

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x10b Slope, 16x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4126azi-s433t

PSoC® 4: PSoC 4100S Family Datasheet

Contents

Functional Definition	4
CPU and Memory Subsystem	4
System Resources	4
Analog Blocks	5
Fixed Function Digital	5
GPIO	6
Special Function Peripherals	6
Pinouts	7
Alternate Pin Functions	9
Power	11
Mode 1: 1.8 V to 5.5 V External Supply	11
Mode 2: 1.8 V ±5% External Supply	11
Development Support	12
Documentation	12
Online	12
Tools	12
Electrical Specifications	13
Absolute Maximum Ratings	13
Device Level Specifications	13
Analog Peripherals	17

Digital Peripherals	
System Resources	
Ordering Information	31
Packaging	
Package Diagrams	
Acronyms	38
Document Conventions	40
Units of Measure	40
Revision History	41
Sales, Solutions, and Legal Information	42
Worldwide Sales and Design Support	42
Products	42
PSoC® Solutions	42
Cypress Developer Community	
Technical Support	42

Functional Definition

CPU and Memory Subsystem

CPU

The Cortex-M0+ CPU in the PSoC 4100S is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. Most instructions are 16 bits in length and the CPU executes a subset of the Thumb-2 instruction set. It includes a nested vectored interrupt controller (NVIC) block with eight interrupt inputs and also includes a Wakeup Interrupt Controller (WIC). The WIC can wake the processor from Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in Deep Sleep mode.

The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a two-wire form of JTAG. The debug configuration used for PSoC 4100S has four breakpoint (address) comparators and two watchpoint (data) comparators.

Flash

The PSoC 4100S device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The low-power flash block is designed to deliver two wait-state (WS) access time at 48 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average.

SRAM

Eight KB of SRAM are provided with zero wait-state access at 48 MHz.

SROM

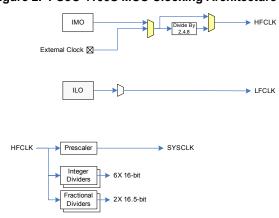
An 8 KB supervisory ROM that contains boot and configuration routines is provided.

System Resources

Power System

The power system is described in detail in the section Power on page 11. It provides assurance that voltage levels are as required for each respective mode and either delays mode entry (for example, on power-on reset (POR)) until voltage levels are as required for proper functionality, or generates resets (for example, on brown-out detection). The PSoC 4100S operates with a single external supply over the range of either 1.8 V $\pm 5\%$ (externally regulated) or 1.8 to 5.5 V (internally regulated) and has three different power modes, transitions between which are managed by the power system. The PSoC 4100S provides Active, Sleep, and Deep Sleep low-power modes.

All subsystems are operational in Active mode. The CPU subsystem (CPU, flash, and SRAM) is clock-gated off in Sleep mode, while all peripherals and interrupts are active with instantaneous wake-up on a wake-up event. In Deep Sleep mode, the high-speed clock and associated circuitry is switched off; wake-up from this mode takes 35 μs . The opamps can remain operational in Deep Sleep mode.


Clock System

The PSoC 4100S clock system is responsible for providing clocks to all subsystems that require clocks and for switching

between different clock sources without glitching. In addition, the clock system ensures that there are no metastable conditions.

The clock system for the PSoC 4100S consists of the internal main oscillator (IMO), internal low-frequency oscillator (ILO), a 32 kHz Watch Crystal Oscillator (WCO) and provision for an external clock. Clock dividers are provided to generate clocks for peripherals on a fine-grained basis. Fractional dividers are also provided to enable clocking of higher data rates for UARTs.

Figure 2. PSoC 4100S MCU Clocking Architecture

The HFCLK signal can be divided down to generate synchronous clocks for the analog and digital peripherals. There are eight clock dividers for the PSoC 4100S; two of those are fractional dividers. The 16-bit capability allows flexible generation of fine-grained frequency values and is fully supported in PSoC Creator

IMO Clock Source

The IMO is the primary source of internal clocking in the PSoC 4100S. It is trimmed during testing to achieve the specified accuracy. The IMO default frequency is 24 MHz and it can be adjusted from 24 to 48 MHz in steps of 4 MHz. The IMO tolerance with Cypress-provided calibration settings is $\pm 2\%$.

ILO Clock Source

The ILO is a very low power, nominally 40-kHz oscillator, which is primarily used to generate clocks for the watchdog timer (WDT) and peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Cypress provides a software component, which does the calibration.

Watch Crystal Oscillator (WCO)

The PSoC 4100S clock subsystem also implements a low-frequency (32-kHz watch crystal) oscillator that can be used for precision timing applications.

Watchdog Timer

A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during Deep Sleep and generates a watchdog reset if not serviced before the set timeout occurs. The watchdog reset is recorded in a Reset Cause register, which is firmware readable.

supports EZI2C that creates a mailbox address range in the memory of the PSoC 4100S and effectively reduces I²C communication to reading from and writing to an array in memory. In addition, the block supports an 8-deep FIFO for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock stretching caused by the CPU not having read data on time.

The I^2C peripheral is compatible with the I^2C Standard-mode and Fast-mode devices as defined in the NXP I^2C -bus specification and user manual (UM10204). The I^2C bus I/O is implemented with GPIO in open-drain modes.

The PSoC 4100S is not completely compliant with the I²C spec in the following respect:

■ GPIO cells are not overvoltage tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.

GPIO

The PSoC 4100S has up to 36 GPIOs. The GPIO block implements the following:

- Eight drive modes:
 - ☐ Analog input mode (input and output buffers disabled)
 - □ Input only
 - ☐ Weak pull-up with strong pull-down
 - ☐ Strong pull-up with weak pull-down
 - □ Open drain with strong pull-down
 - □ Open drain with strong pull-up
 - $\ensuremath{\square}$ Strong pull-up with strong pull-down
 - □ Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL).
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes
- Selectable slew rates for dV/dt related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width (less for Ports 2 and 3). During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (5 for PSoC 4100S).

