

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, POR, PWM, WDT
Number of I/O	27
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x10b Slope, 16x12b SAR; D/A 2xIDAC
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4146lqi-s432t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Functional Definition	4
CPU and Memory Subsystem	4
System Resources	
Analog Blocks	5
Fixed Function Digital	5
GPIO	
Special Function Peripherals	6
Pinouts	7
Alternate Pin Functions	9
Power	11
Mode 1: 1.8 V to 5.5 V External Supply	11
Mode 2: 1.8 V ±5% External Supply	11
Development Support	12
Documentation	12
Online	12
Tools	12
Electrical Specifications	13
Absolute Maximum Ratings	13
Device Level Specifications	13
Analog Peripherals	

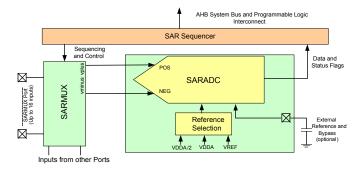
Digital Peripherals	25
Memory	
System Resources	28
Ordering Information	31
Packaging	34
Package Diagrams	
Acronyms	38
Document Conventions	40
Units of Measure	
Revision History	41
Sales, Solutions, and Legal Information	42
Worldwide Sales and Design Support	42
Products	
PSoC® Solutions	42
Cypress Developer Community	
Technical Support	

Reset

The PSoC 4100S can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset by asserting it active low. The XRES pin has an internal pull-up resistor that is always enabled.

Analog Blocks

12-bit SAR ADC


The 12-bit, 1-Msps SAR ADC can operate at a maximum clock rate of 18 MHz and requires a minimum of 18 clocks at that frequency to do a 12-bit conversion.

The Sample-and-Hold (S/H) aperture is programmable allowing the gain bandwidth requirements of the amplifier driving the SAR inputs, which determine its settling time, to be relaxed if required. It is possible to provide an external bypass (through a fixed pin location) for the internal reference amplifier.

The SAR is connected to a fixed set of pins through an 8-input sequencer. The sequencer cycles through selected channels autonomously (sequencer scan) with zero switching overhead (that is, aggregate sampling bandwidth is equal to 1 Msps whether it is for a single channel or distributed over several channels). The sequencer switching is effected through a state machine or through firmware driven switching. A feature provided by the sequencer is buffering of each channel to reduce CPU interrupt service requirements. To accommodate signals with varying source impedance and frequency, it is possible to have different sample times programmable for each channel. Also, signal range specification through a pair of range registers (low and high range values) is implemented with a corresponding out-of-range interrupt if the digitized value exceeds the programmed range; this allows fast detection of out-of-range values without the necessity of having to wait for a sequencer scan to be completed and the CPU to read the values and check for out-of-range values in software.

The SAR is not available in Deep Sleep mode as it requires a high-speed clock (up to 18 MHz). The SAR operating range is 1.71 V to 5.5 V.

Figure 3. SAR ADC

Two Opamps (Continuous-Time Block; CTB)

The PSoC 4100S has two opamps with Comparator modes which allow most common analog functions to be performed on-chip eliminating external components; PGAs, Voltage Buffers, Filters, Trans-Impedance Amplifiers, and other functions can be realized, in some cases with external passives. saving power, cost, and space. The on-chip opamps are designed with enough bandwidth to drive the Sample-and-Hold circuit of the ADC without requiring external buffering.

Low-power Comparators (LPC)

The PSoC 4100S has a pair of low-power comparators, which can also operate in Deep Sleep modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode where the system wake-up circuit is activated by a comparator switch event. The LPC outputs can be routed to pins.

Current DACs

The PSoC 4100S has two IDACs, which can drive any of the pins on the chip. These IDACs have programmable current ranges.

Analog Multiplexed Buses

The PSoC 4100S has two concentric independent buses that go around the periphery of the chip. These buses (called amux buses) are connected to firmware-programmable analog switches that allow the chip's internal resources (IDACs, comparator) to connect to any pin on the I/O Ports.

Programmable Digital Blocks

The Programmable I/O (Smart I/O) block is a fabric of switches and LUTs that allows Boolean functions to be performed in signals being routed to the pins of a GPIO port. The Smart I/O can perform logical operations on input pins to the chip and on signals going out as outputs.

Fixed Function Digital

Timer/Counter/PWM (TCPWM) Block

The TCPWM block consists of a 16-bit counter with user-programmable period length. There is a capture register to record the count value at the time of an event (which may be an I/O event), a period register that is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals that are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as dead-band programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an over-current state is indicated and the PWM driving the FETs needs to be shut off immediately with no time for software intervention. There are five TCPWM blocks in the PSoC 4100S.

Serial Communication Block (SCB)

The PSoC 4100S has three serial communication blocks, which can be programmed to have SPI, I2C, or UART functionality.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multi-master arbitration). This block is capable of operating at speeds of up to 400 kbps (Fast Mode) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. It also

Table 1. Pin List (continued)

48-1	QFP	44-T	QFP	40-	QFN	32-QFN		35-	CSP
Pin	Name	Pin	Name	Pin	Name	Pin	Name	Pin	Name
19	P3.6	17	P3.6	16	P3.6				
20	P3.7	18	P3.7	17	P3.7				
21	VDDD	19	VDDD						
22	P4.0	20	P4.0	18	P4.0	13	P4.0	B1	P4.0
23	P4.1	21	P4.1	19	P4.1	14	P4.1	B2	P4.1
24	P4.2	22	P4.2	20	P4.2	15	P4.2	A2	P4.2
25	P4.3	23	P4.3	21	P4.3	16	P4.3	A1	P4.3

Notes: Pins 11, 15, 26, and 27 are No Connects (NC) on the 48-pin TQFP.

