

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, QSPI, SAI, SPI, SWPMI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	39
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	49-UFBGA, WLCSP
Supplier Device Package	49-WLCSP (3.14x3.13)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l431cby6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

					Stop			op 2	-	ndby	1	down	
Peripheral	Run	Sleep	Low- power run	Low- power sleep	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
Low-power UART (LPUART)	0	0	0	0	O ⁽⁶⁾	O ⁽⁶⁾	O ⁽⁶⁾	O ⁽⁶⁾	-	-	-	-	-
I2Cx (x=1,2)	0	0	0	0	O ⁽⁷⁾	O ⁽⁷⁾	-	-	-	-	-	-	-
I2C3	0	0	0	0	O ⁽⁷⁾	O ⁽⁷⁾	O ⁽⁷⁾	O ⁽⁷⁾	-	-	-	-	-
SPIx (x=1,2,3)	0	0	0	0	-	-	-	-	-	-	-	-	-
CAN	0	0	0	0	-	-	-	-	-	-	-	-	-
SDMMC1	0	0	0	0	-	-	-	-	-	-	-	-	-
SWPMI1	0	0	0	0	-	0	-	-	-	-	-	-	-
SAlx (x=1)	0	0	0	0	-	-	-	-	-	-	-	-	-
ADCx (x=1)	0	0	0	0	-	-	-	-	-	-	-	-	-
DACx (x=1,2)	0	0	0	0	0	-	-	-	-	-	-	-	-
VREFBUF	0	0	0	0	0	-	-	-	-	-	-	-	-
OPAMPx (x=1)	0	0	0	0	0	-	-	-	-	-	-	-	-
COMPx (x=1,2)	0	0	0	0	0	0	0	0	-	-	-	-	-
Temperature sensor	0	0	0	0	-	-	-	-	-	-	-	-	-
Timers (TIMx)	0	0	0	0	-	-	-	-	-	-	-	-	-
Low-power timer 1 (LPTIM1)	0	0	0	0	0	0	0	0	-	-	-	-	-
Low-power timer 2 (LPTIM2)	0	0	0	0	0	0	-	-	-	-	-	-	-
Independent watchdog (IWDG)	0	0	0	0	0	0	0	0	0	0	-	-	-
Window watchdog (WWDG)	0	0	0	0	-	-	-	-	-	-	-	-	-
SysTick timer	0	0	0	0	-	-	-	-	-	-	-	-	-
Touch sensing controller (TSC)	0	0	0	0	-	-	-	-	-	-	-	-	-
Random number generator (RNG)	O ⁽⁸⁾	O ⁽⁸⁾	-	-	-	-	-	-	-	-	-	-	-

Table 4. Functionalities depending on the working mode⁽¹⁾ (continued)

			-	-			-				-		
					Stop	o 0/1	Sto	op 2	Sta	ndby	Shut	down	
Peripheral	Run	Sleep	Low- power run	Low- power sleep	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
CRC calculation unit	0	0	0	0	-	-	-	-	-	-	-	-	-
GPIOs	0	0	0	0	0	0	0	0	(9)	5 pins (10)	(11)	5 pins (10)	-

Table 4. Functionalities depending on the working mode⁽¹⁾ (continued)

1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available.

2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.

- 3. The SRAM clock can be gated on or off.
- 4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.
- Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not need it anymore.
- 6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
- 7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
- 8. Voltage scaling Range 1 only.
- 9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
- 10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
- 11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.

3.9.5 Reset mode

In order to improve the consumption under reset, the I/Os state under and after reset is "analog state" (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is deactivated when the reset source is internal.

3.9.6 VBAT operation

The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present. The VBAT pin supplies the RTC with LSE and the backup registers. Three anti-tamper detection pins are available in VBAT mode.

VBAT operation is automatically activated when V_{DD} is not present.

An internal VBAT battery charging circuit is embedded and can be activated when V_{DD} is present.

Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation.

DocID028800 Rev 1

3.10 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.

Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run and sleep, Stop 0, Stop 1 and Stop 2 modes.

Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low-power run	Low-power sleep	Stop 0 / Stop 1	Stop 2
	TIMx	Timers synchronization or chaining	Y	Y	Y	Y	-	-
TIMx	ADCx DACx	Conversion triggers	Y	Y	Y	Y	-	-
	DMA	Memory to memory transfer trigger	Y	Υ	Υ	Y	-	-
	COMPx	Comparator output blanking	Y	Y	Υ	Y	-	-
TIM15/TIM16	IRTIM	Infrared interface output generation	Y	Y	Υ	Y	-	-
COMPx	TIM1 TIM2	Timer input channel, trigger, break from analog signals comparison	Y	Y	Y	Y	-	-
	LPTIMERx	Low-power timer triggered by analog signals comparison	Y	Y	Y	Y	Y	Y (1)
ADCx	TIM1	Timer triggered by analog watchdog	Y	Y	Υ	Y	-	-
	TIM16	Timer input channel from RTC events	Υ	Υ	Υ	Y	-	-
RTC	LPTIMERx	Low-power timer triggered by RTC alarms or tampers	Y	Y	Y	Y	Y	Y (1)
All clocks sources (internal and external)	TIM2 TIM15, 16	Clock source used as input channel for RC measurement and trimming	Y	Y	Y	Y	-	-
CSS CPU (hard fault) RAM (parity error) Flash memory (ECC error) COMPx PVD	TIM1 TIM15,16	Timer break	Y	Y	Y	Y	_	-

Table 5. STM32L431xx peripherals interconnect matrix

3.22 Timers and watchdogs

The STM32L431xx includes one advanced control timers, up to five general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary outputs					
Advanced control	TIM1	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	3					
General- purpose	TIM2	32-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No					
General- purpose	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1					
General- purpose	TIM16	16-bit	Up	Any integer between 1 and 65536	Yes	1	1					
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No					

Table 9. Timer feature comparison

3.22.1 Advanced-control timer (TIM1)

The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0-100%)
- One-pulse mode output

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.

Many features are shared with those of the general-purpose TIMx timers (described in *Section 3.22.2*) using the same architecture, so the advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

3.23 Real-time clock (RTC) and backup registers

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode.
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.

The RTC and the 32 backup registers are supplied through a switch that takes power either from the V_{DD} supply when present or from the VBAT pin.

The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby or Shutdown mode.

The RTC clock sources can be:

- A 32.768 kHz external crystal (LSE)
- An external resonator or oscillator (LSE)
- The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
- The high-speed external clock (HSE) divided by 32.

The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes except Shutdown mode.

All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes.

3.26 Low-power universal asynchronous receiver transmitter (LPUART)

The device embeds one Low-Power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop mode are programmable and can be:

- Start bit detection
- Any received data frame
- A specific programmed data frame