Special Function Peripherals

CapSense

CapSense is supported in the PSoC 4100S through a CapSense Sigma-Delta (CSD) block that can be connected to any pins through an analog multiplex bus via analog switches. CapSense function can thus be provided on any available pin or group of pins in a system under software control. A PSoC Creator component is provided for the CapSense block to make it easy for the user.

Shield voltage can be driven on another analog multiplex bus to provide water-tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input. Proximity sensing can also be implemented.

The CapSense block has two IDACs, which can be used for general purposes if CapSense is not being used (both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available).

The CapSense block also provides a 10-bit Slope ADC function which can be used in conjunction with the CapSense function.

The CapSense block is an advanced, low-noise, programmable block with programmable voltage references and current source ranges for improved sensitivity and flexibility. It can also use an external reference voltage. It has a full-wave CSD mode that alternates sensing to VDDA and ground to null out power-supply related noise.

LCD Segment Drive

The PSoC 4100S has an LCD controller, which can drive up to 4 commons and up to 32 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as Digital Correlation and PWM. Digital Correlation pertains to modulating the frequency and drive levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal to zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays. PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

Pinouts

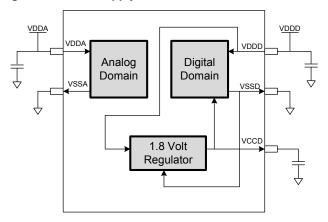
The following table provides the pin list for PSoC 4100S for the 48-pin TQFP, 44-pin TQFP, 40-pin QFN, 32-pin QFN, and 35-ball CSP packages. All port pins support GPIO.

Table 1. Pin List

48-1	TQFP	44-	TQFP	40	-QFN	32	-QFN	35-CSP		
Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name	
28	P0.0	24	P0.0	22	P0.0	17	P0.0	C3	P0.0	
29	P0.1	25	P0.1	23	P0.1	18	P0.1	A5	P0.1	
30	P0.2	26	P0.2	24	P0.2	19	P0.2	A4	P0.2	
31	P0.3	27	P0.3	25	P0.3	20	P0.3	A3	P0.3	
32	P0.4	28	P0.4	26	P0.4	21	P0.4	В3	P0.4	
33	P0.5	29	P0.5	27	P0.5	22	P0.5	A6	P0.5	
34	P0.6	30	P0.6	28	P0.6	23	P0.6	B4	P0.6	
35	P0.7	31	P0.7	29	P0.7			B5	P0.7	
36	XRES	32	XRES	30	XRES	24	XRES	В6	XRES	
37	VCCD	33	VCCD	31	VCCD	25	VCCD	A7	VCCD	
38	VSSD			DN	VSSD	26	VSSD	В7	VSS	
39	VDDD	34	VDDD	32	VDDD			C7	VDD	
40	VDDA	35	VDDA	33	VDDA	27	VDD	C7	VDD	
41	VSSA	36	VSSA	34	VSSA	28	VSSA	В7	VSS	
42	P1.0	37	P1.0	35	P1.0	29	P1.0	C4	P1.0	
43	P1.1	38	P1.1	36	P1.1	30	P1.1	C5	P1.1	
44	P1.2	39	P1.2	37	P1.2	31	P1.2	C6	P1.2	
45	P1.3	40	P1.3	38	P1.3	32	P1.3	D7	P1.3	
46	P1.4	41	P1.4	39	P1.4			D4	P1.4	
47	P1.5	42	P1.5					D5	P1.5	
48	P1.6	43	P1.6					D6	P1.6	
1	P1.7/VREF	44	P1.7/VREF	40	P1.7/VREF	1	P1.7/VREF	E7	P1.7/VRE	
		1	VSSD							
2	P2.0	2	P2.0	1	P2.0	2	P2.0			
3	P2.1	3	P2.1	2	P2.1	3	P2.1			
4	P2.2	4	P2.2	3	P2.2	4	P2.2	D3	P2.2	
5	P2.3	5	P2.3	4	P2.3	5	P2.3	E4	P2.3	
6	P2.4	6	P2.4	5	P2.4			E5	P2.4	
7	P2.5	7	P2.5	6	P2.5	6	P2.5	E6	P2.5	
8	P2.6	8	P2.6	7	P2.6	7	P2.6	E3	P2.6	
9	P2.7	9	P2.7	8	P2.7	8	P2.7	E2	P2.7	
10	VSSD	10	VSSD	9	VSSD		1			
12	P3.0	11	P3.0	10	P3.0	9	P3.0	E1	P3.0	
13	P3.1	12	P3.1	11	P3.1	10	P3.1	D2	P3.1	
14	P3.2	13	P3.2	12	P3.2	11	P3.2	D1	P3.2	
16	P3.3	14	P3.3	13	P3.3	12	P3.3	C1	P3.3	
17	P3.4	15	P3.4	14	P3.4			C2	P3.4	
18	P3.5	16	P3.5	15	P3.5					

Alternate Pin Functions

Each Port pin has can be assigned to one of multiple functions; it can, for instance, be an analog I/O, a digital peripheral function, an LCD pin, or a CapSense pin. The pin assignments are shown in the following table.


