

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x10b Slope, 16x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4146axi-s433

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

supports EZI2C that creates a mailbox address range in the memory of the PSoC 4100S and effectively reduces I²C communication to reading from and writing to an array in memory. In addition, the block supports an 8-deep FIFO for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock stretching caused by the CPU not having read data on time.

The I²C peripheral is compatible with the I²C Standard-mode and Fast-mode devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes.

The PSoC 4100S is not completely compliant with the I²C spec in the following respect:

GPIO cells are not overvoltage tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.

GPIO

The PSoC 4100S has up to 36 GPIOs. The GPIO block implements the following:

- Eight drive modes:
 - Analog input mode (input and output buffers disabled)
 - □ Input only
 - Weak pull-up with strong pull-down
 - □ Strong pull-up with weak pull-down
 - Open drain with strong pull-down
 - □ Open drain with strong pull-up
 - □ Strong pull-up with strong pull-down
- Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL).
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes
- Selectable slew rates for dV/dt related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width (less for Ports 2 and 3). During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (5 for PSoC 4100S).

Special Function Peripherals

CapSense

CapSense is supported in the PSoC 4100S through a CapSense Sigma-Delta (CSD) block that can be connected to any pins through an analog multiplex bus via analog switches. CapSense function can thus be provided on any available pin or group of pins in a system under software control. A PSoC Creator component is provided for the CapSense block to make it easy for the user.

Shield voltage can be driven on another analog multiplex bus to provide water-tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input. Proximity sensing can also be implemented.

The CapSense block has two IDACs, which can be used for general purposes if CapSense is not being used (both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available).

The CapSense block also provides a 10-bit Slope ADC function which can be used in conjunction with the CapSense function.

The CapSense block is an advanced, low-noise, programmable block with programmable voltage references and current source ranges for improved sensitivity and flexibility. It can also use an external reference voltage. It has a full-wave CSD mode that alternates sensing to VDDA and ground to null out power-supply related noise.

LCD Segment Drive

The PSoC 4100S has an LCD controller, which can drive up to 4 commons and up to 32 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as Digital Correlation and PWM. Digital Correlation pertains to modulating the frequency and drive levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal to zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays. PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

Pinouts

The following table provides the pin list for PSoC 4100S for the 48-pin TQFP, 44-pin TQFP, 40-pin QFN, 32-pin QFN, and 35-ball CSP packages. All port pins support GPIO.

Table 1. Pin List

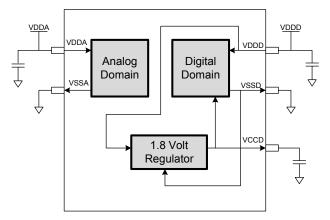
48-	TQFP	44-	TQFP	40	-QFN	32	-QFN	35	-CSP
Pin	Name								
28	P0.0	24	P0.0	22	P0.0	17	P0.0	C3	P0.0
29	P0.1	25	P0.1	23	P0.1	18	P0.1	A5	P0.1
30	P0.2	26	P0.2	24	P0.2	19	P0.2	A4	P0.2
31	P0.3	27	P0.3	25	P0.3	20	P0.3	A3	P0.3
32	P0.4	28	P0.4	26	P0.4	21	P0.4	B3	P0.4
33	P0.5	29	P0.5	27	P0.5	22	P0.5	A6	P0.5
34	P0.6	30	P0.6	28	P0.6	23	P0.6	B4	P0.6
35	P0.7	31	P0.7	29	P0.7			B5	P0.7
36	XRES	32	XRES	30	XRES	24	XRES	B6	XRES
37	VCCD	33	VCCD	31	VCCD	25	VCCD	A7	VCCD
38	VSSD			DN	VSSD	26	VSSD	B7	VSS
39	VDDD	34	VDDD	32	VDDD			C7	VDD
40	VDDA	35	VDDA	33	VDDA	27	VDD	C7	VDD
41	VSSA	36	VSSA	34	VSSA	28	VSSA	B7	VSS
42	P1.0	37	P1.0	35	P1.0	29	P1.0	C4	P1.0
43	P1.1	38	P1.1	36	P1.1	30	P1.1	C5	P1.1
44	P1.2	39	P1.2	37	P1.2	31	P1.2	C6	P1.2
45	P1.3	40	P1.3	38	P1.3	32	P1.3	D7	P1.3
46	P1.4	41	P1.4	39	P1.4			D4	P1.4
47	P1.5	42	P1.5					D5	P1.5
48	P1.6	43	P1.6					D6	P1.6
1	P1.7/VREF	44	P1.7/VREF	40	P1.7/VREF	1	P1.7/VREF	E7	P1.7/VREF
		1	VSSD						
2	P2.0	2	P2.0	1	P2.0	2	P2.0		
3	P2.1	3	P2.1	2	P2.1	3	P2.1		
4	P2.2	4	P2.2	3	P2.2	4	P2.2	D3	P2.2
5	P2.3	5	P2.3	4	P2.3	5	P2.3	E4	P2.3
6	P2.4	6	P2.4	5	P2.4			E5	P2.4
7	P2.5	7	P2.5	6	P2.5	6	P2.5	E6	P2.5
8	P2.6	8	P2.6	7	P2.6	7	P2.6	E3	P2.6
9	P2.7	9	P2.7	8	P2.7	8	P2.7	E2	P2.7
10	VSSD	10	VSSD	9	VSSD				
12	P3.0	11	P3.0	10	P3.0	9	P3.0	E1	P3.0
13	P3.1	12	P3.1	11	P3.1	10	P3.1	D2	P3.1
14	P3.2	13	P3.2	12	P3.2	11	P3.2	D1	P3.2
16	P3.3	14	P3.3	13	P3.3	12	P3.3	C1	P3.3
17	P3.4	15	P3.4	14	P3.4			C2	P3.4
18	P3.5	16	P3.5	15	P3.5				

Alternate Pin Functions

Each Port pin has can be assigned to one of multiple functions; it can, for instance, be an analog I/O, a digital peripheral function, an LCD pin, or a CapSense pin. The pin assignments are shown in the following table.

