SYS.PER#16	VDD_RIPPLE_1.8	Max allowed ripple on power supply, DC to 10 MHz	-	_	±25	mV	V_{DD} > 1.75V (with ripple), 25 °C T _A , Parasitic Capaci- tance (C _P) < 20 pF, Sensitivity ≥ 0.4 pF
SID.CSD.BLK	ICSD	Maximum block current	_	-	4000	μA	Maximum block current for both IDACs in dynamic (switching) mode including comparators, buffer, and reference generator.
SID.CSD#15	V _{REF}	Voltage reference for CSD and Comparator	0.6	1.2	V _{DDA} - 0.6	V	V _{DDA} - 0.06 or 4.4, whichever is lower
SID.CSD#15A	VREF_EXT	External Voltage reference for CSD and Comparator	0.6		V _{DDA} - 0.6	V	V _{DDA} - 0.06 or 4.4, whichever is lower
SID.CSD#16	IDAC1IDD	IDAC1 (7-bits) block current	-	-	1750	μA	
SID.CSD#17	IDAC2IDD	IDAC2 (7-bits) block current	-	-	1750	μA	
SID308	VCSD	Voltage range of operation	1.71	-	5.5	V	1.8 V ±5% or 1.8 V to 5.5 V
SID308A	VCOMPIDAC	Voltage compliance range of IDAC	0.6	-	V _{DDA} –0.6	V	V _{DDA} - 0.06 or 4.4, whichever is lower
SID309	IDAC1DNL	DNL	-1	-	1	LSB	
SID310	IDAC1INL	INL	-2	-	2	LSB	INL is ±5.5 LSB for V _{DDA} < 2 V
SID311	IDAC2DNL	DNL	-1	-	1	LSB	
SID312	IDAC2INL	INL	-2	-	2	LSB	INL is ± 5.5 LSB for V _{DDA} < 2 V
SID313	SNR	Ratio of counts of finger to noise. Guaranteed by characterization	5	-	_	Ratio	Capacitance range of 5 to 35 pF, 0.1-pF sensitivity. All use cases. V _{DDA} > 2 V.
SID314	IDAC1CRT1	Output current of IDAC1 (7 bits) in low range	4.2	-	5.4	μA	LSB = 37.5-nA typ.
SID314A	IDAC1CRT2	Output current of IDAC1(7 bits) in medium range	34	-	41	μA	LSB = 300-nA typ.
SID314B	IDAC1CRT3	Output current of IDAC1(7 bits) in high range	275	-	330	μA	LSB = 2.4-µA typ.
SID314C	IDAC1CRT12	Output current of IDAC1 (7 bits) in low range, 2X mode	8	-	10.5	μA	LSB = 75-nA typ.
SID314D	IDAC1CRT22	Output current of IDAC1(7 bits) in medium range, 2X mode	69	-	82	μA	LSB = 600-nA typ.
SID314E	IDAC1CRT32	Output current of IDAC1(7 bits) in high range, 2X mode	540	-	660	μA	LSB = 4.8-µA typ.
SID315	IDAC2CRT1	Output current of IDAC2 (7 bits) in low range	4.2	-	5.4	μA	LSB = 37.5-nA typ.
SID315A	IDAC2CRT2	Output current of IDAC2 (7 bits) in medium range	34	-	41	μA	LSB = 300-nA typ.
SID315B	IDAC2CRT3	Output current of IDAC2 (7 bits) in high range	275	-	330	μA	LSB = 2.4-µA typ.
SID315C	IDAC2CRT12	Output current of IDAC2 (7 bits) in low range, 2X mode	8	-	10.5	μA	LSB = 75-nA typ.
SID315D	IDAC2CRT22	Output current of IDAC2(7 bits) in medium range, 2X mode	69	-	82	μA	LSB = 600-nA typ.
SID315E	IDAC2CRT32	Output current of IDAC2(7 bits) in high range, 2X mode	540	-	660	μA	LSB = 4.8-µA typ.
SID315F	IDAC3CRT13	Output current of IDAC in 8-bit mode in low range	8	-	10.5	μA	LSB = 37.5-nA typ.