Port/Pin	Analog	Smart I/O	Alternate Function 1	Alternate Function 2	Alternate Function 3	Deep Sleep 1	Deep Sleep 2
P0.0	lpcomp.in_p[0]				tcpwm.tr_in[0]	scb[2].i2c_scl:0	scb[0].spi_select1:0
P0.1	lpcomp.in_n[0]				tcpwm.tr_in[1]	scb[2].i2c_sda:0	scb[0].spi_select2:0
P0.2	lpcomp.in_p[1]						scb[0].spi_select3:0
P0.3	lpcomp.in_n[1]						scb[2].spi_select0
P0.4	wco.wco_in			scb[1].uart_rx:0	scb[2].uart_rx:0	scb[1].i2c_scl:0	scb[1].spi_mosi:1
P0.5	wco.wco_out			scb[1].uart_tx:0	scb[2].uart_tx:0	scb[1].i2c_sda:0	scb[1].spi_miso:1
P0.6			srss.ext_clk	scb[1].uart_cts:0	scb[2].uart_tx:1		scb[1].spi_clk:1
P0.7			tcpwm.line[0]:2	scb[1].uart_rts:0			scb[1].spi_select0:1
P1.0	ctb0_oa0+		tcpwm.line[2]:1	scb[0].uart_rx:1		scb[0].i2c_scl:0	scb[0].spi_mosi:1
P1.1	ctb0_oa0-		tcpwm.line_compl[2]:1	scb[0].uart_tx:1		scb[0].i2c_sda:0	scb[0].spi_miso:1
P1.2	ctb0_oa0_out		tcpwm.line[3]:1	scb[0].uart_cts:1	tcpwm.tr_in[2]	scb[2].i2c_scl:1	scb[0].spi_clk:1
P1.3	ctb0_oa1_out		tcpwm.line_compl[3]:1	scb[0].uart_rts:1	tcpwm.tr_in[3]	scb[2].i2c_sda:1	scb[0].spi_select0:1
P1.4	ctb0_oa1-						scb[0].spi_select1:1
P1.5	ctb0_oa1+						scb[0].spi_select2:1
P1.6	ctb0_oa0+						scb[0].spi_select3:1
P1.7	ctb0_oa1+ sar_ext_vref0 sar_ext_vref1						scb[2].spi_clk
P2.0	sarmux[0]	prgio[0].io[0]	tcpwm.line[4]:0	csd.comp	tcpwm.tr_in[4]	scb[1].i2c_scl:1	scb[1].spi_mosi:2
P2.1	sarmux[1]	prgio[0].io[1]	tcpwm.line_compl[4]:0		tcpwm.tr_in[5]	scb[1].i2c_sda:1	scb[1].spi_miso:2
P2.2	sarmux[2]	prgio[0].io[2]					scb[1].spi_clk:2
P2.3	sarmux[3]	prgio[0].io[3]					scb[1].spi_select0:2

Power

The following power system diagram shows the set of power supply pins as implemented for the PSoC 4100S. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DD} input.

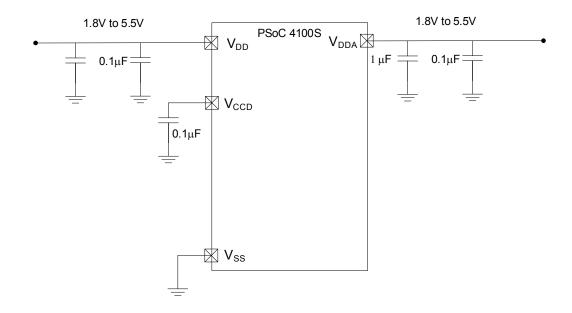
Figure 4. Power Supply Connections

There are two distinct modes of operation. In Mode 1, the supply voltage range is 1.8 V to 5.5 V (unregulated externally; internal regulator operational). In Mode 2, the supply range is 1.8 V ±5% (externally regulated; 1.71 to 1.89, internal regulator bypassed).

Mode 1: 1.8 V to 5.5 V External Supply

In this mode, the PSoC 4100S is powered by an external power supply that can be anywhere in the range of 1.8 to 5.5 V. This range is also designed for battery-powered operation. For example, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4100S supplies the internal logic and its output is connected to the $V_{\rm CCD}$ pin. The VCCD pin must be bypassed to ground via an external capacitor (0.1 μ F; X5R ceramic or better) and must not be connected to anything else.

Mode 2: 1.8 V ±5% External Supply


In this mode, the PSoC 4100S is powered by an external power supply that must be within the range of 1.71 to 1.89 V; note that this range needs to include the power supply ripple too. In this mode, the VDD and VCCD pins are shorted together and bypassed. The internal regulator can be disabled in the firmware.

Bypass capacitors must be used from VDDD to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1- μ F range, in parallel with a smaller capacitor (0.1 μ F, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

An example of a bypass scheme is shown in the following diagram.

Figure 5. External Supply Range from 1.8 V to 5.5 V with Internal Regulator Active

Power supply bypass connections example

Electrical Specifications

Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID1	V _{DDD_ABS}	Digital supply relative to V _{SS}	-0.5	_	6		_
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V _{SS}	-0.5	-	1.95	V	_
SID3	V _{GPIO_ABS}	GPIO voltage	-0.5	-	V _{DD} +0.5		_
SID4	I _{GPIO_ABS}	Maximum current per GPIO	-25	-	25		_
SID5	GPIO_injection	GPIO injection current, Max for $V_{IH} > V_{DDD}$, and Min for $V_{IL} < V_{SS}$	-0.5	-	0.5	mA	Current injected per pin
BID44	ESD_HBM	Electrostatic discharge human body model	2200	_	_	V	-
BID45	ESD_CDM	Electrostatic discharge charged device model	500	-	_] V	-
BID46	LU	Pin current for latch-up	-140	-	140	mA	_

Device Level Specifications

All specifications are valid for $-40~^{\circ}\text{C} \le T_A \le 85~^{\circ}\text{C}$ and $T_J \le 100~^{\circ}\text{C}$, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 3. DC Specifications

Typical values measured at V_{DD} = 3.3 V and 25 °C.