Port/Pin	Analog	Smart I/O	Alternate Function 1	Alternate Function 2	Alternate Function 3	Deep Sleep 1	Deep Sleep 2
P0.0	lpcomp.in_p[0]				tcpwm.tr_in[0]	scb[2].i2c_scl:0	scb[0].spi_select1:0
P0.1	lpcomp.in_n[0]				tcpwm.tr_in[1]	scb[2].i2c_sda:0	scb[0].spi_select2:0
P0.2	lpcomp.in_p[1]						scb[0].spi_select3:0
P0.3	lpcomp.in_n[1]						scb[2].spi_select0
P0.4	wco.wco_in			scb[1].uart_rx:0	scb[2].uart_rx:0	scb[1].i2c_scl:0	scb[1].spi_mosi:1
P0.5	wco.wco_out			scb[1].uart_tx:0	scb[2].uart_tx:0	scb[1].i2c_sda:0	scb[1].spi_miso:1
P0.6			srss.ext_clk	scb[1].uart_cts:0	scb[2].uart_tx:1		scb[1].spi_clk:1
P0.7			tcpwm.line[0]:2	scb[1].uart_rts:0			scb[1].spi_select0:1
P1.0	ctb0_oa0+		tcpwm.line[2]:1	scb[0].uart_rx:1		scb[0].i2c_scl:0	scb[0].spi_mosi:1
P1.1	ctb0_oa0-		tcpwm.line_compl[2]:1	scb[0].uart_tx:1		scb[0].i2c_sda:0	scb[0].spi_miso:1
P1.2	ctb0_oa0_out		tcpwm.line[3]:1	scb[0].uart_cts:1	tcpwm.tr_in[2]	scb[2].i2c_scl:1	scb[0].spi_clk:1
P1.3	ctb0_oa1_out		tcpwm.line_compl[3]:1	scb[0].uart_rts:1	tcpwm.tr_in[3]	scb[2].i2c_sda:1	scb[0].spi_select0:1
P1.4	ctb0_oa1-						scb[0].spi_select1:1
P1.5	ctb0_oa1+						scb[0].spi_select2:1
P1.6	ctb0_oa0+						scb[0].spi_select3:1
P1.7	ctb0_oa1+ sar_ext_vref0 sar_ext_vref1						scb[2].spi_clk
P2.0	sarmux[0]	prgio[0].io[0]	tcpwm.line[4]:0	csd.comp	tcpwm.tr_in[4]	scb[1].i2c_scl:1	scb[1].spi_mosi:2
P2.1	sarmux[1]	prgio[0].io[1]	tcpwm.line_compl[4]:0		tcpwm.tr_in[5]	scb[1].i2c_sda:1	scb[1].spi_miso:2
P2.2	sarmux[2]	prgio[0].io[2]					scb[1].spi_clk:2
P2.3	sarmux[3]	prgio[0].io[3]					scb[1].spi_select0:2

PSoC[®] 4: PSoC 4100S Family Datasheet


Port/Pin	Analog	Smart I/O	Alternate Function 1	Alternate Function 2	Alternate Function 3	Deep Sleep 1	Deep Sleep 2
P2.4	sarmux[4]	prgio[0].io[4]	tcpwm.line[0]:1				scb[1].spi_select1:1
P2.5	sarmux[5]	prgio[0].io[5]	tcpwm.line_compl[0]:1				scb[1].spi_select2:1
P2.6	sarmux[6]	prgio[0].io[6]	tcpwm.line[1]:1				scb[1].spi_select3:1
P2.7	sarmux[7]	prgio[0].io[7]	tcpwm.line_compl[1]:1			lpcomp.comp[0]:1	scb[2].spi_mosi
P3.0		prgio[1].io[0]	tcpwm.line[0]:0	scb[1].uart_rx:1		scb[1].i2c_scl:2	scb[1].spi_mosi:0
P3.1		prgio[1].io[1]	tcpwm.line_compl[0]:0	scb[1].uart_tx:1		scb[1].i2c_sda:2	scb[1].spi_miso:0
P3.2		prgio[1].io[2]	tcpwm.line[1]:0	scb[1].uart_cts:1		cpuss.swd_data	scb[1].spi_clk:0
P3.3		prgio[1].io[3]	tcpwm.line_compl[1]:0	scb[1].uart_rts:1		cpuss.swd_clk	scb[1].spi_select0:0
P3.4		prgio[1].io[4]	tcpwm.line[2]:0		tcpwm.tr_in[6]		scb[1].spi_select1:0
P3.5		prgio[1].io[5]	tcpwm.line_compl[2]:0				scb[1].spi_select2:0
P3.6		prgio[1].io[6]	tcpwm.line[3]:0				scb[1].spi_select3:0
P3.7		prgio[1].io[7]	tcpwm.line_compl[3]:0			lpcomp.comp[1]:1	scb[2].spi_miso
P4.0	csd.vref_ext			scb[0].uart_rx:0		scb[0].i2c_scl:1	scb[0].spi_mosi:0
P4.1	csd.cshieldpads			scb[0].uart_tx:0		scb[0].i2c_sda:1	scb[0].spi_miso:0
P4.2	csd.cmodpad			scb[0].uart_cts:0		lpcomp.comp[0]:0	scb[0].spi_clk:0
P4.3	csd.csh_tank			scb[0].uart_rts:0		lpcomp.comp[1]:0	scb[0].spi_select0:0

Power

The following power system diagram shows the set of power supply pins as implemented for the PSoC 4100S. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DD} input.