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

			Pi	n Nu	mbe	ər				-	0		Pin function	IS
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
8	12	12	E5	F6	16	F3	25	K3	PA2	I/O	FT_a	-	TIM2_CH3, USART2_TX, LPUART1_TX, QUADSPI_BK1_NCS, COMP2_OUT, TIM15_CH1, EVENTOUT	COMP2_INM, ADC1_IN7, WKUP4, LSCO
9	13	13	E4	G6	17	G3	26	L3	PA3	I/O	TT_a	-	TIM2_CH4, USART2_RX, LPUART1_RX, QUADSPI_CLK, SAI1_MCLK_A, TIM15_CH2, EVENTOUT	OPAMP1_ VOUT, COMP2_INP, ADC1_IN8
-	-	-	-	H8	18	C2	27	E3	VSS	S	-	-	-	-
-	-	-	-	H7	19	D2	28	H3	VDD	S	-	-	-	-
10	14	14	G6	E5	20	H3	29	М3	PA4	I/O	TT_a	-	SPI1_NSS, SPI3_NSS, USART2_CK, SAI1_FS_B, LPTIM2_OUT, EVENTOUT	COMP1_INM, COMP2_INM, ADC1_IN9, DAC1_OUT1
11	15	15	F5	F5	21	F4	30	K4	PA5	I/O	TT_a	-	TIM2_CH1, TIM2_ETR, SPI1_SCK, LPTIM2_ETR, EVENTOUT	COMP1_INM, COMP2_INM, ADC1_IN10, DAC1_OUT2
12	16	16	F4	G5	22	G4	31	L4	PA6	I/O	FT_a	-	TIM1_BKIN, SPI1_MISO, COMP1_OUT, USART3_CTS, LPUART1_CTS, QUADSPI_BK1_IO3, TIM1_BKIN_COMP2, TIM16_CH1, EVENTOUT	ADC1_IN11
13	17	17	F3	H6	23	H4	32	M4	PA7	I/O	FT_fa	-	TIM1_CH1N, I2C3_SCL, SPI1_MOSI, QUADSPI_BK1_IO2, COMP2_OUT, EVENTOUT	ADC1_IN12
-	-	-	-	D4	24	H5	33	K5	PC4	I/O	FT_a	-	USART3_TX, EVENTOUT	COMP1_INM, ADC1_IN13
-	-	-	-	E4	25	H6	34	L5	PC5	I/O	FT_a	-	USART3_RX, EVENTOUT	COMP1_INP, ADC1_IN14, WKUP5

Table 14. STM32L431xx pin definitions (continued)

S
_
<
ω
Ň
4
7.7
ω
_
_
~
~
~
~

Pinouts and pin description

		Tabl	e 15. Alternate	function AF0 t	o AF7 (for AF8	8 to AF15 see <mark>Ta</mark>	<mark>ble 16</mark>) (contir	nued)	
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Po	ort	SYS_AF	TIM1/TIM2/ LPTIM1	TIM1/TIM2	USART2	12C1/12C2/12C3	SPI1/SPI2	SPI3	USART1/ USART2/ USART3
	PB0	-	TIM1_CH2N	-	-	-	SPI1_NSS	-	USART3_CK
	PB1	-	TIM1_CH3N	-	-	-	-	-	USART3_RTS_ DE
Port B	PB2	RTC_OUT	LPTIM1_OUT	-	-	I2C3_SMBA	-	-	-
	PB3	JTDO- TRACESWO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK	USART1_RTS_ DE
	PB4	NJTRST	-	-	-	I2C3_SDA	SPI1_MISO	SPI3_MISO	USART1_CTS
	PB5	-	LPTIM1_IN1	-	-	I2C1_SMBA	SPI1_MOSI	SPI3_MOSI	USART1_CK
	PB6	-	LPTIM1_ETR	-	-	I2C1_SCL	-	-	USART1_TX
	PB7	-	LPTIM1_IN2	-	-	I2C1_SDA	-	-	USART1_RX
	PB8	-	-	-	-	I2C1_SCL	-	-	-
	PB9	-	IR_OUT	-	-	I2C1_SDA	SPI2_NSS	-	-
	PB10	-	TIM2_CH3	-	-	I2C2_SCL	SPI2_SCK	-	USART3_TX
Port B	PB11	-	TIM2_CH4	-	-	I2C2_SDA	-	-	USART3_RX
	PB12	-	TIM1_BKIN	-	TIM1_BKIN_ COMP2	I2C2_SMBA	SPI2_NSS	-	USART3_CK
	PB13	-	TIM1_CH1N	-	-	I2C2_SCL	SPI2_SCK	-	USART3_CTS
	PB14	-	TIM1_CH2N	-	-	I2C2_SDA	SPI2_MISO	-	USART3_RTS_ DE
	PB15	RTC_REFIN	TIM1_CH3N	-	-	-	SPI2_MOSI	-	-

