

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, QSPI, SAI, SPI, SWPMI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	39
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	49-UFBGA, WLCSP
Supplier Device Package	49-WLCSP (3.14x3.13)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l431cby7tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	package mechanical data	. 175
Table 93.	UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array	470
		. 178
l able 94.	UFBGA64 recommended PCB design rules (0.5 mm pitch BGA)	. 179
Table 95.	WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale	
	package mechanical data	. 181
Table 96.	WLCSP64 recommended PCB design rules (0.35 mm pitch)	. 182
Table 97.	WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale	
	package mechanical data	. 185
Table 98.	WLCSP49 recommended PCB design rules (0.4 mm pitch)	. 186
Table 99.	LQFP48 - 48-pin, 7 x 7 mm low-profile guad flat package	
	mechanical data	. 188
Table 100.	UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat	
	package mechanical data	. 191
Table 101.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat	
	package mechanical data	. 193
Table 102.	Package thermal characteristics.	. 195
Table 103.	STM32L431xx ordering information scheme	. 198
Table 104.	Document revision history	. 199
	···· · · · · · · · · · · · · · · · · ·	

3.9.3 Voltage regulator

Two embedded linear voltage regulators supply most of the digital circuitries: the main regulator (MR) and the low-power regulator (LPR).

- The MR is used in the Run and Sleep modes and in the Stop 0 mode.
- The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is also used to supply the 16 Kbyte SRAM2 in Standby with RAM2 retention.
- Both regulators are in power-down in Standby and Shutdown modes: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.

The ultralow-power STM32L431xx supports dynamic voltage scaling to optimize its power consumption in run mode. The voltage from the Main Regulator that supplies the logic (VCORE) can be adjusted according to the system's maximum operating frequency.

There are two power consumption ranges:

- Range 1 with the CPU running at up to 80 MHz.
- Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also limited to 26 MHz.

The VCORE can be supplied by the low-power regulator, the main regulator being switched off. The system is then in Low-power run mode.

 Low-power run mode with the CPU running at up to 2 MHz. Peripherals with independent clock can be clocked by HSI16.

3.9.4 Low-power modes

The ultra-low-power STM32L431xx supports seven low-power modes to achieve the best compromise between low-power consumption, short startup time, available peripherals and available wakeup sources:

By default, the microcontroller is in Run mode after a system or a power Reset. It is up to the user to select one of the low-power modes described below:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

• Low-power run mode

This mode is achieved with VCORE supplied by the low-power regulator to minimize the regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16.

• Low-power sleep mode

This mode is entered from the low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the lowpower run mode.

• Stop 0, Stop 1 and Stop 2 modes

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI

					Stop 0/1		Stop 2		Standby		Shutdown		
Peripheral	Run	Sleep	Low- power run	Low- power sleep	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	-	Wakeup capability	VBAT
CRC calculation unit	0	0	0	0	-	-	-	-	-	-	-	-	-
GPIOs	0	0	0	0	0	0	0	0	(9)	5 pins (10)	(11)	5 pins (10)	-

Table 4. Functionalities depending on the working mode⁽¹⁾ (continued)

1. Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). - = Not available.

2. The Flash can be configured in power-down mode. By default, it is not in power-down mode.

- 3. The SRAM clock can be gated on or off.
- 4. SRAM2 content is preserved when the bit RRS is set in PWR_CR3 register.
- Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not need it anymore.
- 6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or received frame event.
- 7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
- 8. Voltage scaling Range 1 only.
- 9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
- 10. The I/Os with wakeup from Standby/Shutdown capability are: PA0, PC13, PE6, PA2, PC5.
- 11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when exiting the Shutdown mode.

3.9.5 Reset mode

In order to improve the consumption under reset, the I/Os state under and after reset is "analog state" (the I/O schmitt trigger is disable). In addition, the internal reset pull-up is deactivated when the reset source is internal.

3.9.6 VBAT operation

The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from V_{DD} when no external battery and an external supercapacitor are present. The VBAT pin supplies the RTC with LSE and the backup registers. Three anti-tamper detection pins are available in VBAT mode.

VBAT operation is automatically activated when V_{DD} is not present.

An internal VBAT battery charging circuit is embedded and can be activated when V_{DD} is present.

Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation.

DocID028800 Rev 1

3.24 Inter-integrated circuit interface (I2C)

The device embeds 3 I2C. Refer to *Table 10: I2C implementation* for the features implementation.

The I²C bus interface handles communications between the microcontroller and the serial I²C bus. It controls all I²C bus-specific sequencing, protocol, arbitration and timing.