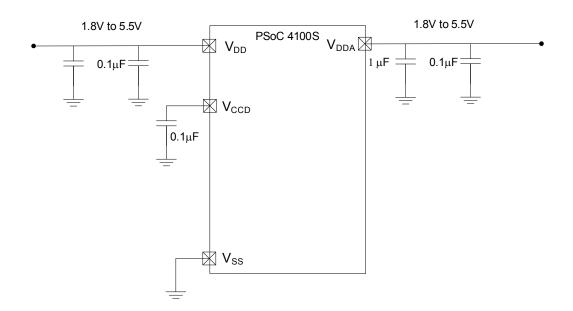
Figure 4. Power Supply Connections

There are two distinct modes of operation. In Mode 1, the supply voltage range is 1.8 V to 5.5 V (unregulated externally; internal regulator operational). In Mode 2, the supply range is $1.8 \text{ V} \pm 5\%$ (externally regulated; 1.71 to 1.89, internal regulator bypassed).

Mode 1: 1.8 V to 5.5 V External Supply

In this mode, the PSoC 4100S is powered by an external power supply that can be anywhere in the range of 1.8 to 5.5 V. This range is also designed for battery-powered operation. For example, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4100S supplies the internal logic and its output is connected to the V_{CCD} pin. The VCCD pin must be bypassed to ground via an external capacitor (0.1 μ F; X5R ceramic or better) and must not be connected to anything else.

Mode 2: 1.8 V ±5% External Supply


In this mode, the PSoC 4100S is powered by an external power supply that must be within the range of 1.71 to 1.89 V; note that this range needs to include the power supply ripple too. In this mode, the VDD and VCCD pins are shorted together and bypassed. The internal regulator can be disabled in the firmware.

Bypass capacitors must be used from VDDD to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1- μ F range, in parallel with a smaller capacitor (0.1 μ F, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

An example of a bypass scheme is shown in the following diagram.

Figure 5. External Supply Range from 1.8 V to 5.5 V with Internal Regulator Active

Power supply bypass connections example

Development Support

The PSoC 4100S family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4100S family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers. The TRM is available in the Documentation section at www.cypress.com/psoc4.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4100S family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Table 3. DC Specifications (continued)

Typical values measured at V_DD = 3.3 V and 25 $^\circ\text{C}.$

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
Sleep Mode, V	DDD = 1.8 V to	5.5 V (Regulator on)					
SID22	IDD17	I ² C wakeup WDT, and Comparators on	_	1.7	2.2	mA	6 MHZ. Max is at 85 °C and 5.5 V.
SID25	IDD20	I ² C wakeup, WDT, and Comparators on.	_	2.2	2.5		12 MHZ. Max is at 85 °C and 5.5 V.
Sleep Mode, V	_{DDD} = 1.71 V to	1.89 V (Regulator bypassed)					
SID28	IDD23	I ² C wakeup, WDT, and Comparators on	_	0.7	0.9	mA	6 MHZ. Max is at 85 °C and 5.5 V.
SID28A	IDD23A	I ² C wakeup, WDT, and Comparators on	_	1	1.2	mA	12 MHZ. Max is at 85 °C and 5.5 V.
Deep Sleep Mo	ode, V _{DD} = 1.8 \	/ to 3.6 V (Regulator on)					
SID31	I _{DD26}	I ² C wakeup and WDT on	_	2.5	60	μA	Max is at 3.6 V and 85 °C.
Deep Sleep Mo	ode, V _{DD} = 3.6 \	/ to 5.5 V (Regulator on)					
SID34	I _{DD29}	I ² C wakeup and WDT on	-	2.5	60	μA	Max is at 5.5 V and 85 °C.
Deep Sleep Mo	ode, V _{DD} = V _{CCI}	$_{\rm D}$ = 1.71 V to 1.89 V (Regulator bypasse	ed)				
SID37	I _{DD32}	I ² C wakeup and WDT on	_	2.5	65	μA	Max is at 1.89 V and 85 °C.
XRES Current							
SID307	I _{DD_XR}	Supply current while XRES asserted	_	2	5	mA	_

Table 4. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	-	48	MHz	$1.71 \leq V_{DD} \leq 5.5$
SID49 ^[3]	T _{SLEEP}	Wakeup from Sleep mode	-	0	_	μs	
SID50 ^[3]	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	-	35	-	μο	