DocID028800 Rev 1

65/200

5

Bus	Boundary address	Size(bytes)	Peripheral
	0x4001 3000 - 0x4001 33FF	1 KB	SPI1
	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1
	0x4001 2800 - 0x4001 2BFF	1 KB	SDMMC1
	0x4001 2000 - 0x4001 27FF	2 KB	Reserved
4002	0x4001 1C00 - 0x4001 1FFF	1 KB	FIREWALL
APB2	0x4001 0800- 0x4001 1BFF	5 KB	Reserved
	0x4001 0400 - 0x4001 07FF	1 KB	EXTI
	0x4001 0200 - 0x4001 03FF		COMP
	0x4001 0030 - 0x4001 01FF	1 KB	VREFBUF
	0x4001 0000 - 0x4001 002F		SYSCFG
	0x4000 9800 - 0x4000 FFFF	26 KB	Reserved
	0x4000 9400 - 0x4000 97FF	1 KB	LPTIM2
	0x4000 8C00 - 0x4000 93FF	2 KB	Reserved
	0x4000 8800 - 0x4000 8BFF	1 KB	SWPMI1
	0x4000 8400 - 0x4000 87FF	1 KB	Reserved
	0x4000 8000 - 0x4000 83FF	1 KB	LPUART1
	0x4000 7C00 - 0x4000 7FFF	1 KB	LPTIM1
	0x4000 7800 - 0x4000 7BFF	1 KB	OPAMP
	0x4000 7400 - 0x4000 77FF	1 KB	DAC
	0x4000 7000 - 0x4000 73FF	1 KB	PWR
	0x4000 6800 - 0x4000 6FFF	2 KB	Reserved
APB1	0x4000 6400 - 0x4000 67FF	1 KB	CAN1
APDI	0x4000 6000 - 0x4000 63FF	1 KB	CRS
	0x4000 5C00- 0x4000 5FFF	1 KB	I2C3
	0x4000 5800 - 0x4000 5BFF	1 KB	I2C2
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1
	0x4000 4C00 - 0x4000 53FF	2 KB	Reserved
	0x4000 4800 - 0x4000 4BFF	1 KB	USART3
	0x4000 4400 - 0x4000 47FF	1 KB	USART2
	0x4000 4000 - 0x4000 43FF	1 KB	Reserved
	0x4000 3C00 - 0x4000 3FFF	1 KB	SPI3
	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG

Table 17. STM32L431xx memory map and peripheral register boundary addresses	Table 17. STM32L	.431xx memory ma	p and p	peripheral re	eqister b	oundary	addresses
---	------------------	------------------	---------	---------------	-----------	---------	-----------

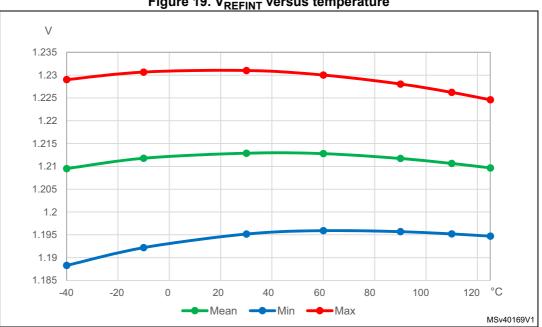


Figure 19. V_{REFINT} versus temperature

6.3.8 Internal clock source characteristics

The parameters given in *Table 47* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*. The provided curves are characterization results, not tested in production.

High-speed internal (HSI16) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSI16}	HSI16 Frequency	V _{DD} =3.0 V, T _A =30 °C	15.88	-	16.08	MHz
TRIM	HSI16 user trimming step	Trimming code is not a multiple of 64	0.2	0.3	0.4	%
		Trimming code is a multiple of 64	-4	-6	-8	70
DuCy(HSI16) ⁽²⁾	Duty Cycle	-	45	-	55	%
A_ (HSI16)	HSI16 oscillator frequency	T _A = 0 to 85 °C	-1	-	1	%
∆ _{Temp} (HSI16)	drift over temperature	T _A = -40 to 125 °C	-2	-	1.5	%
∆ _{VDD} (HSI16)	HSI16 oscillator frequency drift over V _{DD}	V _{DD} =1.62 V to 3.6 V	-0.1	-	0.05	%
t _{su} (HSI16) ⁽²⁾	HSI16 oscillator start-up time	-	-	0.8	1.2	μs
t _{stab} (HSI16) ⁽²⁾	HSI16 oscillator stabilization time	-	-	3	5	μs
I _{DD} (HSI16) ⁽²⁾	HSI16 oscillator power consumption	-	-	155	190	μA