Table 14. CSD and IDAC Specifications (continued)

SPEC ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID315G	IDAC3CRT23	Output current of IDAC in 8-bit mode in medium range	69	-	82	μA	LSB = 300-nA typ.
SID315H	IDAC3CRT33	Output current of IDAC in 8-bit mode in high range	540	-	660	μA	LSB = 2.4-µA typ.
SID320	IDACOFFSET	All zeroes input	-	-	1	LSB	Polarity set by Source or Sink. Offset is 2 LSBs for 37.5 nA/LSB mode
SID321	IDACGAIN	Full-scale error less offset	-	-	±10	%	
SID322	IDACMISMATCH1	Mismatch between IDAC1 and IDAC2 in Low mode	-	-	9.2	LSB	LSB = 37.5-nA typ.
SID322A	IDACMISMATCH2	Mismatch between IDAC1 and IDAC2 in Medium mode	-	-	5.6	LSB	LSB = 300-nA typ.
SID322B	IDACMISMATCH3	Mismatch between IDAC1 and IDAC2 in High mode	-	-	6.8	LSB	LSB = 2.4-µA typ.
SID323	IDACSET8	Settling time to 0.5 LSB for 8-bit IDAC	-	-	10	μs	Full-scale transition. No external load.
SID324	IDACSET7	Settling time to 0.5 LSB for 7-bit IDAC	-	-	10	μs	Full-scale transition. No external load.
SID325	CMOD	External modulator capacitor.	-	2.2	-	nF	5-V rating, X7R or NP0 cap.

Table 15. 10-bit CapSense ADC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SIDA94	A_RES	Resolution	-	-	10	bits	Auto-zeroing is required every millisecond
SIDA95	A_CHNLS_S	Number of channels - single ended	-	-	16		Defined by AMUX Bus.
SIDA97	A-MONO	Monotonicity	-	-	-	Yes	
SIDA98	A_GAINERR	Gain error	-	-	±2	%	In V_{REF} (2.4 V) mode with V_{DDA} bypass capacitance of 10 μ F
SIDA99	A_OFFSET	Input offset voltage	_	-	3	mV	In V_{REF} (2.4 V) mode with V_{DDA} bypass capacitance of 10 μ F
SIDA100	A_ISAR	Current consumption	-	-	0.25	mA	
SIDA101	A_VINS	Input voltage range - single ended	V _{SSA}	-	V_{DDA}	V	
SIDA103	A_INRES	Input resistance	_	2.2	-	KΩ	
SIDA104	A_INCAP	Input capacitance	_	20	-	pF	
SIDA106	A_PSRR	Power supply rejection ratio	_	60	_	dB	In V_{REF} (2.4 V) mode with V_{DDA} bypass capacitance of 10 μ F
SIDA107	A_TACQ	Sample acquisition time	-	1	-	μs	
SIDA108	A_CONV8	Conversion time for 8-bit resolution at conversion rate = Fhclk/(2 [^] (N+2)). Clock frequency = 48 MHz.	_	-	21.3	μs	Does not include acqui- sition time. Equivalent to 44.8 ksps including acquisition time.
SIDA108A	A_CONV10	Conversion time for 10-bit resolution at conversion rate = Fhclk/(2 [^] (N+2)). Clock frequency = 48 MHz.	_	_	85.3	μs	Does not include acqui- sition time. Equivalent to 11.6 ksps including acquisition time.

Memory

Table 25. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V _{PE}	Erase and program voltage	1.71	-	5.5	V	-

Table 26. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE} ^[10]	Row (block) write time (erase and program)	-	-	20		Row (block) = 128 bytes
SID175	I COWEI VIOL	Row erase time	-	_	16	ms	-
SID176	T _{ROWPROGRAM} ^[10]	Row program time after erase	-	_	4		-
SID178	T _{BULKERASE} ^[10]	Bulk erase time (64 KB)	-	_	35		-
SID180 ^[11]	T _{DEVPROG} ^[10]	Total device program time	-	-	7	Seconds	-
SID181 ^[11]	F _{END}	Flash endurance	100 K	-	-	Cycles	-
SID182 ^[11]		Flash retention. $T_A \le 55 \degree$ C, 100 K P/E cycles	20	_	-	Years	-
SID182A ^[11]	-	Flash retention. $T_A \le 85 \text{ °C}$, 10 K P/E cycles	10	_	-	Tears	_
SID256	TWS48	Number of Wait states at 48 MHz	2	_	-		CPU execution from Flash
SID257	TWS24	Number of Wait states at 24 MHz	1	_	_		CPU execution from Flash

System Resources

Power-on Reset (POR)

Table 27. Power On Reset (PRES)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.CLK#6	SR_POWER_UP	Power supply slew rate	1	-	67	V/ms	At power-up
SID185 ^[11]	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.5	V	-
SID186 ^[11]	V _{FALLIPOR}	Falling trip voltage	0.70	-	1.4		-