Descriptions of the Power pins are as follows:

VDDD: Power supply for the digital section.

VDDA: Power supply for the analog section.

VSSD, VSSA: Ground pins for the digital and analog sections respectively.

VCCD: Regulated digital supply (1.8 V ±5%)

VDD: Power supply to all sections of the chip

VSS: Ground for all sections of the chip

Alternate Pin Functions

Each Port pin has can be assigned to one of multiple functions; it can, for instance, be an analog I/O, a digital peripheral function, an LCD pin, or a CapSense pin. The pin assignments are shown in the following table.

Port/Pin	Analog	Smart I/O	Alternate Function 1	Alternate Function 2	Alternate Function 3	Deep Sleep 1	Deep Sleep 2
P0.0	lpcomp.in_p[0]				tcpwm.tr_in[0]	scb[2].i2c_scl:0	scb[0].spi_select1:0
P0.1	lpcomp.in_n[0]				tcpwm.tr_in[1]	scb[2].i2c_sda:0	scb[0].spi_select2:0
P0.2	lpcomp.in_p[1]						scb[0].spi_select3:0
P0.3	lpcomp.in_n[1]						scb[2].spi_select0
P0.4	wco.wco_in			scb[1].uart_rx:0	scb[2].uart_rx:0	scb[1].i2c_scl:0	scb[1].spi_mosi:1
P0.5	wco.wco_out			scb[1].uart_tx:0	scb[2].uart_tx:0	scb[1].i2c_sda:0	scb[1].spi_miso:1
P0.6			srss.ext_clk	scb[1].uart_cts:0	scb[2].uart_tx:1		scb[1].spi_clk:1
P0.7			tcpwm.line[0]:2	scb[1].uart_rts:0			scb[1].spi_select0:1
P1.0	ctb0_oa0+		tcpwm.line[2]:1	scb[0].uart_rx:1		scb[0].i2c_scl:0	scb[0].spi_mosi:1
P1.1	ctb0_oa0-		tcpwm.line_compl[2]:1	scb[0].uart_tx:1		scb[0].i2c_sda:0	scb[0].spi_miso:1
P1.2	ctb0_oa0_out		tcpwm.line[3]:1	scb[0].uart_cts:1	tcpwm.tr_in[2]	scb[2].i2c_scl:1	scb[0].spi_clk:1
P1.3	ctb0_oa1_out		tcpwm.line_compl[3]:1	scb[0].uart_rts:1	tcpwm.tr_in[3]	scb[2].i2c_sda:1	scb[0].spi_select0:1
P1.4	ctb0_oa1-						scb[0].spi_select1:1
P1.5	ctb0_oa1+						scb[0].spi_select2:1
P1.6	ctb0_oa0+						scb[0].spi_select3:1
P1.7	ctb0_oa1+ sar_ext_vref0 sar_ext_vref1						scb[2].spi_clk
P2.0	sarmux[0]	prgio[0].io[0]	tcpwm.line[4]:0	csd.comp	tcpwm.tr_in[4]	scb[1].i2c_scl:1	scb[1].spi_mosi:2
P2.1	sarmux[1]	prgio[0].io[1]	tcpwm.line_compl[4]:0		tcpwm.tr_in[5]	scb[1].i2c_sda:1	scb[1].spi_miso:2
P2.2	sarmux[2]	prgio[0].io[2]					scb[1].spi_clk:2
P2.3	sarmux[3]	prgio[0].io[3]					scb[1].spi_select0:2

Development Support

The PSoC 4100S family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4100S family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers. The TRM is available in the Documentation section at www.cypress.com/psoc4.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4100S family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Table 3. DC Specifications (continued)

Typical values measured at V_DD = 3.3 V and 25 $^\circ\text{C}.$

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions		
Sleep Mode, VDDD = 1.8 V to 5.5 V (Regulator on)									
SID22	IDD17	I ² C wakeup WDT, and Comparators on	_	1.7	2.2	mA	6 MHZ. Max is at 85 °C and 5.5 V.		
SID25	IDD20	I ² C wakeup, WDT, and Comparators on.	_	2.2	2.5		12 MHZ. Max is at 85 °C and 5.5 V.		
Sleep Mode, V	_{DDD} = 1.71 V to	1.89 V (Regulator bypassed)							
SID28	IDD23	I ² C wakeup, WDT, and Comparators on	_	0.7	0.9	mA	6 MHZ. Max is at 85 °C and 5.5 V.		
SID28A	IDD23A	I ² C wakeup, WDT, and Comparators on	_	1	1.2	mA	12 MHZ. Max is at 85 °C and 5.5 V.		
Deep Sleep Mo	ode, V _{DD} = 1.8 \	/ to 3.6 V (Regulator on)							
SID31	I _{DD26}	I ² C wakeup and WDT on	_	2.5	60	μA	Max is at 3.6 V and 85 °C.		
Deep Sleep Mo	ode, V _{DD} = 3.6 \	/ to 5.5 V (Regulator on)							
SID34	I _{DD29}	I ² C wakeup and WDT on	_	2.5	60	μA	Max is at 5.5 V and 85 °C.		
Deep Sleep Mo	ode, V _{DD} = V _{CCI}	$_{\rm D}$ = 1.71 V to 1.89 V (Regulator bypasse	ed)						
SID37	I _{DD32}	I ² C wakeup and WDT on	_	2.5	65	μA	Max is at 1.89 V and 85 °C.		
XRES Current	XRES Current								
SID307	I _{DD_XR}	Supply current while XRES asserted	_	2	5	mA	_		