Table 47. HSI16 os	cillator characteristics ⁽¹⁾)
--------------------	---	---

1. Guaranteed by characterization results.

2. Guaranteed by design.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	T .:	CKMODE = 00	1.5	2	2.5	
	Trigger conversion latency Regular and	CKMODE = 01	-	-	2.0	1 /5
t _{LATR}	injected channels without conversion abort	CKMODE = 10	-	-	2.25	1/f _{ADC}
		CKMODE = 11	-	-	2.125	
	Trigger conversion	CKMODE = 00	2.5	3	3.5	
+	Trigger conversion latency Injected channels	CKMODE = 01	-	-	3.0	1 /F
^t LATRINJ	aborting a regular conversion	CKMODE = 10	-	-	3.25	1/f _{ADC}
		CKMODE = 11	-	-	3.125	
+	Sompling time	f _{ADC} = 80 MHz	0.03125	-	8.00625	μs
t _s	Sampling time	-	2.5	-	640.5	1/f _{ADC}
t _{ADCVREG_STUP}	ADC voltage regulator start-up time	-	-	-	20	μs
	Total conversion time	f _{ADC} = 80 MHz Resolution = 12 bits	0.1875	-	8.1625	μs
t _{CONV}	(including sampling time)	Resolution = 12 bits	ts + 12.5 cycles for successive approximation = 15 to 653			1/f _{ADC}
		fs = 5 Msps	-	730	830	
I _{DDA} (ADC)	ADC consumption from the V _{DDA} supply	fs = 1 Msps	-	160	220	μA
		fs = 10 ksps	-	16	50	
	ADC consumption from	fs = 5 Msps	-	130	160	
I _{DDV_S} (ADC)	the V _{REF+} single ended	fs = 1 Msps	-	30	40	μA
	mode	fs = 10 ksps	-	0.6	2	
	ADC consumption from	fs = 5 Msps	-	260	310	
I _{DDV_D} (ADC)	the V _{REF+} differential	fs = 1 Msps	-	60	70	μA
	mode	fs = 10 ksps	-	1.3	3	

 Table 64. ADC characteristics^{(1) (2)} (continued)

1. Guaranteed by design

2. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4V). It is disable when V_{DDA} \geq 2.4 V.

 V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 4: Pinouts and pin description for further details.

Symbol	Parameter		onditions	, Min	Тур	Max	Unit
	Sampling time in sample and hold mode (code transition between the lowest input code and the highest input code when DACOUT reaches final value ±1LSB)	DAC_OUT	DAC output buffer ON, C _{SH} = 100 nF	-	0.7	3.5	me
		pin connected	DAC output buffer OFF, C _{SH} = 100 nF	-	10.5	18	ms
t _{SAMP}		DAC_OUT pin not connected (internal connection only)	DAC output buffer OFF	-	2	3.5	μs
I _{leak}	Output leakage current	Sample and ho DAC_OUT pin		-	-	_(3)	nA
Cl _{int}	Internal sample and hold capacitor		-	5.2	7	8.8	pF
t _{TRIM}	Middle code offset trim time	DAC output bu	ffer ON	50	-	-	μs
V.	Middle code offset for 1	V _{REF+} = 3.6 V	-	1500	-	μV	
V _{offset}	trim code step	V _{REF+} = 1.8 V	_{F+} = 1.8 V		750	-	μv
		DAC output	No load, middle code (0x800)	-	315	500	
		buffer ON	No load, worst code (0xF1C)	-	450	670	
I _{DDA} (DAC)	DAC consumption from V _{DDA}	DAC output No load, middle		-	0.2	μA	
		Sample and hold mode, C _{SH} = 100 nF		-	315 x Ton/(Ton +Toff) (4)	670 x Ton/(Ton +Toff) (4)	
		DAC output	No load, middle code (0x800)	-	185	240	
	DAC consumption from V _{REF+}	buffer ON	No load, worst code (0xF1C)	-	340	400	
I _{DDV} (DAC)		DAC output buffer OFF	No load, middle code (0x800)	-	155	205	
			Sample and hold mode, buffer ON, C _{SH} = 100 nF, worst case		185 x Ton/(Ton +Toff) (4)	400 x Ton/(Ton +Toff) (4)	μA
			old mode, buffer OFF, worst case	_	155 x Ton/(Ton +Toff) (4)	205 x Ton/(Ton +Toff) (4)	