GPIO

Table 5. GPIO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID57	V _{IH} ^[3]	Input voltage high threshold	$0.7\times V_{DDD}$	-	-		CMOS Input
SID58	V _{IL}	Input voltage low threshold	-	-	$0.3 \times V_{DDD}$		CMOS Input
SID241	V _{IH} ^[3]	LVTTL input, V _{DDD} < 2.7 V	$0.7\times V_{DDD}$	-	_		_
SID242	V _{IL}	LVTTL input, V _{DDD} < 2.7 V	-	-	$0.3 \times V_{DDD}$		-
SID243	V _{IH} ^[3]	LVTTL input, $V_{DDD} \ge 2.7 \text{ V}$	2.0	-	-		_
SID244	V _{IL}	LVTTL input, $V_{DDD} \ge 2.7 \text{ V}$	-	-	0.8	V	-
SID59	V _{OH}	Output voltage high level	V _{DDD} -0.6	-	-		I_{OH} = 4 mA at 3 V V_{DDD}
SID60	V _{OH}	Output voltage high level	V _{DDD} –0.5	-	-		I _{OH} = 1 mA at 1.8 V V _{DDD}
SID61	V _{OL}	Output voltage low level	-	-	0.6		I _{OL} = 4 mA at 1.8 V V _{DDD}
SID62	V _{OL}	Output voltage low level	-	-	0.6		I_{OL} = 10 mA at 3 V V_{DDD}
SID62A	V _{OL}	Output voltage low level	-	-	0.4		I _{OL} = 3 mA at 3 V V _{DDD}
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	-
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	K32	_
SID65	IIL	Input leakage current (absolute value)	-	-	2	nA	25 °C, V _{DDD} = 3.0 V
SID66	C _{IN}	Input capacitance	-	-	7	pF	-
SID67 ^[4]	V _{HYSTTL}	Input hysteresis LVTTL	25	40	-		$V_{DDD} \ge 2.7 V$
SID68 ^[4]	V _{HYSCMOS}	Input hysteresis CMOS	$0.05 \times V_{DDD}$	-	-	mV	V _{DD} < 4.5 V
SID68A ^[4]	V _{HYSCMOS5V5}	Input hysteresis CMOS	200	-	-		V _{DD} > 4.5 V
SID69 ^[4]	I _{DIODE}	Current through protection diode to V_{DD}/V_{SS}	-	-	100	μA	-
SID69A ^[4]	I _{TOT_GPIO}	Maximum total source or sink chip current	-	_	200	mA	-

Table 6. GPIO AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID70	T _{RISEF}	Rise time in fast strong mode	2	-	12	ns	3.3 V V _{DDD} , Cload = 25 pF
SID71	T _{FALLF}	Fall time in fast strong mode	2	-	12		3.3 V V _{DDD} , Cload = 25 pF
SID72	T _{RISES}	Rise time in slow strong mode	10	_	60		3.3 V V _{DDD} , Cload = 25 pF

Notes

V_{IH} must not exceed V_{DDD} + 0.2 V.
 Guaranteed by characterization.

Table 6. GPIO AC Specifications

(Guaranteed by Characterization) (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID73	T _{FALLS}	Fall time in slow strong mode	10	_	60	_	3.3 V V _{DDD} , Cload = 25 pF
SID74	F _{GPIOUT1}	GPIO F _{OUT} ; 3.3 V \leq V _{DDD} \leq 5.5 V Fast strong mode	_	-	33		90/10%, 25 pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO F _{OUT} ; 1.71 V≤ V _{DDD} ≤ 3.3 V Fast strong mode	_	-	16.7		90/10%, 25 pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO F _{OUT} ; 3.3 V \leq V _{DDD} \leq 5.5 V Slow strong mode	_	_	7		90/10%, 25 pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO F_{OUT} ; 1.71 V \leq V _{DDD} \leq 3.3 V Slow strong mode.	_	-	3.5		90/10%, 25 pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DDD} \leq 5.5 V	_	-	48		90/10% V _{IO}

XRES

Table 7. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	$0.7 \times V_{DDD}$	-	-	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	-	-	$0.3\times V_{DDD}$	v	
SID79	R _{PULLUP}	Pull-up resistor	-	60	-	kΩ	-
SID80	C _{IN}	Input capacitance	-	-	7	pF	-
SID81 ^[5]	V _{HYSXRES}	Input voltage hysteresis	-	100	-	mV	Typical hysteresis is 200 mV for V _{DD} > 4.5 V
SID82	I _{DIODE}	Current through protection diode to V_{DD}/V_{SS}	_	_	100	μA	

Table 8. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID83 ^[5]	T _{RESETWIDTH}	Reset pulse width	1	-	-	μs	-
BID194 ^[5]	T _{RESETWAKE}	Wake-up time from reset release	-	-	2.7	ms	-

Table 9. CTBm Opamp Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID299	T_OP_WAKE	From disable to enable, no external RC dominating	_	-	25	μs	-
SID299A	OL_GAIN	Open Loop Gain	-	90	_	dB	
	COMP_MODE	Comparator mode; 50 mV drive, T _{rise} =T _{fall} (approx.)					
SID300	TPD1	Response time; power=hi	-	150	-		Input is 0.2 V to V _{DDA} -0.2 V
SID301	TPD2	Response time; power=med	-	500	Ι	ns	Input is 0.2 V to V _{DDA} -0.2 V
SID302	TPD3	Response time; power=lo	_	2500	_		Input is 0.2 V to V _{DDA} -0.2 V
SID303	VHYST_OP	Hysteresis	-	10	-	mV	-
SID304	WUP_CTB	Wake-up time from Enabled to Usable	-	-	25	μs	-
	Deep Sleep Mode	Mode 2 is lowest current range. Mode 1 has higher GBW.					
SID_DS_1	I _{DD_HI_M1}	Mode 1, High current	_	1400	_		25 °C
SID_DS_2	I _{DD_MED_M1}	Mode 1, Medium current	-	700	-		25 °C
SID_DS_3	I _{DD_LOW_M1}	Mode 1, Low current	-	200	-		25 °C
SID_DS_4	I _{DD_HI_M2}	Mode 2, High current	-	120	_	μA	25 °C
SID_DS_5	IDD_MED_M2	Mode 2, Medium current	-	60	-		25 °C
SID_DS_6	I _{DD_LOW_M2}	Mode 2, Low current	-	15	-		25 °C