Table 28. Brown-out Detect (BOD) for V_{CCD}

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.48	_	1.62	V	_
SID192 ^[11]	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.11	_	1.5		_

Notes
10. It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID398	FWCO	Crystal Frequency	-	32.768	_	kHz	
SID399	FTOL	Frequency tolerance	-	50	250	ppm	With 20-ppm crystal
SID400	ESR	Equivalent series resistance	-	50	-	kΩ	
SID401	PD	Drive Level	-	-	1	μW	
SID402	TSTART	Startup time	-	-	500	ms	
SID403	CL	Crystal Load Capacitance	6	-	12.5	pF	
SID404	C0	Crystal Shunt Capacitance	-	1.35	-	pF	
SID405	IWCO1	Operating Current (high power mode)	-	-	8	uA	
SID406	IWCO2	Operating Current (low power mode)	-	-	1	uA	

Table 34. Watch Crystal Oscillator (WCO) Specifications

Table 35. External Clock Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
	1	External clock input frequency	0	-	48	MHz	-
SID306 ^[13]	ExtClkDuty	Duty cycle; measured at V _{DD/2}	45	-	55	%	-

Table 36. Block Specs

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID262 ^[13]	T _{CLKSWITCH}	System clock source switching time	3	-	4	Periods	-

Table 37. Smart I/O Pass-through Time (Delay in Bypass Mode)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID252	—	Max delay added by Smart I/O in bypass mode	_	_	1.6	ns	

Packaging

The PSoC 4100S will be offered in 48-pin TQFP, 44-pin TQFP, 40-pin QFN, 32-pin QFN, and 35-ball WLCSP packages. Package dimensions and Cypress drawing numbers are in the following table.

Table 38. Package List

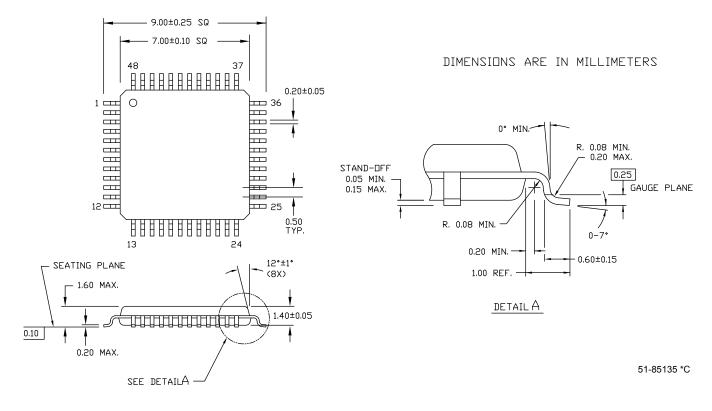
Spec ID#	Package	Description	Package Dwg
BID20	48-pin TQFP	7 × 7 × 1.4-mm height with 0.5-mm pitch	51-85135
BID20A	44-pin TQFP	10 × 10 × 1.6-mm height with 0.8-mm pitch	51-85064
BID27	40-pin QFN	6 × 6 × 0.6-mm height with 0.5-mm pitch	001-80659
BID34A	32-pin QFN	5 × 5 × 0.6-mm height with 0.5-mm pitch	001-42168
BID34D	35-ball WLCSP	2.6 × 2.1 × 0.48-mm height with 0.35-mm pitch	002-09958

Table 39. Package Thermal Characteristics

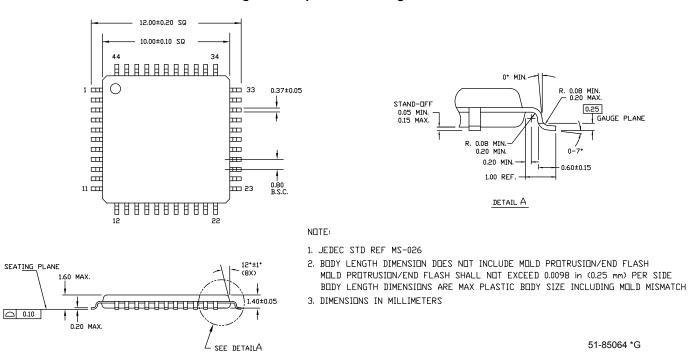
Parameter	Description	Package	Min	Тур	Max	Units
TA	Operating Ambient temperature		-40	25	85	°C
TJ	Operating junction temperature		-40	-	100	°C
Tja	Package θ _{JA}	48-pin TQFP	-	74.8	-	°C/Watt
TJC	Package θ _{JC}	48-pin TQFP	-	35.7	-	°C/Watt
Tja	Package θ _{JA}	44-pin TQFP	-	57.2	-	°C/Watt
TJC	Package θ _{JC}	44-pin TQFP	-	17.5	-	°C/Watt
Tja	Package θ _{JA}	40-pin QFN	-	17.8	-	°C/Watt
TJC	Package θ _{JC}	40-pin QFN	-	2.8	-	°C/Watt
Tja	Package θ _{JA}	32-pin QFN	-	19.9	-	°C/Watt
TJC	Package θ _{JC}	32-pin QFN	-	4.3	-	°C/Watt
Tja	Package θ _{JA}	35-ball WLCSP	-	43	-	°C/Watt
TJC	Package θ _{JC}	35-ball WLCSP	_	0.3	-	°C/Watt