The I2C peripheral supports:

- I²C-bus specification and user manual rev. 5 compatibility:
 - Slave and master modes, multimaster capability
 - Standard-mode (Sm), with a bitrate up to 100 kbit/s
 - Fast-mode (Fm), with a bitrate up to 400 kbit/s
 - Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
 - 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
 - Programmable setup and hold times
 - Optional clock stretching
- System Management Bus (SMBus) specification rev 2.0 compatibility:
 - Hardware PEC (Packet Error Checking) generation and verification with ACK control
 - Address resolution protocol (ARP) support
 - SMBus alert
- Power System Management Protocol (PMBusTM) specification rev 1.1 compatibility
- Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming. Refer to Figure 3: Clock tree.
- Wakeup from Stop mode on address match
- Programmable analog and digital noise filters
- 1-byte buffer with DMA capability

Table 10. I2C implementation

I2C features ⁽¹⁾	I2C1	I2C2	I2C3
Standard-mode (up to 100 kbit/s)	Х	Х	Х
Fast-mode (up to 400 kbit/s)	Х	Х	Х
Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)	Х	Х	Х
Programmable analog and digital noise filters	Х	Х	Х
SMBus/PMBus hardware support	Х	Х	Х
Independent clock	Х	Х	Х
Wakeup from Stop 0 / Stop 1 mode on address match	Х	Х	Х
Wakeup from Stop 2 mode on address match	-	-	Х

1. X: supported

			-	-				
	1	2	3	4	5	6	7	8
А	PC14- OSC32_IN	PC13	PB9	PB4	PB3	PA15	PA14	PA13
В	PC15- OSC32_OUT	VBAT	PB8	PH3/BOOT0	PD2	PC11	PC10	PA12
с	PH0-OSC_IN	vss	PB7	PB5	PC12	PA10	PA9	PA11
D	PH1- OSC_OUT	VDD	PB6	VSS	VSS	vss	PA8	PC9
E	NRST	PC1	PC0	VDD	VDD	VDD	PC7	PC8
F	VSSA/VREF-	PC2	PA2	PA5	PB0	PC6	PB15	PB14
G	PC3	PA0	PA3	PA6	PB1	PB2	PB10	PB13
н	VDDA/VREF+	PA1	PA4	PA7	PC4	PC5	PB11	PB12

Figure 8. STM32L431Rx UFBGA64 ballout⁽¹⁾

1. The above figure shows the package top view.

	1	2	3	4	5	6	7	8
A	VDD	PA15	PC12	PD2	PB3	PB7	vss	VDD
в	VSS	PA14	PC11	PB4	PB6	PB9	VBAT	PC13
с	PA12	PA13	PC10	PB5	PH3/BOOT0	PB8	PC15- OSC32_OUT	PC14- OSC32_IN
D	PA9	PA10	PA11	PC4	PC0	NRST	PH1- OSC_OUT	PH0-OSC_IN
E	PC7	PC9	PA8	PC5	PA4	PC3	PC2	PC1
F	PC6	PB15	PC8	PB0	PA5	PA2	PA0	VSSA/VREF-
G	PB14	PB13	PB12	PB2	PA6	PA3	PA1	VDDA/VREF+
н	VDD	vss	PB11	PB10	PB1	PA7	VDD	VSS

Figure 9. STM32L431Rx WLCSP64 pin	out ⁽¹⁾
-----------------------------------	--------------------

1. The above figure shows the package top view.

Figure 10. STM32L431Cx WLCSP49 pinout⁽¹⁾

	1	2	3	4	5	6	7	
A	VDD	PA14	PB3	PB4	PH3/BOOT0	VSS	VDD	
В	vss	PA13	PA15	PB5	PB8	VBAT	PC13	
c	PA11	PA10	PA12	PB6	PB9	PC15- OSC32_OUT	PC14- OSC32_IN	
D	PA8	PA9	PB15	PB7	NRST	PH1- OSC_OUT	PH0-OSC_IN	
E	PB14	PB13	PB10	PA3	PA2	PC3	VSSA/VREF-	
F	PB12	PB11	PA7	PA6	PA5	PA0	VDDA/VREF+	
G	VDD	VSS	PB2	PB1	PB0	PA4	PA1	
								MSv39209V2