Table 9. CTBm Opamp Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID_DS_7	G _{BW_HI_M1}	Mode 1, High current	_	4	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_8	G _{BW_MED_M1}	Mode 1, Medium current	_	2	_		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_9	G _{BW_LOW_M!}	Mode 1, Low current	_	0.5	_	MHz	20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_10	G _{BW_HI_M2}	Mode 2, High current	_	0.5	_	IVITIZ	20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_11	G _{BW_MED_M2}	Mode 2, Medium current	_	0.2	_		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_12	G _{BW_Low_M2}	Mode 2, Low current	_	0.1	_		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_13	V _{OS_HI_M1}	Mode 1, High current	-	5	-		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V
SID_DS_14	V _{OS_MED_M1}	Mode 1, Medium current	-	5	-		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_15	V _{OS_LOW_M2}	Mode 1, Low current	-	5	-		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_16	V _{OS_HI_M2}	Mode 2, High current	-	5	-	mV	With trim 25 °C, 0.2V to V _{DDA} -0.2 V
SID_DS_17	V _{OS_MED_M2}	Mode 2, Medium current	_	5	-		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_18	V _{OS_LOW_M2}	Mode 2, Low current	-	5	-		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_19	I _{OUT_HI_M!}	Mode 1, High current	-	10	-		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_20	IOUT_MED_M1	Mode 1, Medium current	-	10	-		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_21	I _{OUT_LOW_M1}	Mode 1, Low current	_	4	-		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_22	I _{OUT_HI_M2}	Mode 2, High current	-	1	-	mA	
SID_DS_23	I _{OU_MED_M2}	Mode 2, Medium current	_	1	-		
SID_DS_24	I _{OU_LOW_M2}	Mode 2, Low current	_	0.5	-		

Note 6. Guaranteed by characterization.

Table 13. SAR Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID99	A_OFFSET	Input offset voltage	_	-	2	mV	Measured with 1-V reference
SID100	A_ISAR	Current consumption	-	-	1	mA	
SID101	A_VINS	Input voltage range - single ended	V_{SS}	-	V _{DDA}	V	
SID102	A_VIND	Input voltage range - differential[V_{SS}	-	V _{DDA}	V	
SID103	A_INRES	Input resistance	-	-	2.2	KΩ	
SID104	A_INCAP	Input capacitance	-	-	10	pF	
SID260	VREFSAR	Trimmed internal reference to SAR	-	-	TBD	V	
SAR ADC	AC Specificati	ons					
SID106	A_PSRR	Power supply rejection ratio	70	-	-	dB	
SID107	A_CMRR	Common mode rejection ratio	66	-	-	dB	Measured at 1 V
SID108	A_SAMP	Sample rate	-	-	1	Msps	
SID109	A_SNR	Signal-to-noise and distortion ratio (SINAD)	65	-	-	dB	F _{IN} = 10 kHz
SID110	A_BW	Input bandwidth without aliasing	-	-	A_samp/2	kHz	
SID111	A_INL	Integral non linearity. V _{DD} = 1.71 to 5.5, 1 Msps	-1.7	-	2	LSB	V_{REF} = 1 to V_{DD}
SID111A	A_INL	Integral non linearity. V _{DDD} = 1.71 to 3.6, 1 Msps	-1.5	-	1.7	LSB	V _{REF} = 1.71 to V _{DD}
SID111B	A_INL	Integral non linearity. V_{DD} = 1.71 to 5.5, 500 ksps	-1.5	-	1.7	LSB	V_{REF} = 1 to V_{DD}
SID112	A_DNL	Differential non linearity. V _{DD} = 1.71 to 5.5, 1 Msps	-1	-	2.2	LSB	V _{REF} = 1 to V _{DD}
SID112A	A_DNL	Differential non linearity. V _{DD} = 1.71 to 3.6, 1 Msps	-1	-	2	LSB	V _{REF} = 1.71 to V _{DD}
SID112B	A_DNL	Differential non linearity. V _{DD} = 1.71 to 5.5, 500 ksps	–1	-	2.2	LSB	V _{REF} = 1 to V _{DD}
SID113	A_THD	Total harmonic distortion	-	-	-65	dB	Fin = 10 kHz
SID261	FSARINTRE F	SAR operating speed without external ref. bypass	_	_	100	ksps	12-bit resolution

Table 14. CSD and IDAC Specifications (continued)

SPEC ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID315G	IDAC3CRT23	Output current of IDAC in 8-bit mode in medium range	69	-	82	μA	LSB = 300-nA typ.
SID315H	IDAC3CRT33	Output current of IDAC in 8-bit mode in high range	540	-	660	μA	LSB = 2.4-µA typ.
SID320	IDACOFFSET	All zeroes input	-	-	1	LSB	Polarity set by Source or Sink. Offset is 2 LSBs for 37.5 nA/LSB mode
SID321	IDACGAIN	Full-scale error less offset	-	-	±10	%	
SID322	IDACMISMATCH1	Mismatch between IDAC1 and IDAC2 in Low mode	-	-	9.2	LSB	LSB = 37.5-nA typ.
SID322A	IDACMISMATCH2	Mismatch between IDAC1 and IDAC2 in Medium mode	-	-	5.6	LSB	LSB = 300-nA typ.
SID322B	IDACMISMATCH3	Mismatch between IDAC1 and IDAC2 in High mode	-	-	6.8	LSB	LSB = 2.4-µA typ.
SID323	IDACSET8	Settling time to 0.5 LSB for 8-bit IDAC	-	-	10	μs	Full-scale transition. No external load.
SID324	IDACSET7	Settling time to 0.5 LSB for 7-bit IDAC	-	-	10	μs	Full-scale transition. No external load.
SID325	CMOD	External modulator capacitor.	-	2.2	-	nF	5-V rating, X7R or NP0 cap.