Table 4. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	-	48	MHz	$1.71 \leq V_{DD} \leq 5.5$
SID49 ^[3]	T _{SLEEP}	Wakeup from Sleep mode	-	0	_	μs	
SID50 ^[3]	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	-	35	-	μο	

Table 6. GPIO AC Specifications

(Guaranteed by Characterization) (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID73	T _{FALLS}	Fall time in slow strong mode	10	_	60	_	3.3 V V _{DDD} , Cload = 25 pF
SID74	F _{GPIOUT1}	GPIO F _{OUT} ; 3.3 V \leq V _{DDD} \leq 5.5 V Fast strong mode	_	-	33		90/10%, 25 pF load, 60/40 duty cycle
SID75	F _{GPIOUT2}	GPIO F _{OUT} ; 1.71 V≤ V _{DDD} ≤ 3.3 V Fast strong mode	_	-	16.7		90/10%, 25 pF load, 60/40 duty cycle
SID76	F _{GPIOUT3}	GPIO F _{OUT} ; 3.3 V \leq V _{DDD} \leq 5.5 V Slow strong mode	_	_	7		90/10%, 25 pF load, 60/40 duty cycle
SID245	F _{GPIOUT4}	GPIO F_{OUT} ; 1.71 V \leq V _{DDD} \leq 3.3 V Slow strong mode.	_	-	3.5	-	90/10%, 25 pF load, 60/40 duty cycle
SID246	F _{GPIOIN}	GPIO input operating frequency; 1.71 V \leq V _{DDD} \leq 5.5 V	_	-	48		90/10% V _{IO}

XRES

Table 7. XRES DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID77	V _{IH}	Input voltage high threshold	$0.7 \times V_{DDD}$	-	-	V	CMOS Input
SID78	V _{IL}	Input voltage low threshold	-	-	$0.3\times V_{DDD}$	v	
SID79	R _{PULLUP}	Pull-up resistor	-	60	-	kΩ	-
SID80	C _{IN}	Input capacitance	-	-	7	pF	-
SID81 ^[5]	V _{HYSXRES}	Input voltage hysteresis	-	100	-	mV	Typical hysteresis is 200 mV for V _{DD} > 4.5 V
SID82	I _{DIODE}	Current through protection diode to $V_{\text{DD}}/V_{\text{SS}}$	_	_	100	μA	

Table 8. XRES AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID83 ^[5]	T _{RESETWIDTH}	Reset pulse width	1	-	-	μs	-
BID194 ^[5]	T _{RESETWAKE}	Wake-up time from reset release	-	-	2.7	ms	-

Table 9. CTBm Opamp Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
		General opamp specs for both internal and external modes		1		1	
SID281	V _{IN}	Charge-pump on, V _{DDA} = 2.7 V	-0.05	_	V _{DDA} -0.2	v	-
SID282	V _{CM}	Charge-pump on, V _{DDA} = 2.7 V	-0.05	_	V _{DDA} -0.2		_
	V _{OUT}	V _{DDA} = 2.7 V			1	1	
SID283	V _{OUT_1}	power=hi, lload=10 mA	0.5	_	V _{DDA} -0.5		_
SID284	V _{OUT_2}	power=hi, lload=1 mA	0.2	-	V _{DDA} -0.2	v	_
SID285	V _{OUT_3}	power=med, lload=1 mA	0.2	_	V _{DDA} -0.2	v	_
SID286	V _{OUT_4}	power=lo, lload=0.1 mA	0.2	_	V _{DDA} -0.2		_
SID288	V _{OS_TR}	Offset voltage, trimmed	-1.0	±0.5	1.0		High mode, input 0 V to V _{DDA} -0.2 V
SID288A	V _{OS_TR}	Offset voltage, trimmed	_	±1	-	mV	Medium mode, input 0 V to V _{DDA} -0.2 V
SID288B	V _{OS_TR}	Offset voltage, trimmed	-	±2	-		Low mode, input 0 V to V _{DDA} -0.2 V
SID290	V _{OS_DR_TR}	Offset voltage drift, trimmed	-10	±3	10	μV/C	High mode
SID290A	V _{OS_DR_TR}	Offset voltage drift, trimmed	_	±10	-		Medium mode
SID290B	V _{OS_DR_TR}	Offset voltage drift, trimmed	_	±10	_	μV/C	Low mode
SID291	CMRR	DC	70	80	_		Input is 0 V to V _{DDA} -0.2 V, Output is 0.2 V to V _{DDA} -0.2 V
SID292	PSRR	At 1 kHz, 10-mV ripple	70	85	_	dB	V_{DDD} = 3.6 V, high-power mode, input is 0.2 V to V_{DDA} -0.2 V
	Noise						
SID294	VN2	Input-referred, 1 kHz, power=Hi	_	72	_		3
SID295	VN3	Input-referred, 10 kHz, power=Hi	_	28	_	nV/rtHz	Input and output are at 0.2 V to V _{DDA} -0.2 V
SID296	VN4	Input-referred, 100 kHz, power=Hi	_	15	_		Input and output are at 0.2 V to V _{DDA} -0.2 V
SID297	C _{LOAD}	Stable up to max. load. Performance specs at 50 pF.	-	_	125	pF	_
SID298	SLEW_RATE	Cload = 50 pF, Power = High, V_{DDA} = 2.7 V	6	_	-	V/µs	_