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID53	V_{DD}	Power supply input voltage	1.8	_	5.5		Internally regulated supply
SID255	V_{DD}	Power supply input voltage ($V_{CCD} = V_{DDD} = V_{DDA}$)	1.71	-	1.89	V	Internally unregulated supply
SID54	V_{CCD}	Output voltage (for core logic)	-	1.8	_		_
SID55	C _{EFC}	External regulator voltage bypass	_	0.1	-	- μF	X5R ceramic or better
SID56	C _{EXC}	Power supply bypass capacitor	_	1	_	μι	X5R ceramic or better
Active Mode, V	/ _{DD} = 1.8 V to 5	.5 V. Typical values measured at VDD	= 3.3 V an	d 25 °C.			
SID10	I _{DD5}	Execute from flash; CPU at 6 MHz	-	1.8	2.7		Max is at 85 °C and 5.5 V
SID16	I _{DD8}	Execute from flash; CPU at 24 MHz	-	3.0	4.75	mA	Max is at 85 °C and 5.5 V
SID19	I _{DD11}	Execute from flash; CPU at 48 MHz	_	5.4	6.85		Max is at 85 °C and 5.5 V

Note

Document Number: 002-00122 Rev. *H Page 13 of 41

^{1.} Usage above the absolute maximum conditions listed in Table 2 may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended periods of time may affect device reliability. The Maximum Storage Temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.

Table 6. GPIO AC Specifications

(Guaranteed by Characterization) (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID73	T _{FALLS}	Fall time in slow strong mode	10	-	60		3.3 V V _{DDD} , Cload = 25 pF
SID74	F _{GPIOUT1}	GPIO F_{OUT} ; 3.3 $V \le V_{DDD} \le 5.5 V$ Fast strong mode	_	_	33		90/10%, 25 pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO F _{OUT} ; 1.71 V≤ V _{DDD} ≤ 3.3 V Fast strong mode	_	-	16.7		90/10%, 25 pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO F_{OUT} ; 3.3 $V \le V_{DDD} \le 5.5 V$ Slow strong mode	_	-	7	MHz	90/10%, 25 pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO F_{OUT} ; 1.71 $V \le V_{DDD} \le 3.3 V$ Slow strong mode.	_	-	3.5	 -	90/10%, 25 pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DDD} \leq 5.5 V	_	-	48		90/10% V _{IO}

XRES

Table 7. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	$0.7 \times V_{DDD}$	_	_	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	_	_	$0.3 \times V_{DDD}$	V	
SID79	R _{PULLUP}	Pull-up resistor	_	60	-	kΩ	-
SID80	C _{IN}	Input capacitance	_	_	7	pF	-
SID81 ^[5]	V _{HYSXRES}	Input voltage hysteresis	-	100	_	mV	Typical hysteresis is 200 mV for V _{DD} > 4.5 V
SID82	I _{DIODE}	Current through protection diode to V _{DD} /V _{SS}	_	-	100	μΑ	

Table 8. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID83 ^[5]	T _{RESETWIDTH}	Reset pulse width	1	_	_	μs	-
BID194 ^[5]	T _{RESETWAKE}	Wake-up time from reset release	_	-	2.7	ms	_

Note
5. Guaranteed by characterization.

Table 9. CTBm Opamp Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
		General opamp specs for both internal and external modes					
SID281	V _{IN}	Charge-pump on, $V_{DDA} = 2.7 \text{ V}$	-0.05	-	V _{DDA} -0.2	V	_
SID282	V _{CM}	Charge-pump on, V _{DDA} = 2.7 V	-0.05	_	V _{DDA} -0.2		_
	V _{OUT}	V _{DDA} = 2.7 V		l	•		,
SID283	V _{OUT_1}	power=hi, Iload=10 mA	0.5	_	V _{DDA} -0.5		_
SID284	V _{OUT_2}	power=hi, Iload=1 mA	0.2	_	V _{DDA} -0.2	V	_
SID285	V _{OUT_3}	power=med, Iload=1 mA	0.2	_	V _{DDA} -0.2	v	_
SID286	V _{OUT_4}	power=lo, Iload=0.1 mA	0.2	_	V _{DDA} -0.2		_
SID288	V _{OS_TR}	Offset voltage, trimmed	-1.0	±0.5	1.0		High mode, input 0 V to V _{DDA} -0.2 V
SID288A	V _{OS_TR}	Offset voltage, trimmed	_	±1	_	mV	Medium mode, input 0 V to V _{DDA} -0.2 V
SID288B	V _{OS_TR}	Offset voltage, trimmed	-	±2	_		Low mode, input 0 V to V _{DDA} -0.2 V
SID290	V _{OS_DR_TR}	Offset voltage drift, trimmed	-10	±3	10	μV/C	High mode
SID290A	V _{OS_DR_TR}	Offset voltage drift, trimmed	-	±10	_	μV/C	Medium mode
SID290B	V _{OS_DR_TR}	Offset voltage drift, trimmed	_	±10	_	μν/Ο	Low mode
SID291	CMRR	DC	70	80	_		Input is 0 V to V _{DDA} -0.2 V, Output is 0.2 V to V _{DDA} -0.2 V
SID292	PSRR	At 1 kHz, 10-mV ripple	70	85	-	dB	V _{DDD} = 3.6 V, high-power mode, input is 0.2 V to V _{DDA} -0.2 V
	Noise						
SID294	VN2	Input-referred, 1 kHz, power=Hi	_	72	_		3
SID295	VN3	Input-referred, 10 kHz, power=Hi	-	28	_	nV/rtHz	Input and output are at 0.2 V to V _{DDA} -0.2 V
SID296	VN4	Input-referred, 100 kHz, power=Hi	-	15	_		Input and output are at 0.2 V to V _{DDA} -0.2 V
SID297	C _{LOAD}	Stable up to max. load. Performance specs at 50 pF.	-	-	125	pF	-
SID298	SLEW_RATE	Cload = 50 pF, Power = High, V _{DDA} = 2.7 V	6	-	_	V/µs	_