Table 15. 10-bit CapSense ADC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SIDA94	A_RES	Resolution	-	-	10	bits	Auto-zeroing is required every millisecond
SIDA95	A_CHNLS_S	Number of channels - single ended	-	-	16		Defined by AMUX Bus.
SIDA97	A-MONO	Monotonicity	-	-	-	Yes	
SIDA98	A_GAINERR	Gain error	-	-	±2	%	In V_{REF} (2.4 V) mode with V_{DDA} bypass capacitance of 10 μ F
SIDA99	A_OFFSET	Input offset voltage	_	-	3	mV	In V_{REF} (2.4 V) mode with V_{DDA} bypass capacitance of 10 μ F
SIDA100	A_ISAR	Current consumption	-	-	0.25	mA	
SIDA101	A_VINS	Input voltage range - single ended	V _{SSA}	-	V_{DDA}	V	
SIDA103	A_INRES	Input resistance	_	2.2	-	KΩ	
SIDA104	A_INCAP	Input capacitance	_	20	-	pF	
SIDA106	A_PSRR	Power supply rejection ratio	_	60	_	dB	In V_{REF} (2.4 V) mode with V_{DDA} bypass capacitance of 10 μ F
SIDA107	A_TACQ	Sample acquisition time	-	1	-	μs	
SIDA108	A_CONV8	Conversion time for 8-bit resolution at conversion rate = Fhclk/(2 [^] (N+2)). Clock frequency = 48 MHz.	_	-	21.3	μs	Does not include acqui- sition time. Equivalent to 44.8 ksps including acquisition time.
SIDA108A	A_CONV10	Conversion time for 10-bit resolution at conversion rate = Fhclk/(2 [^] (N+2)). Clock frequency = 48 MHz.	_	_	85.3	μs	Does not include acqui- sition time. Equivalent to 11.6 ksps including acquisition time.

Table 19. SPI DC Specifications^[9]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID163	ISPI1	Block current consumption at 1 Mbps	-	-	360		_
SID164	ISPI2	Block current consumption at 4 Mbps	-	-	560	μA	-
SID165	ISPI3	Block current consumption at 8 Mbps	-	-	600		-

Table 20. SPI AC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID166	FSPI	SPI Operating frequency (Master; 6X Oversampling)	-	-	8	MHz	SID166
Fixed SPI	Master Mode A	C Specifications					
SID167	TDMO	MOSI Valid after SClock driving edge	-	-	15		-
SID168	TDSI	MISO Valid before SClock capturing edge	20	-	-	ns	Full clock, late MISO sampling
SID169	тнмо	Previous MOSI data hold time	0	Referred to Slave capturing edge			
Fixed SPI	Slave Mode AC	Specifications					
SID170	TDMI	MOSI Valid before Sclock Capturing edge	40	-	-		_
SID171	TDSO	MISO Valid after Sclock driving edge	_	-	42 + 3*Tcpu	ns	T _{CPU} = 1/F _{CPU}
SID171A	TDSO_EXT	MISO Valid after Sclock driving edge in Ext. Clk mode	-	-	48		_
SID172	THSO	Previous MISO data hold time	0	-	-		-
SID172A	TSSELSSCK	SSEL Valid to first SCK Valid edge	_	-	100	ns	-

SWD Interface

Table 29. SWD Interface Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID213	F_SWDCLK1	$3.3~V \le V_{DD} \le 5.5~V$	-	Ι	14	MHz	SWDCLK ≤ 1/3 CPU clock frequency
SID214	F_SWDCLK2	$1.71~V \leq V_{DD} \leq 3.3~V$	-	-	7		SWDCLK ≤ 1/3 CPU clock frequency
SID215 ^[12]	T_SWDI_SETUP	T = 1/f SWDCLK	0.25*T	-	-		-
SID216 ^[12]	T_SWDI_HOLD	T = 1/f SWDCLK	0.25*T	-	-	20	-
SID217 ^[12]	T_SWDO_VALID	T = 1/f SWDCLK	-	-	0.5*T	ns	-
SID217A ^[12]	T_SWDO_HOLD	T = 1/f SWDCLK	1	_	_		_

Internal Main Oscillator

Table 30. IMO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID218	I _{IMO1}	IMO operating current at 48 MHz	-	-	250	μA	-
SID219	I _{IMO2}	IMO operating current at 24 MHz		-	180	μA	_

Table 31. IMO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID223	F _{IMOTOL1}	Frequency variation at 24, 32, and 48 MHz (trimmed)	_	-	±2	%	
SID226	T _{STARTIMO}	IMO startup time	-	-	7	μs	-
SID228	T _{JITRMSIMO2}	RMS jitter at 24 MHz	_	145	-	ps	-

Internal Low-Speed Oscillator

Table 32. ILO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID231 ^[12]	I _{ILO1}	ILO operating current	_	0.3	1.05	μA	_

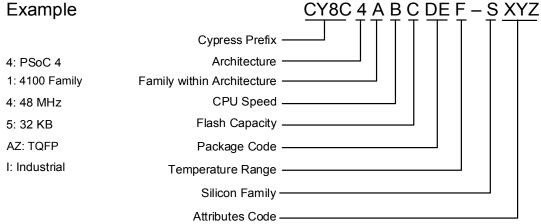
Table 33. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234 ^[12]	T _{STARTILO1}	ILO startup time	-	-	2	ms	-
SID236 ^[12]	T _{ILODUTY}	ILO duty cycle	40	50	60	%	-
SID237	F _{ILOTRIM1}	ILO frequency range	20	40	80	kHz	_

Ordering Information

The marketing part numbers for the PSoC 4100S family are listed in the following table.