Table 9. CTBm Opamp Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID_DS_7	G _{BW_HI_M1}	Mode 1, High current	_	4	-		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_8	G _{BW_MED_M1}	Mode 1, Medium current	_	2	_		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_9	G _{BW_LOW_M!}	Mode 1, Low current	_	0.5	_	- 	20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_10	G _{BW_HI_M2}	Mode 2, High current	_	0.5	_	MHz	20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_11	G _{BW_MED_M2}	Mode 2, Medium current	_	0.2	_		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_12	G _{BW_Low_M2}	Mode 2, Low current	_	0.1	_		20-pF load, no DC load 0.2 V to V _{DDA} -0.2 V
SID_DS_13	V _{OS_HI_M1}	Mode 1, High current	-	5	-		With trim 25 °C, 0.2 V to V_{DDA} -0.2 V
SID_DS_14	V _{OS_MED_M1}	Mode 1, Medium current	-	5	-		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_15	V _{OS_LOW_M2}	Mode 1, Low current	-	5	-		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_16	V _{OS_HI_M2}	Mode 2, High current	-	5	-	mV	With trim 25 °C, 0.2V to V _{DDA} -0.2 V
SID_DS_17	V _{OS_MED_M2}	Mode 2, Medium current	_	5	-		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_18	V _{OS_LOW_M2}	Mode 2, Low current	-	5	-		With trim 25 °C, 0.2 V to V _{DDA} -0.2 V
SID_DS_19	I _{OUT_HI_M!}	Mode 1, High current	-	10	-		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_20	IOUT_MED_M1	Mode 1, Medium current	-	10	-		Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_21	I _{OUT_LOW_M1}	Mode 1, Low current	_	4	-	- mA	Output is 0.5 V to V _{DDA} -0.5 V
SID_DS_22	I _{OUT_HI_M2}	Mode 2, High current	-	1	-		
SID_DS_23	I _{OU_MED_M2}	Mode 2, Medium current	_	1	-		
SID_DS_24	I _{OU_LOW_M2}	Mode 2, Low current	_	0.5	-		

Note 6. Guaranteed by characterization.

Table 13. SAR Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID99	A_OFFSET	Input offset voltage	_	-	2	mV	Measured with 1-V reference
SID100	A_ISAR	Current consumption	-	-	1	mA	
SID101	A_VINS	Input voltage range - single ended	V_{SS}	-	V _{DDA}	V	
SID102	A_VIND	Input voltage range - differential[V_{SS}	-	V _{DDA}	V	
SID103	A_INRES	Input resistance	-	-	2.2	KΩ	
SID104	A_INCAP	Input capacitance	-	-	10	pF	
SID260	VREFSAR	Trimmed internal reference to SAR	-	-	TBD	V	
SAR ADC	AC Specificati	ions					•
SID106	A_PSRR	Power supply rejection ratio	70	-	-	dB	
SID107	A_CMRR	Common mode rejection ratio	66	-	-	dB	Measured at 1 V
SID108	A_SAMP	Sample rate	-	-	1	Msps	
SID109	A_SNR	Signal-to-noise and distortion ratio (SINAD)	65	-	-	dB	F _{IN} = 10 kHz
SID110	A_BW	Input bandwidth without aliasing	-	-	A_samp/2	kHz	
SID111	A_INL	Integral non linearity. V_{DD} = 1.71 to 5.5, 1 Msps	-1.7	-	2	LSB	V_{REF} = 1 to V_{DD}
SID111A	A_INL	Integral non linearity. V _{DDD} = 1.71 to 3.6, 1 Msps	-1.5	-	1.7	LSB	V _{REF} = 1.71 to V _{DD}
SID111B	A_INL	Integral non linearity. V_{DD} = 1.71 to 5.5, 500 ksps	-1.5	-	1.7	LSB	V _{REF} = 1 to V _{DD}
SID112	A_DNL	Differential non linearity. V _{DD} = 1.71 to 5.5, 1 Msps	–1	-	2.2	LSB	V_{REF} = 1 to V_{DD}
SID112A	A_DNL	Differential non linearity. V _{DD} = 1.71 to 3.6, 1 Msps	–1	-	2	LSB	V _{REF} = 1.71 to V _{DD}
SID112B	A_DNL	Differential non linearity. V _{DD} = 1.71 to 5.5, 500 ksps	-1	-	2.2	LSB	V_{REF} = 1 to V_{DD}
SID113	A_THD	Total harmonic distortion	-	-	-65	dB	Fin = 10 kHz
SID261	FSARINTRE F	SAR operating speed without external ref. bypass	_	_	100	ksps	12-bit resolution