Table 9. CTBm Opamp Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID_DS_7	G _{BW_HI_M1}	Mode 1, High current	-	4	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_8	G _{BW_MED_M1}	Mode 1, Medium current	_	2	Ι		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_9	G _{BW_LOW_M!}	Mode 1, Low current	_	0.5	1	- MHz	20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_10	G _{BW_HI_M2}	Mode 2, High current	_	0.5	ı	IVITZ	20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_11	G _{BW_MED_M2}	Mode 2, Medium current	_	0.2	I		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_12	G _{BW_Low_M2}	Mode 2, Low current	_	0.1	I		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_13	V _{OS_HI_M1}	Mode 1, High current	_	5	1		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_14	V _{OS_MED_M1}	Mode 1, Medium current	_	5	_		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_15	V _{OS_LOW_M2}	Mode 1, Low current	_	5	_	>/	With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_16	V _{OS_HI_M2}	Mode 2, High current	_	5	_	- mV	With trim 25 °C, 0.2V to V _{DDA} -0.2 V
SID_DS_17	V _{OS_MED_M2}	Mode 2, Medium current	_	5	_		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_18	V _{OS_LOW_M2}	Mode 2, Low current	_	5	_		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_19	I _{OUT_HI_M!}	Mode 1, High current	_	10	_		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_20	I _{OUT_MED_M1}	Mode 1, Medium current	_	10	_		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_21	I _{OUT_LOW_M1}	Mode 1, Low current	_	4	_	· mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_22	I _{OUT_HI_M2}	Mode 2, High current	_	1	-		
SID_DS_23	I _{OU_MED_M2}	Mode 2, Medium current	_	1	-		
SID_DS_24	I _{OU_LOW_M2}	Mode 2, Low current	_	0.5	-		

Note6. Guaranteed by characterization.

Table 14. CSD and IDAC Specifications (continued)

SPEC ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID315G	IDAC3CRT23	Output current of IDAC in 8-bit mode in medium range	69	-	82	μA	LSB = 300-nA typ.
SID315H	IDAC3CRT33	Output current of IDAC in 8-bit mode in high range	540	-	660	μA	LSB = 2.4-µA typ.
SID320	IDACOFFSET	All zeroes input	-	-	1	LSB	Polarity set by Source or Sink. Offset is 2 LSBs for 37.5 nA/LSB mode
SID321	IDACGAIN	Full-scale error less offset		_	±10	%	
SID322	IDACMISMATCH1	Mismatch between IDAC1 and IDAC2 in Low mode		-	9.2	LSB	LSB = 37.5-nA typ.
SID322A	IDACMISMATCH2	Mismatch between IDAC1 and IDAC2 in Medium mode	_	-	5.6	LSB	LSB = 300-nA typ.
SID322B	IDACMISMATCH3	Mismatch between IDAC1 and IDAC2 in High mode	_	-	6.8	LSB	LSB = 2.4-µA typ.
SID323	IDACSET8	Settling time to 0.5 LSB for 8-bit IDAC	_	-	10	μs	Full-scale transition. No external load.
SID324	IDACSET7	Settling time to 0.5 LSB for 7-bit IDAC	_	-	10	μs	Full-scale transition. No external load.
SID325	CMOD	External modulator capacitor.	-	2.2	_	nF	5-V rating, X7R or NP0 cap.

Table 15. 10-bit CapSense ADC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SIDA94	A_RES	Resolution	-	_	10	bits	Auto-zeroing is required every millisecond
SIDA95	A_CHNLS_S	Number of channels - single ended	_	-	16		Defined by AMUX Bus.
SIDA97	A-MONO	Monotonicity	_	_	_	Yes	
SIDA98	A_GAINERR	Gain error	-	_	±2	%	In V _{REF} (2.4 V) mode with V _{DDA} bypass capacitance of 10 µF
SIDA99	A_OFFSET	Input offset voltage	-	-	3	mV	In V _{REF} (2.4 V) mode with V _{DDA} bypass capacitance of 10 µF
SIDA100	A_ISAR	Current consumption	_	_	0.25	mA	
SIDA101	A_VINS	Input voltage range - single ended	V_{SSA}	_	V_{DDA}	V	
SIDA103	A_INRES	Input resistance	_	2.2	_	ΚΩ	
SIDA104	A_INCAP	Input capacitance	_	20	_	pF	
SIDA106	A_PSRR	Power supply rejection ratio	-	60	_	dB	In V _{REF} (2.4 V) mode with V _{DDA} bypass capacitance of 10 µF
SIDA107	A_TACQ	Sample acquisition time	_	1	-	μs	
SIDA108	A_CONV8	Conversion time for 8-bit resolution at conversion rate = Fhclk/(2^(N+2)). Clock frequency = 48 MHz.	_	_	21.3	μs	Does not include acquisition time. Equivalent to 44.8 ksps including acquisition time.
SIDA108A	A_CONV10	Conversion time for 10-bit resolution at conversion rate = Fhclk/(2^(N+2)). Clock frequency = 48 MHz.	ı	-	85.3	μs	Does not include acquisition time. Equivalent to 11.6 ksps including acquisition time.