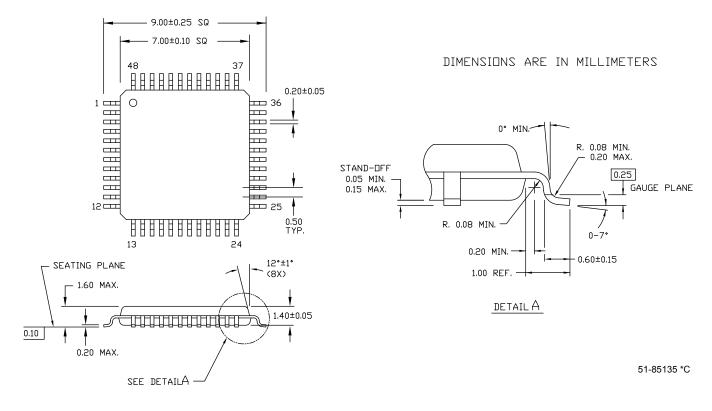
								Featur	es							Р	ackag	e	
Category	MPN	Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	Opamp (CTBm)	CSD	10-bit CSD ADC	12-bit SAR ADC	ADC Sample Rate	LP Comparators	TCPWM Blocks	SCB Blocks	Smart I/Os	GPIO	35-WLCSP (0.35mm pitch)	32-QFN	40-QFN	48-TQFP	44-TQFP
	CY8C4124FNI-S403	24	16	4	2	0	1	0		2	5	2	8	31	Х				
	CY8C4124FNI-S413	24	16	4	2	1	1	0		2	5	2	16	31	Х				
	CY8C4124LQI-S412	24	16	4	2	1	1	0		2	5	2	16	27		Х			
	CY8C4124LQI-S413	24	16	4	2	1	1	0		2	5	2	16	34			Х		
4124	CY8C4124AZI-S413	24	16	4	2	1	1	0		2	5	2	16	36				Х	
	CY8C4124FNI-S433	24	16	4	2	1	1	1	806 ksps	2	5	2	16	31	Х				
	CY8C4124LQI-S432	24	16	4	2	1	1	1	806 ksps	2	5	2	16	27		Х			
	CY8C4124LQI-S433	24	16	4	2	1	1	1	806 ksps	2	5	2	16	34			Х		
	CY8C4124AZI-S433	24	16	4	2	1	1	1	806 ksps	2	5	2	16	36				Х	
	CY8C4125FNI-S423	24	32	4	2	0	1	1	806 ksps	2	5	2	16	31	Х				
	CY8C4125LQI-S422	24	32	4	2	0	1	1	806 ksps	2	5	2	16	27		Х			
	CY8C4125LQI-S423	24	32	4	2	0	1	1	806 ksps	2	5	2	16	34			Х		
	CY8C4125AZI-S423	24	32	4	2	0	1	1	806 ksps	2	5	2	16	36				Х	
	CY8C4125AXI-S423	24	32	4	2	0	1	1	806 ksps	2	5	2	16	36					Х
	CY8C4125FNI-S413	24	32	4	2	1	1	0		2	5	2	16	31	Х				
4125	CY8C4125LQI-S412	24	32	4	2	1	1	0		2	5	2	16	27		Х			
	CY8C4125LQI-S413	24	32	4	2	1	1	0		2	5	2	16	34			Х		
	CY8C4125AZI-S413	24	32	4	2	1	1	0		2	5	2	16	36				Х	
	CY8C4125FNI-S433	24	32	4	2	1	1	1	806 ksps	2	5	2	16	31	Х				
	CY8C4125LQI-S432	24	32	4	2	1	1	1	806 ksps	2	5	2	16	27	-	Х		-	
	CY8C4125LQI-S433	24	32	4	2	1	1	1	806 ksps	2	5	2	16	34			Х		
	CY8C4125AZI-S433	24	32	4	2	1	1	1	806 ksps	2	5	2	16	36				Х	
	CY8C4125AXI-S433	24	32	4	2	1	1	1	806 ksps	2	5	2	16	36				X	Х
	CY8C4126AZI-S423	24	64	8	2	0	1	1	806 ksps	2	5	3	16	36				Х	V
4126	CY8C4126AXI-S423 CY8C4126AZI-S433	24 24	64 64	8 8	2	0	1	1 1	806 ksps 806 ksps	2	5 5	3	16 16	36 36				х	Х
	CY8C4126AZI-S433 CY8C4126AXI-S433	24 24	64 64	8	2	1	1	1	806 ksps 806 ksps	2	5 5	3	16	36 36				~	х
	CY8C4126AXI-S433	24 48	64 32	。 4	2	0	1	1	1 Msps	2	5 5	2	16	36				х	^
4145	CY8C4145AXI-S423	40	32	4	2	0	1	1	1 Msps	2	5	2	16	36				~	х
	CY8C4145AXI-S423	48	32	4	2	1	1	1	1 Msps	2	5	2	16	36					X
	CY8C4146FNI-S423	48	64	8	2	0	1	1	1 Msps	2	5	3	16	31	х				^
	CY8C4146LQI-S422	48	64	8	2	0	1	1	1 Msps	2	5	3	16	27	~	х			
	CY8C4146LQI-S422	40	64	8	2	0	1	1	1 Msps	2	5	3	16	34		^	х		
	CY8C4146AZI-S423	48	64	8	2	0	1	1	1 Msps	2	5	3	16	36			~	х	
	CY8C4146AXI-S423	48	64	8	2	0	1	1	1 Msps	2	5	3	16	36					х
4146	CY8C4146FNI-S433	48	64	8	2	1	1	1	1 Msps	2	5	3	16	31	х				
	CY8C4146LQI-S432	48	64	8	2	1	1	1	1 Msps	2	5	3	16	27	-	Х			
	CY8C4146LQI-S433	48	64	8	2	1	1	1	1 Msps	2	5	3	16	34			х		
	CY8C4146AZI-S433	48	64	8	2	1	1	1	1 Msps	2	5	3	16	36				Х	
	CY8C4146AXI-S433	48	64	8	2	1	1	1	1 Msps	2	5	3	16	36					х