Table 70. DAC characteristics⁽¹⁾ (continued)

1. Guaranteed by design.

2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	VREFBUF	I _{load} = 0 μA	-	16	25	
I _{DDA} (VREF BUF)	consumption	I _{load} = 500 μA	-	18	30	μA
,	from V _{DDA}	I _{load} = 4 mA	-	35	50	

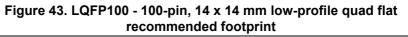
Table 72. VREFBUF characteristics⁽¹⁾ (continued)

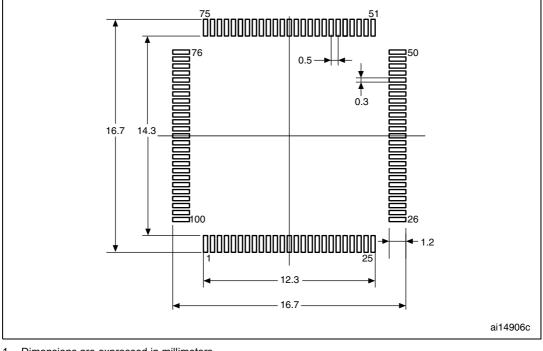
1. Guaranteed by design, unless otherwise specified.

2. In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which will follow (V_{DDA} - drop voltage).

3. Guaranteed by test in production.

4. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.


5. To correctly control the VREFBUF inrush current during start-up phase and scaling change, the V_{DDA} voltage should be in the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for V_{RS} = 0 and V_{RS} = 1.



Cumhal		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.000	-	-	0.4724	-	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.000	-	-	0.4724	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°	
ссс	-	-	0.080	-	-	0.0031	

Table 89. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

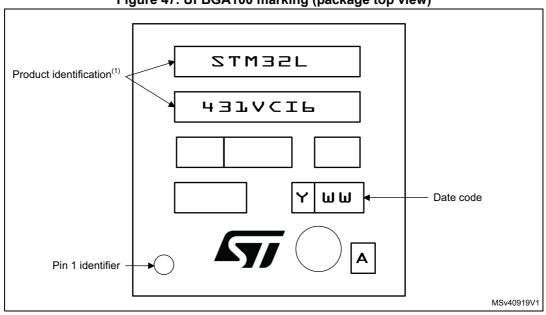


Figure 47. UFBGA100 marking (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.5 WLCSP64 package information

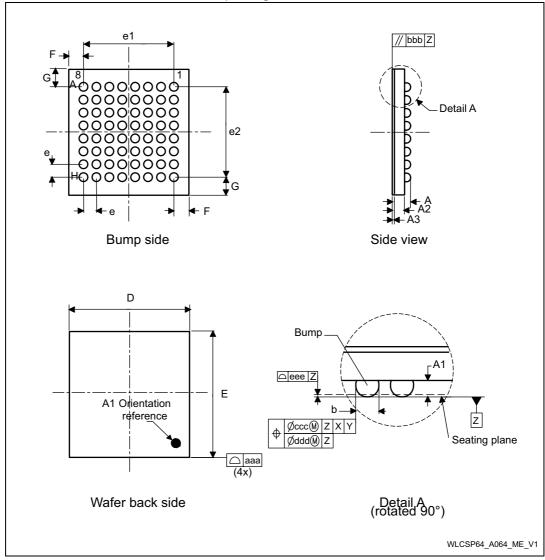


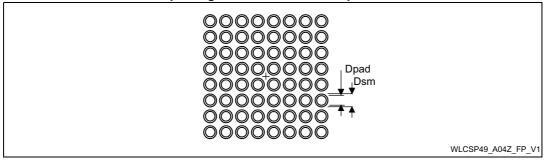
Figure 54. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale package outline

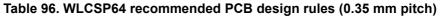
1. Drawing is not to scale.