Document Number: 002-00122 Rev. *H Page 24 of 41

Table 15. 10-bit CapSense ADC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SIDA109	A_SND	Signal-to-noise and Distortion ratio (SINAD)	_	61	-		With 10-Hz input sine wave, external 2.4-V reference, V _{REF} (2.4 V) mode
SIDA110	A_BW	Input bandwidth without aliasing	_	_	22.4	KHz	8-bit resolution
SIDA111	A_INL	Integral Non Linearity. 1 ksps	-	_	2	LSB	V _{REF} = 2.4 V or greater
SIDA112	A_DNL	Differential Non Linearity. 1 ksps	_	_	1	LSB	

Digital Peripherals

Timer Counter Pulse-Width Modulator (TCPWM)

Table 16. TCPWM Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.1	ITCPWM1	Block current consumption at 3 MHz	_	-	45		All modes (TCPWM)
SID.TCPWM.2	ITCPWM2	Block current consumption at 12 MHz	_	-	155	μΑ	All modes (TCPWM)
SID.TCPWM.2A	ITCPWM3	Block current consumption at 48 MHz	_	-	650		All modes (TCPWM)
SID.TCPWM.3	TCPWM _{FREQ}	Operating frequency	_	_	Fc	MHz	Fc max = CLK_SYS Maximum = 48 MHz
SID.TCPWM.4	TPWM _{ENEXT}	Input trigger pulse width	2/Fc	-	_		For all trigger events ^[7]
SID.TCPWM.5	TPWM _{EXT}	Output trigger pulse widths	2/Fc	-	_		Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) outputs
SID.TCPWM.5A	TC _{RES}	Resolution of counter	1/Fc	1	-	ns	Minimum time between successive counts
SID.TCPWM.5B	PWM _{RES}	PWM resolution	1/Fc	ı	-		Minimum pulse width of PWM Output
SID.TCPWM.5C	Q _{RES}	Quadrature inputs resolution	1/Fc	_	_		Minimum pulse width between Quadrature phase inputs

РC

Table 17. Fixed I²C DC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	_	50		_
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	_	135	μΑ	-
SID151	I _{I2C3}	Block current consumption at 1 Mbps	-	_	310		-
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	_	_	1.4		

Table 18. Fixed I²C AC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	_	_	1	Msps	-

Notes

Note

^{7.} Trigger events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected.

^{8.} Guaranteed by characterization.

SWD Interface

Table 29. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.3~V \le V_{DD} \le 5.5~V$	ı	1	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID214	F_SWDCLK2	$1.71 \text{ V} \le \text{V}_{DD} \le 3.3 \text{ V}$	-	-	7		SWDCLK ≤ 1/3 CPU clock frequency
SID215 ^[12]	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	_	_		-
SID216 ^[12]	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	_	_	ns	-
SID217 ^[12]	T_SWDO_VALID	T = 1/f SWDCLK	_	_	0.5*T	115	-
SID217A ^[12]	T_SWDO_HOLD	T = 1/f SWDCLK	1	_	_		-

Internal Main Oscillator

Table 30. IMO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions			
SID218	I _{IMO1}	IMO operating current at 48 MHz	_	_	250	μΑ	_			
SID219	I _{IMO2}	IMO operating current at 24 MHz	_	_	180	μΑ	_			

Table 31. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions					
SID223	F _{IMOTOL1}	Frequency variation at 24, 32, and 48 MHz (trimmed)	1	_	±2	%						
SID226	T _{STARTIMO}	IMO startup time	_	_	7	μs	-					
SID228	T _{JITRMSIMO2}	RMS jitter at 24 MHz	-	145	=	ps	_					

Internal Low-Speed Oscillator

Table 32. ILO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID231 ^[12]	I _{ILO1}	ILO operating current	ı	0.3	1.05	μΑ	_

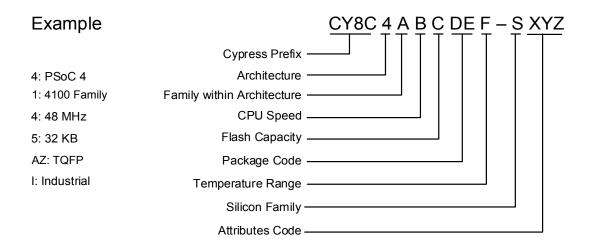
Table 33. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234 ^[12]	T _{STARTILO1}	ILO startup time	-	-	2	ms	_
SID236 ^[12]	T _{ILODUTY}	ILO duty cycle	40	50	60	%	_
SID237	F _{ILOTRIM1}	ILO frequency range	20	40	80	kHz	_

Note 12. Guaranteed by characterization.

Ordering Information

The marketing part numbers for the PSoC 4100S family are listed in the following table.