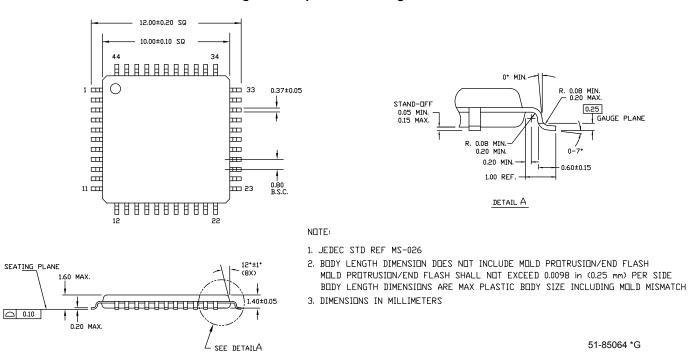


Field	Description	Values	Meaning	
CY8C	Cypress Prefix			
4	Architecture	4	PSoC 4	
А	Family	1	4100 Family	
В	CPU Speed	2	24 MHz	
		4	48 MHz	
С	Flash Capacity	4	16 KB	
		5	32 KB	
		6	64 KB	
		7	128 KB	
DE	Package Code	AX	TQFP (0.8mm pitch)	
		AZ	TQFP (0.5mm pitch)	
		LQ	QFN	
		PV	SSOP	
		FN	CSP	
F	Temperature Range	I	Industrial	
S	S Silicon Family S PSoC 4A-S1, PSo		PSoC 4A-S1, PSoC 4A-S2	
		М	PSoC 4A-M	
		L	PSoC 4A-L	
		BL	PSoC 4A-BLE	
XYZ	Attributes Code	000-999	Code of feature set in the specific family	

The nomenclature used in the preceding table is based on the following part numbering convention:

The following is an example of a part number:


Example



Package Diagrams

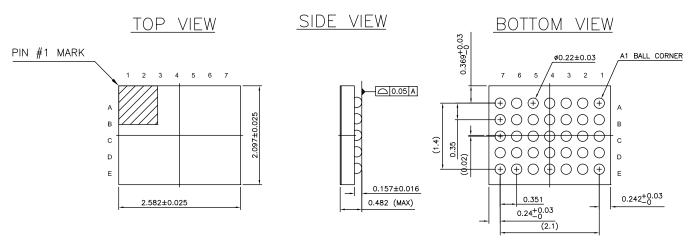


Figure 10. 35-Ball WLCSP Package Outline

ALL DIMENSIONS ARE IN MM JEDEC Publication 95; Design Guide 4.18 002-09958 *C

Table 42. Acronyms Used in this Document (continued)

Acronym	Description	
PC	program counter	
PCB	printed circuit board	
PGA	programmable gain amplifier	
PHUB	peripheral hub	
PHY	physical layer	
PICU	port interrupt control unit	
PLA	programmable logic array	
PLD	programmable logic device, see also PAL	
PLL	phase-locked loop	
PMDD	package material declaration data sheet	
POR	power-on reset	
PRES	precise power-on reset	
PRS	pseudo random sequence	
PS	port read data register	
PSoC [®]	Programmable System-on-Chip™	
PSRR	power supply rejection ratio	
PWM	pulse-width modulator	
RAM	random-access memory	
RISC	reduced-instruction-set computing	
RMS	root-mean-square	
RTC	real-time clock	
RTL	register transfer language	
RTR	remote transmission request	
RX	receive	
SAR	successive approximation register	
SC/CT	switched capacitor/continuous time	
SCL	I ² C serial clock	
SDA	I ² C serial data	
S/H	sample and hold	
SINAD	signal to noise and distortion ratio	
SIO	special input/output, GPIO with advanced features. See GPIO.	
SOC	start of conversion	
SOF	start of frame	
SPI	Serial Peripheral Interface, a communications protocol	
SR	slew rate	
SRAM	static random access memory	
SRES	software reset	
SWD	serial wire debug, a test protocol	

Table 42.	Acronyms	Used in this	Document	(continued)
-----------	----------	--------------	----------	-------------

Acronym	Description
SWV	single-wire viewer
TD	transaction descriptor, see also DMA
THD	total harmonic distortion
TIA	transimpedance amplifier
TRM	technical reference manual
TTL	transistor-transistor logic
ТΧ	transmit
UART	Universal Asynchronous Transmitter Receiver, a communications protocol
UDB	universal digital block
USB	Universal Serial Bus
USBIO	USB input/output, PSoC pins used to connect to a USB port
VDAC	voltage DAC, see also DAC, IDAC
WDT	watchdog timer
WOL	write once latch, see also NVL
WRES	watchdog timer reset
XRES	external reset I/O pin
XTAL	crystal