Table 14. CSD and IDAC Specifications (continued)

SPEC ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID315G	IDAC3CRT23	Output current of IDAC in 8-bit mode in medium range	69	-	82	μA	LSB = 300-nA typ.
SID315H	IDAC3CRT33	Output current of IDAC in 8-bit mode in high range	540	-	660	μA	LSB = 2.4-µA typ.
SID320	IDACOFFSET	All zeroes input	-	-	1	LSB	Polarity set by Source or Sink. Offset is 2 LSBs for 37.5 nA/LSB mode
SID321	IDACGAIN	Full-scale error less offset	-	-	±10	%	
SID322	IDACMISMATCH1	Mismatch between IDAC1 and IDAC2 in Low mode	-	-	9.2	LSB	LSB = 37.5-nA typ.
SID322A	IDACMISMATCH2	Mismatch between IDAC1 and IDAC2 in Medium mode	-	-	5.6	LSB	LSB = 300-nA typ.
SID322B	IDACMISMATCH3	Mismatch between IDAC1 and IDAC2 in High mode	-	-	6.8	LSB	LSB = 2.4-µA typ.
SID323	IDACSET8	Settling time to 0.5 LSB for 8-bit IDAC	-	-	10	μs	Full-scale transition. No external load.
SID324	IDACSET7	Settling time to 0.5 LSB for 7-bit IDAC	-	-	10	μs	Full-scale transition. No external load.
SID325	CMOD	External modulator capacitor.	-	2.2	-	nF	5-V rating, X7R or NP0 cap.

Table 15. 10-bit CapSense ADC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SIDA94	A_RES	Resolution	-	-	10	bits	Auto-zeroing is required every millisecond
SIDA95	A_CHNLS_S	Number of channels - single ended	-	-	16		Defined by AMUX Bus.
SIDA97	A-MONO	Monotonicity	-	-	-	Yes	
SIDA98	A_GAINERR	Gain error	-	-	±2	%	In V_{REF} (2.4 V) mode with V_{DDA} bypass capacitance of 10 μ F
SIDA99	A_OFFSET	Input offset voltage	_	-	3	mV	In V_{REF} (2.4 V) mode with V_{DDA} bypass capacitance of 10 μ F
SIDA100	A_ISAR	Current consumption	-	-	0.25	mA	
SIDA101	A_VINS	Input voltage range - single ended	V _{SSA}	-	V_{DDA}	V	
SIDA103	A_INRES	Input resistance	_	2.2	-	KΩ	
SIDA104	A_INCAP	Input capacitance	_	20	-	pF	
SIDA106	A_PSRR	Power supply rejection ratio	_	60	_	dB	In V_{REF} (2.4 V) mode with V_{DDA} bypass capacitance of 10 μ F
SIDA107	A_TACQ	Sample acquisition time	-	1	-	μs	
SIDA108	A_CONV8	Conversion time for 8-bit resolution at conversion rate = Fhclk/(2 [^] (N+2)). Clock frequency = 48 MHz.	_	-	21.3	μs	Does not include acqui- sition time. Equivalent to 44.8 ksps including acquisition time.
SIDA108A	A_CONV10	Conversion time for 10-bit resolution at conversion rate = Fhclk/(2 [^] (N+2)). Clock frequency = 48 MHz.	_	_	85.3	μs	Does not include acqui- sition time. Equivalent to 11.6 ksps including acquisition time.

Table 15. 10-bit CapSense ADC Specifications (continued	Table 15.	10-bit CapSense	ADC Specifications	(continued)
---	-----------	-----------------	---------------------------	-------------

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SIDA109	A_SND	Signal-to-noise and Distortion ratio (SINAD)	-	61	_		With 10-Hz input sine wave, external 2.4-V reference, V _{REF} (2.4 V) mode
SIDA110	A_BW	Input bandwidth without aliasing	-	-	22.4	KHz	8-bit resolution
SIDA111	A_INL	Integral Non Linearity. 1 ksps	_	_	2	LSB	V _{REF} = 2.4 V or greater
SIDA112	A_DNL	Differential Non Linearity. 1 ksps	_	-	1	LSB	

Digital Peripherals

Timer Counter Pulse-Width Modulator (TCPWM)

Table 16. TCPWM Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.1	ITCPWM1	Block current consumption at 3 MHz	-	-	45		All modes (TCPWM)
SID.TCPWM.2	ITCPWM2	Block current consumption at 12 MHz	-	-	155	μA	All modes (TCPWM)
SID.TCPWM.2A	ITCPWM3	Block current consumption at 48 MHz	-	-	650		All modes (TCPWM)
SID.TCPWM.3	TCPWM _{FREQ}	Operating frequency	_	-	Fc	MHz	Fc max = CLK_SYS Maximum = 48 MHz
SID.TCPWM.4	TPWM _{ENEXT}	Input trigger pulse width	2/Fc	-	-		For all trigger events ^[7]
SID.TCPWM.5	TPWM _{EXT}	Output trigger pulse widths	2/Fc	-	_		Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) outputs
SID.TCPWM.5A	TC _{RES}	Resolution of counter	1/Fc	_	_	ns	Minimum time between successive counts
SID.TCPWM.5B	PWM _{RES}	PWM resolution	1/Fc	-	_		Minimum pulse width of PWM Output
SID.TCPWM.5C	Q _{RES}	Quadrature inputs resolution	1/Fc	_	_		Minimum pulse width between Quadrature phase inputs