								Featur	es							Р	ackag	е	
Category	MPN	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	Opamp (CTBm)	CSD	10-bit CSD ADC	12-bit SAR ADC	ADC Sample Rate	LP Comparators	TCPWM Blocks	SCB Blocks	Smart I/Os	GPIO	35-WLCSP (0.35mm pitch)	32-QFN	40-QFN	48-TQFP	44-TQFP
	CY8C4124FNI-S403	24	16	4	2	0	1	0		2	5	2	8	31	Х				
	CY8C4124FNI-S413	24	16	4	2	1	1	0		2	5	2	16	31	Χ				
	CY8C4124LQI-S412	24	16	4	2	1	1	0		2	5	2	16	27		Х			
	CY8C4124LQI-S413	24	16	4	2	1	1	0		2	5	2	16	34			Х		
4124	CY8C4124AZI-S413	24	16	4	2	1	1	0		2	5	2	16	36				Х	
	CY8C4124FNI-S433	24	16	4	2	1	1	1	806 ksps	2	5	2	16	31	Х				
	CY8C4124LQI-S432	24	16	4	2	1	1	1	806 ksps	2	5	2	16	27		Х			
	CY8C4124LQI-S433	24	16	4	2	1	1	1	806 ksps	2	5	2	16	34			Х		
	CY8C4124AZI-S433	24	16	4	2	1	1	1	806 ksps	2	5	2	16	36				Х	
	CY8C4125FNI-S423	24	32	4	2	0	1	1	806 ksps	2	5	2	16	31	Х				
	CY8C4125LQI-S422	24	32	4	2	0	1	1	806 ksps	2	5	2	16	27		Х			
	CY8C4125LQI-S423	24	32	4	2	0	1	1	806 ksps	2	5	2	16	34			Х		
	CY8C4125AZI-S423	24	32	4	2	0	1	1	806 ksps	2	5	2	16	36				Х	
	CY8C4125AXI-S423	24	32	4	2	0	1	1	806 ksps	2	5	2	16	36					Х
4125	CY8C4125FNI-S413	24	32	4	2	1	1	0		2	5	2	16	31	Х				
	CY8C4125LQI-S412	24	32	4	2	1	1	0		2	5	2	16	27		Х			
4125	CY8C4125LQI-S413	24	32	4	2	1	1	0		2	5	2	16	34			Х		
	CY8C4125AZI-S413	24	32	4	2	1	1	0		2	5	2	16	36				Х	
	CY8C4125FNI-S433	24	32	4	2	1	1	1	806 ksps	2	5	2	16	31	Х				
	CY8C4125LQI-S432	24	32	4	2	1	1	1	806 ksps	2	5	2	16	27		Х			
	CY8C4125LQI-S433	24	32	4	2	1	1	1	806 ksps	2	5	2	16	34			Х		
	CY8C4125AZI-S433	24	32	4	2	1	1	1	806 ksps	2	5	2	16	36				Х	
	CY8C4125AXI-S433	24	32	4	2	1	1	1	806 ksps	2	5	2	16	36					Х
	CY8C4126AZI-S423	24	64	8	2	0	1	1	806 ksps	2	5	3	16	36				Х	
4126	CY8C4126AXI-S423	24	64	8	2	0	1	1	806 ksps	2	5	3	16	36					Х
4120	CY8C4126AZI-S433	24	64	8	2	1	1	1	806 ksps	2	5	3	16	36				Х	
	CY8C4126AXI-S433	24	64	8	2	1	1	1	806 ksps	2	5	3	16	36					Х
	CY8C4145AZI-S423	48	32	4	2	0	1	1	1 Msps	2	5	2	16	36				Х	
4145	CY8C4145AXI-S423	48	32	4	2	0	1	1	1 Msps	2	5	2	16	36					Х
	CY8C4145AXI-S433	48	32	4	2	1	1	1	1 Msps	2	5	2	16	36					Х
_	CY8C4146FNI-S423	48	64	8	2	0	1	1	1 Msps	2	5	3	16	31	Χ				
	CY8C4146LQI-S422	48	64	8	2	0	1	1	1 Msps	2	5	3	16	27		Х			
	CY8C4146LQI-S423	48	64	8	2	0	1	1	1 Msps	2	5	3	16	34			Х		
	CY8C4146AZI-S423	48	64	8	2	0	1	1	1 Msps	2	5	3	16	36				Χ	
4146	CY8C4146AXI-S423	48	64	8	2	0	1	1	1 Msps	2	5	3	16	36					Х
7140	CY8C4146FNI-S433	48	64	8	2	1	1	1	1 Msps	2	5	3	16	31	Х				
	CY8C4146LQI-S432	48	64	8	2	1	1	1	1 Msps	2	5	3	16	27		Х			
	CY8C4146LQI-S433	48	64	8	2	1	1	1	1 Msps	2	5	3	16	34			Х		
	CY8C4146AZI-S433	48	64	8	2	1	1	1	1 Msps	2	5	3	16	36				Χ	
	CY8C4146AXI-S433	48	64	8	2	1	1	1	1 Msps	2	5	3	16	36					Х

The nomenclature used in the preceding table is based on the following part numbering convention:

Field	Description	Values	Meaning
CY8C	Cypress Prefix		
4	Architecture	4	PSoC 4
Α	Family	1	4100 Family
В	B CPU Speed		24 MHz
		4	48 MHz
С	Flash Capacity	4	16 KB
		5	32 KB
		6	64 KB
		7	128 KB
DE	Package Code	AX	TQFP (0.8mm pitch)
		AZ	TQFP (0.5mm pitch)
		LQ	QFN
		PV	SSOP
		FN	CSP
F	Temperature Range	I	Industrial
S	Silicon Family	S	PSoC 4A-S1, PSoC 4A-S2
		М	PSoC 4A-M
		L	PSoC 4A-L
		BL	PSoC 4A-BLE
XYZ	Attributes Code	000-999	Code of feature set in the specific family

The following is an example of a part number:

Package Diagrams

Figure 6. 48-pin TQFP Package Outline

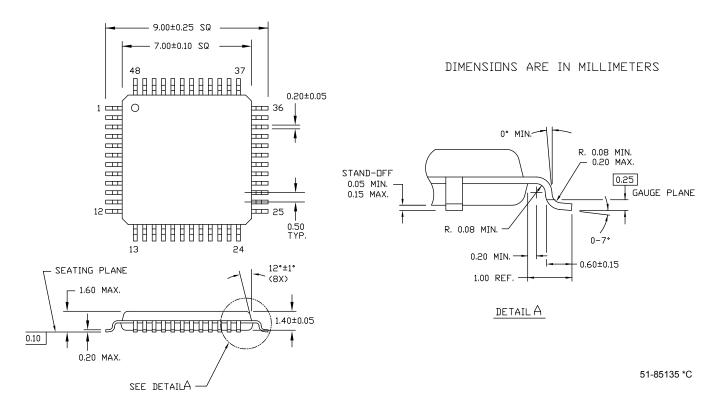
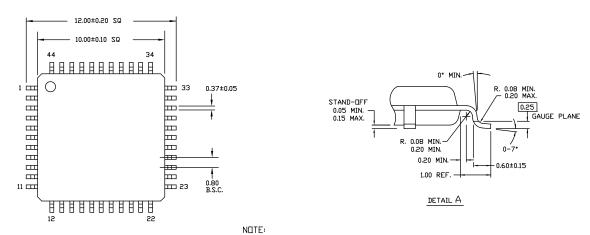