Table 40. Solder Reflow Peak Temperature

Package	e Maximum Peak Temperature	laximum Time at Peak Temperature		
All	260 °C	30 seconds		


Table 41. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-020

Package	MSL
All except WLCSP	MSL 3
35-ball WLCSP	MSL 1



Package Diagrams

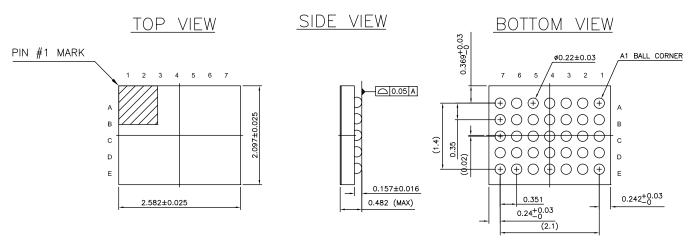


Figure 10. 35-Ball WLCSP Package Outline

ALL DIMENSIONS ARE IN MM JEDEC Publication 95; Design Guide 4.18 002-09958 *C

Table 42. Acronyms Used in this Document (continued)

Acronym	Description
PC	program counter
PCB	printed circuit board
PGA	programmable gain amplifier
PHUB	peripheral hub
PHY	physical layer
PICU	port interrupt control unit
PLA	programmable logic array
PLD	programmable logic device, see also PAL
PLL	phase-locked loop
PMDD	package material declaration data sheet
POR	power-on reset
PRES	precise power-on reset
PRS	pseudo random sequence
PS	port read data register
PSoC [®]	Programmable System-on-Chip™
PSRR	power supply rejection ratio
PWM	pulse-width modulator
RAM	random-access memory
RISC	reduced-instruction-set computing
RMS	root-mean-square
RTC	real-time clock
RTL	register transfer language
RTR	remote transmission request
RX	receive
SAR	successive approximation register
SC/CT	switched capacitor/continuous time
SCL	I ² C serial clock
SDA	I ² C serial data
S/H	sample and hold
SINAD	signal to noise and distortion ratio
SIO	special input/output, GPIO with advanced features. See GPIO.
SOC	start of conversion
SOF	start of frame
SPI	Serial Peripheral Interface, a communications protocol
SR	slew rate
SRAM	static random access memory
SRES	software reset
SWD	serial wire debug, a test protocol

Table 42.	Acronyms	Used in this	Document	(continued)
-----------	----------	--------------	----------	-------------

Acronym	Description
SWV	single-wire viewer
TD	transaction descriptor, see also DMA
THD	total harmonic distortion
TIA	transimpedance amplifier
TRM	technical reference manual
TTL	transistor-transistor logic
ТΧ	transmit
UART	Universal Asynchronous Transmitter Receiver, a communications protocol
UDB	universal digital block
USB	Universal Serial Bus
USBIO	USB input/output, PSoC pins used to connect to a USB port
VDAC	voltage DAC, see also DAC, IDAC
WDT	watchdog timer
WOL	write once latch, see also NVL
WRES	watchdog timer reset
XRES	external reset I/O pin
XTAL	crystal

Document Conventions

Units of Measure

Table 43. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibel
fF	femto farad
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohour
kHz	kilohertz
kΩ	kilo ohm
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	mega-ohm
Msps	megasamples per second
μA	microampere
μF	microfarad
μH	microhenry
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
nV	nanovolt
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
s	second
sps	samples per second
sqrtHz	square root of hertz
V	volt

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners

Document Number: 002-00122 Rev. *H

[©] Cypress Semiconductor Corporation 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is probabled.

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or systems control cause prosonal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.