ľC

Table 17. Fixed I²C DC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	-	50		-
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	-	135	μA	_
SID151	I _{I2C3}	Block current consumption at 1 Mbps	-	-	310		_
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	-	-	1.4		

Table 18. Fixed I²C AC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	-	-	1	Msps	_

Notes

7. Trigger events can be Stop, Start, Reload, Count, Capture, or Kill depending on which mode of operation is selected.

Note

8. Guaranteed by characterization.

Table 21. UART DC Specifications^[9]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kbps	Ι	-	55	μA	-
SID161	I _{UART2}	Block current consumption at 1000 Kbps	_	_	312	μA	_

Table 22. UART AC Specifications^[9]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID162	F _{UART}	Bit rate	_		1	Mbps	_

Table 23. LCD Direct Drive DC Specifications^[9]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID154	ILCDLOW	Operating current in low power mode	-	5	-	μA	16×4 small segment disp. at 50 Hz
SID155	C _{LCDCAP}	LCD capacitance per segment/common driver	-	500	5000	pF	-
SID156	LCD _{OFFSET}	Long-term segment offset	-	20	-	mV	-
SID157	I _{LCDOP1}	LCD system operating current Vbias = 5 V	-	2	-	m۸	32×4 segments. 50 Hz. 25 °C
SID158	I _{LCDOP2}	LCD system operating current Vbias = 3.3 V	_	2	_	mA	32×4 segments. 50 Hz. 25 °C

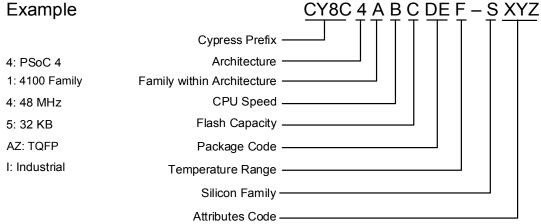
Table 24. LCD Direct Drive AC Specifications^[9]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID159	F _{LCD}	LCD frame rate	10	50	150	Hz	_

Ordering Information

The marketing part numbers for the PSoC 4100S family are listed in the following table.

	MPN	Features						Featur	es						Package				
Category		Max CPU Speed (MHz)	Flash (KB)	SRAM (KB)	Opamp (CTBm)	CSD	10-bit CSD ADC	12-bit SAR ADC	ADC Sample Rate	LP Comparators	TCPWM Blocks	SCB Blocks	Smart I/Os	GPIO	35-WLCSP (0.35mm pitch)	32-QFN	40-QFN	48-TQFP	44-TQFP
	CY8C4124FNI-S403	24	16	4	2	0	1	0		2	5	2	8	31	Х				
	CY8C4124FNI-S413	24	16	4	2	1	1	0		2	5	2	16	31	Х				
	CY8C4124LQI-S412	24	16	4	2	1	1	0		2	5	2	16	27		Х			
	CY8C4124LQI-S413	24	16	4	2	1	1	0		2	5	2	16	34			Х		
4124	CY8C4124AZI-S413	24	16	4	2	1	1	0		2	5	2	16	36				Х	
	CY8C4124FNI-S433	24	16	4	2	1	1	1	806 ksps	2	5	2	16	31	Х				
	CY8C4124LQI-S432	24	16	4	2	1	1	1	806 ksps	2	5	2	16	27		Х			
	CY8C4124LQI-S433	24	16	4	2	1	1	1	806 ksps	2	5	2	16	34			Х		
	CY8C4124AZI-S433	24	16	4	2	1	1	1	806 ksps	2	5	2	16	36				Х	
	CY8C4125FNI-S423	24	32	4	2	0	1	1	806 ksps	2	5	2	16	31	Х				
	CY8C4125LQI-S422	24	32	4	2	0	1	1	806 ksps	2	5	2	16	27		Х			
	CY8C4125LQI-S423	24	32	4	2	0	1	1	806 ksps	2	5	2	16	34			Х		
	CY8C4125AZI-S423	24	32	4	2	0	1	1	806 ksps	2	5	2	16	36				Х	
	CY8C4125AXI-S423	24	32	4	2	0	1	1	806 ksps	2	5	2	16	36					Х
	CY8C4125FNI-S413	24	32	4	2	1	1	0		2	5	2	16	31	Х				
4125	CY8C4125LQI-S412	24	32	4	2	1	1	0		2	5	2	16	27		Х			
	CY8C4125LQI-S413	24	32	4	2	1	1	0		2	5	2	16	34			Х		
	CY8C4125AZI-S413	24	32	4	2	1	1	0		2	5	2	16	36				Х	
	CY8C4125FNI-S433	24	32	4	2	1	1	1	806 ksps	2	5	2	16	31	Х				
	CY8C4125LQI-S432	24	32	4	2	1	1	1	806 ksps	2	5	2	16	27		Х		-	
	CY8C4125LQI-S433	24	32	4	2	1	1	1	806 ksps	2	5	2	16	34			Х		
	CY8C4125AZI-S433	24	32	4	2	1	1	1	806 ksps	2	5	2	16	36				Х	
	CY8C4125AXI-S433	24	32	4	2	1	1	1	806 ksps	2	5	2	16	36				X	Х
	CY8C4126AZI-S423	24	64	8	2	0	1	1	806 ksps	2	5 5	3	16	36				Х	v
4126	CY8C4126AXI-S423 CY8C4126AZI-S433	24 24	64 64	8 8	2	0	1	1 1	806 ksps 806 ksps	2	5 5	3	16 16	36 36				х	Х
	CY8C4126AXI-S433	24	64	0 8	2	1	1	1	806 ksps	2	5	3	16	36				^	x
	CY8C4145AZI-S423	48	32	0 4	2	0	1	1	1 Msps	2	5	2	16	36				х	^
4145	CY8C4145AXI-S423	48	32	4	2	0	1	1	1 Msps	2	5	2	16	36				~	х
- 1-0	CY8C4145AXI-S423	48	32	4	2	1	1	1	1 Msps	2	5	2	16	36					×
	CY8C4146FNI-S423	48	64	8	2	0	1	1	1 Msps	2	5	3	16	31	х				^
	CY8C4146LQI-S422	48	64	8	2	0	1	1	1 Msps	2	5	3	16	27	~	х			
	CY8C4146LQI-S422	40	64	8	2	0	1	1	1 Msps	2	5	3	16	34		~	х		
	CY8C4146AZI-S423	48	64	8	2	0	1	1	1 Msps	2	5	3	16	36			~	х	
	CY8C4146AXI-S423	48	64	8	2	0	1	1	1 Msps	2	5	3	16	36					х
4146	CY8C4146FNI-S433	48	64	8	2	1	1	1	1 Msps	2	5	3	16	31	Х				
	CY8C4146LQI-S432	48	64	8	2	1	1	1	1 Msps	2	5	3	16	27	-	Х			
	CY8C4146LQI-S433	48	64	8	2	1	1	1	1 Msps	2	5	3	16	34			х		
	CY8C4146AZI-S433	48	64	8	2	1	1	1	1 Msps	2	5	3	16	36				Х	
	CY8C4146AXI-S433	48	64	8	2	1	1	1	1 Msps	2	5	3	16	36					х