Table 95. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Мах
А	0.516	0.546	0.576	0.0203	0.0215	0.0227
A1	-	0.166	-	-	0.0065	-
A2	-	0.380	-	-	0.0150	-
A3 ⁽²⁾	-	0.025	-	-	0.0010	-

	package mechanical data (continued)					
Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
b ⁽³⁾	0.190	0.220	0.250	0.0075	0.0087	0.0098
D	3.106	3.141	3.176	0.1223	0.1237	0.1250
E	3.092	3.127	3.162	0.1217	0.1231	0.1245
е	-	0.350	-	-	0.0138	-
e1	-	2.450	-	-	0.0965	-
e2	-	2.450	-	-	0.0965	-
F	-	0.3455	-	-	0.0136	-
G	-	0.3385	-	-	0.0133	-
aaa	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
ссс	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020


Table 95. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale package mechanical data (continued)


1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

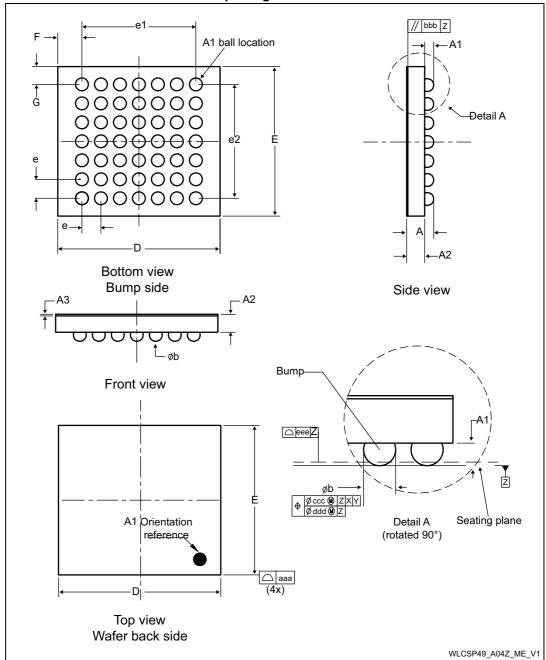
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

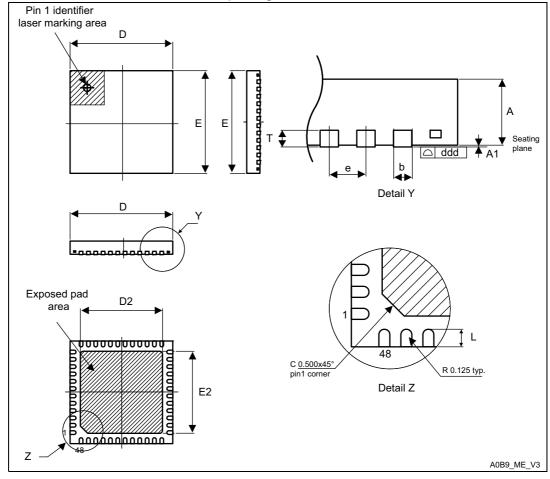
Figure 55. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale package recommended footprint

Dimension	Recommended values
Pitch	0.35 mm
Dpad	0.210 mm
Dsm	0.275 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.235 mm
Stencil thickness	0.100 mm

DocID028800 Rev 1

7.6 WLCSP49 package information




Figure 57. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale package outline

1. Drawing is not to scale.

7.8 UFQFPN48 package information

Figure 63. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