Figure 7. 44-pin TQFP Package Outline

SEATING PLANE

1.60 MAX.

1.40±0.05

0.20 MAX.

SEE DETAILA

1. JEDEC STD REF MS-026

- 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH
 MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE
 BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
- 3. DIMENSIONS IN MILLIMETERS

51-85064 *G

Table 42. Acronyms Used in this Document (continued)

Acronym	Description		
PC	program counter		
PCB	printed circuit board		
PGA	programmable gain amplifier		
PHUB	peripheral hub		
PHY	physical layer		
PICU	port interrupt control unit		
PLA	programmable logic array		
PLD	programmable logic device, see also PAL		
PLL	phase-locked loop		
PMDD	package material declaration data sheet		
POR	power-on reset		
PRES	precise power-on reset		
PRS	pseudo random sequence		
PS	port read data register		
PSoC [®]	Programmable System-on-Chip™		
PSRR	power supply rejection ratio		
PWM	pulse-width modulator		
RAM	random-access memory		
RISC	reduced-instruction-set computing		
RMS	root-mean-square		
RTC	real-time clock		
RTL	register transfer language		
RTR	remote transmission request		
RX	receive		
SAR	successive approximation register		
SC/CT	switched capacitor/continuous time		
SCL	I ² C serial clock		
SDA	I ² C serial data		
S/H	sample and hold		
SINAD	signal to noise and distortion ratio		
SIO	special input/output, GPIO with advanced features. See GPIO.		
SOC	start of conversion		
SOF	start of frame		
SPI	Serial Peripheral Interface, a communications protocol		
SR	slew rate		
SRAM	static random access memory		
SRES	software reset		
SWD	serial wire debug, a test protocol		

Table 42. Acronyms Used in this Document (continued)

Acronym	Description		
SWV	single-wire viewer		
TD	transaction descriptor, see also DMA		
THD	total harmonic distortion		
TIA	transimpedance amplifier		
TRM	technical reference manual		
TTL	transistor-transistor logic		
TX	transmit		
UART	Universal Asynchronous Transmitter Receiver, a communications protocol		
UDB	universal digital block		
USB	Universal Serial Bus		
USBIO	USB input/output, PSoC pins used to connect to a USB port		
VDAC	voltage DAC, see also DAC, IDAC		
WDT	watchdog timer		
WOL	write once latch, see also NVL		
WRES	watchdog timer reset		
XRES	external reset I/O pin		
XTAL	crystal		

Document Number: 002-00122 Rev. *H Page 38 of 41

Document Conventions

Units of Measure

Table 43. Units of Measure

Table 43. Units of Measure				
Symbol	Unit of Measure			
°C	degrees Celsius			
dB	decibel			
fF	femto farad			
Hz	hertz			
KB	1024 bytes			
kbps	kilobits per second			
Khr	kilohour			
kHz	kilohertz			
kΩ	kilo ohm			
ksps	kilosamples per second			
LSB	least significant bit			
Mbps	megabits per second			
MHz	megahertz			
ΜΩ	mega-ohm			
Msps	megasamples per second			
μΑ	microampere			
μF	microfarad			
μH	microhenry			
μs	microsecond			
μV	microvolt			
μW	microwatt			
mA	milliampere			
ms	millisecond			
mV	millivolt			
nA	nanoampere			
ns	nanosecond			
nV	nanovolt			
Ω	ohm			
pF	picofarad			
ppm	parts per million			
ps	picosecond			
S	second			
sps	samples per second			
sqrtHz	square root of hertz			
V	volt			

Revision History

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	4883809	WKA	08/28/2015	New datasheet
*A	4992376	WKA	10/30/2015	Updated Pinouts. Added $V_{DDD} \ge 2.2V$ at -40 °C under Conditions for specs SID247A, SID90, SID92. Updated Table 15. Updated Ordering Information.
*B	5037826	SLAN	12/08/2015	Changed datasheet status to Preliminary
*C	5060691	WKA	12/22/2015	Updated SCBs from 2 to 3. Updated SRAM size to 8 KB. Changed WLCSP package to 35-ball WLCSP. Updated Pin List and Alternate Pin Functions. Updated Ordering Information.
*D	5139206	WKA	02/16/2016	Added Errata. Added 35 WLCSP package details. Updated theta J_A and J_C values for all packages. Updated copyright information at the end of the document.
*E	5173961	WKA	03/15/2016	Updated values for SID79, BID194. SID175, and SID176. Updated CSD and IDAC Specifications. Updated 10-bit CapSense ADC Specifications.
*F	5330930	WKA	07/27/2016	Updated CSD and IDAC Specifications. Updated 10-bit CapSense ADC Specifications. Removed errata.
*G	5473409	WKA	10/13/2016	Added 44 TQFP pin and package details.
*H	5561833	WKA	01/09/2017	Updated Figure 3. Changed PRGIO references to Smart I/O. Updated DC Specifications. Updated Ordering Information.

Document Number: 002-00122 Rev. *H Page 40 of 41

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/touch

cypress.com/wireless

cypress.com/usb

Products

Touch Sensing

USB Controllers

Wireless Connectivity

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties and the countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or heazardous substances management, or other uses where the failure of the device or systems (including resuscitation equipment and surgical implants), pollution control or heazardous substances management, or other uses where the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners

Document Number: 002-00122 Rev. *H Revised January 9, 2017 Page 41 of 41