Field	Description	Values	Meaning
CY8C	Cypress Prefix		
4	Architecture	4	PSoC 4
А	Family	1	4100 Family
В	CPU Speed	2	24 MHz
		4	48 MHz
С	Flash Capacity	4	16 KB
		5	32 KB
		6	64 KB
		7	128 KB
DE	Package Code	AX	TQFP (0.8mm pitch)
		AZ	TQFP (0.5mm pitch)
		LQ	QFN
		PV	SSOP
		FN	CSP
F	Temperature Range	I	Industrial
S	Silicon Family	S	PSoC 4A-S1, PSoC 4A-S2
		М	PSoC 4A-M
		L	PSoC 4A-L
		BL	PSoC 4A-BLE
XYZ	Attributes Code	000-999	Code of feature set in the specific family

The nomenclature used in the preceding table is based on the following part numbering convention:

The following is an example of a part number:

Example

Packaging

The PSoC 4100S will be offered in 48-pin TQFP, 44-pin TQFP, 40-pin QFN, 32-pin QFN, and 35-ball WLCSP packages. Package dimensions and Cypress drawing numbers are in the following table.

Table 38. Package List

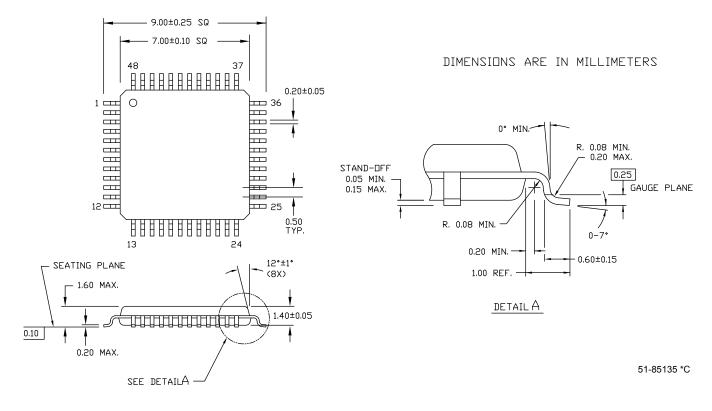
Spec ID#	Package	Description	Package Dwg
BID20	48-pin TQFP	7 × 7 × 1.4-mm height with 0.5-mm pitch	51-85135
BID20A	44-pin TQFP	10 × 10 × 1.6-mm height with 0.8-mm pitch	51-85064
BID27	40-pin QFN	6 × 6 × 0.6-mm height with 0.5-mm pitch	001-80659
BID34A	32-pin QFN	5 × 5 × 0.6-mm height with 0.5-mm pitch	001-42168
BID34D	35-ball WLCSP	2.6 × 2.1 × 0.48-mm height with 0.35-mm pitch	002-09958

Table 39. Package Thermal Characteristics

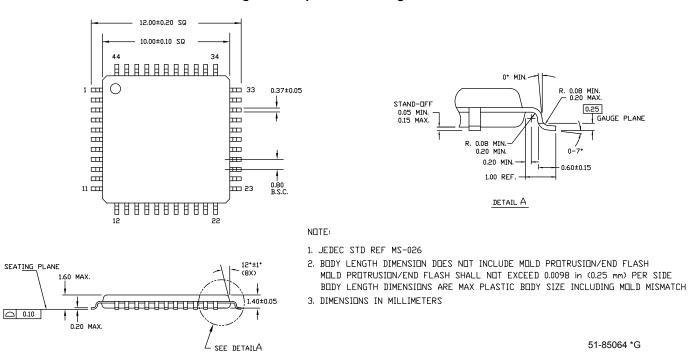
Parameter	Description	Package	Min	Тур	Max	Units
TA	Operating Ambient temperature		-40	25	85	°C
TJ	Operating junction temperature		-40	-	100	°C
Tja	Package θ _{JA}	48-pin TQFP	-	74.8	-	°C/Watt
TJC	Package θ _{JC}	48-pin TQFP	-	35.7	-	°C/Watt
Tja	Package θ _{JA}	44-pin TQFP	-	57.2	-	°C/Watt
TJC	Package θ _{JC}	44-pin TQFP	-	17.5	-	°C/Watt
Tja	Package θ _{JA}	40-pin QFN	-	17.8	-	°C/Watt
TJC	Package θ _{JC}	40-pin QFN	-	2.8	-	°C/Watt
Tja	Package θ _{JA}	32-pin QFN	-	19.9	-	°C/Watt
TJC	Package θ _{JC}	32-pin QFN	-	4.3	-	°C/Watt
Tja	Package θ _{JA}	35-ball WLCSP	-	43	-	°C/Watt
TJC	Package θ _{JC}	35-ball WLCSP	_	0.3	-	°C/Watt

Table 40. Solder Reflow Peak Temperature

Package	e Maximum Peak Temperature	laximum Time at Peak Temperature
All	260 °C	30 seconds


Table 41. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-020

Package	MSL
All except WLCSP	MSL 3
35-ball WLCSP	MSL 1



Package Diagrams

Acronyms

Table 42. Acronyms Used in this Document

Acronym	Description
abus	analog local bus
ADC	analog-to-digital converter
AG	analog global
АНВ	AMBA (advanced microcontroller bus architecture) high-performance bus, an ARM data transfer bus
ALU	arithmetic logic unit
AMUXBUS	analog multiplexer bus
API	application programming interface
APSR	application program status register
ARM®	advanced RISC machine, a CPU architecture
ATM	automatic thump mode
BW	bandwidth
CAN	Controller Area Network, a communications protocol
CMRR	common-mode rejection ratio
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
DAC	digital-to-analog converter, see also IDAC, VDAC
DFB	digital filter block
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
DMIPS	Dhrystone million instructions per second
DMA	direct memory access, see also TD
DNL	differential nonlinearity, see also INL
DNU	do not use
DR	port write data registers
DSI	digital system interconnect
DWT	data watchpoint and trace
ECC	error correcting code
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read-only memory
EMI	electromagnetic interference
EMIF	external memory interface
EOC	end of conversion
EOF	end of frame
EPSR	execution program status register
ESD	electrostatic discharge

Table 42. Acronyms Used in this Document (continued)

Acronym	Description
ETM	embedded trace macrocell
FIR	finite impulse response, see also IIR
FPB	flash patch and breakpoint
FS	full-speed
GPIO	general-purpose input/output, applies to a PSoC pin
HVI	high-voltage interrupt, see also LVI, LVD
IC	integrated circuit
IDAC	current DAC, see also DAC, VDAC
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
lir	infinite impulse response, see also FIR
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
INL	integral nonlinearity, see also DNL
I/O	input/output, see also GPIO, DIO, SIO, USBIO
IPOR	initial power-on reset
IPSR	interrupt program status register
IRQ	interrupt request
ITM	instrumentation trace macrocell
LCD	liquid crystal display
LIN	Local Interconnect Network, a communications protocol.
LR	link register
LUT	lookup table
LVD	low-voltage detect, see also LVI
LVI	low-voltage interrupt, see also HVI
LVTTL	low-voltage transistor-transistor logic
MAC	multiply-accumulate
MCU	microcontroller unit
MISO	master-in slave-out
NC	no connect
NMI	nonmaskable interrupt
NRZ	non-return-to-zero
NVIC	nested vectored interrupt controller
NVL	nonvolatile latch, see also WOL
opamp	operational amplifier
PAL	programmable array logic, see also PLD

Document Conventions

Units of Measure

Table 43. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibel
fF	femto farad
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohour
kHz	kilohertz
kΩ	kilo ohm
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	mega-ohm
Msps	megasamples per second
μA	microampere
μF	microfarad
μH	microhenry
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
nV	nanovolt
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
s	second
sps	samples per second
sqrtHz	square root of hertz
V	volt

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners

Document Number: 002-00122 Rev. *H

[©] Cypress Semiconductor Corporation 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is probabled.

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or systems control cause prosonal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.