1. The above figure shows the package top view.

			Pi	n Nu	mbe	ər					Ø		Pin functions				
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	(function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions			
-	-	-	-	F3	39	E8	65	E10	PC8	I/O	FT	-	TSC_G4_IO3, SDMMC1_D0, EVENTOUT	-			
-	-	-	-	E2	40	D8	66	D12	PC9	I/O	FT	-	TSC_G4_IO4, SDMMC1_D1, EVENTOUT	-			
18	29	29	D1	E3	41	D7	67	D11	PA8	I/O	FT	-	MCO, TIM1_CH1, USART1_CK, SWPMI1_IO, SAI1_SCK_A, LPTIM2_OUT, EVENTOUT	-			
19	30	30	D2	D1	42	C7	68	D10	PA9	I/O	FT_f	-	TIM1_CH2, I2C1_SCL, USART1_TX, SAI1_FS_A, TIM15_BKIN, EVENTOUT	-			
20	31	31	C2	D2	43	C6	69	C12	PA10	I/O	FT_f	-	TIM1_CH3, I2C1_SDA, USART1_RX, SAI1_SD_A, EVENTOUT	-			
21	32	32	C1	D3	44	C8	70	B12	PA11	I/O	FT_u	-	TIM1_CH4, TIM1_BKIN2, SPI1_MISO, COMP1_OUT, USART1_CTS, CAN1_RX, TIM1_BKIN2_COMP1, EVENTOUT	-			
22	33	33	C3	C1	45	В8	71	A12	PA12	I/O	FT_u	-	TIM1_ETR, SPI1_MOSI, USART1_RTS_DE, CAN1_TX, EVENTOUT	-			
23	34	34	В2	C2	46	A8	72	A11	PA13 (JTMS- SWDIO)	I/O	FT	(3)	JTMS-SWDIO, IR_OUT, SWPMI1_TX, SAI1_SD_B, EVENTOUT	-			
-	35	35	B1	B1	47	D5	-	-	VSS	S	-	-	-	-			
-	36	36	A1	A1	48	E5	73	C11	VDD	S	-	-	-	-			
-	-	-	-	-	-	-	74	F11	VSS	S	-	-	-	-			
-	-	-	-	-	-	-	75	G11	VDD	S	-	-	-	-			
24	37	37	A2	B2	49	A7	76	A10	PA14 (JTCK- SWCLK)	I/O	FT	(3)	JTCK-SWCLK, LPTIM1_OUT, I2C1_SMBA, SWPMI1_RX, SAI1_FS_B, EVENTOUT	-			

Table 14. STM32L431xx pin definitions (continued)

			Pi	n Nu	mbe	er			D:		e		Pin functions					
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions				
25	38	38	В3	A2	50	A6	77	A9	PA15 (JTDI)	I/O	FT	(3)	JTDI, TIM2_CH1, TIM2_ETR, USART2_RX, SPI1_NSS, SPI3_NSS, USART3_RTS_DE, TSC_G3_IO1, SWPMI1_SUSPEND, EVENTOUT	-				
-	-	-	-	C3	51	B7	78	B11	PC10	I/O	FT	-	SPI3_SCK, USART3_TX, TSC_G3_IO2, SDMMC1_D2, EVENTOUT	-				
-	-	-	-	В3	52	B6	79	C10	PC11	I/O	FT	-	SPI3_MISO, USART3_RX, TSC_G3_IO3, SDMMC1_D3, EVENTOUT	-				
-	-	-	-	A3	53	C5	80	B10	PC12	I/O	FT	-	SPI3_MOSI, USART3_CK, TSC_G3_IO4, SDMMC1_CK, EVENTOUT	-				
-	-	-	-	-	-	-	81	C9	PD0	I/O	FT	-	SPI2_NSS, CAN1_RX, EVENTOUT	-				
-	-	-	-	-	-	-	82	В9	PD1	I/O	FT	-	SPI2_SCK, CAN1_TX, EVENTOUT	-				
-	-	-	-	A4	54	B5	83	C8	PD2	I/O	FT	-	USART3_RTS_DE, TSC_SYNC, SDMMC1_CMD, EVENTOUT	-				
-	-	-	-	-	-	-	84	B8	PD3	I/O	FT	-	SPI2_MISO, USART2_CTS, QUADSPI_BK2_NCS, EVENTOUT	-				
-	-	-	-	-	-	-	85	В7	PD4	I/O	FT	-	SPI2_MOSI, USART2_RTS_DE, QUADSPI_BK2_IO0, EVENTOUT	-				
-	-	-	-	-	-	-	86	A6	PD5	I/O	FT	-	USART2_TX, QUADSPI_BK2_IO1, EVENTOUT	-				
-	-	-	-	-	-	-	87	B6	PD6	I/O	FT	-	USART2_RX, QUADSPI_BK2_IO2, SAI1_SD_A, EVENTOUT	-				

Table 14. STM32L431xx pin definitions (continued)

	Pin Number								Din nome		Ø		Pin functions			
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	(function after reset)		I/O structure	Notes	Alternate functions	Additional functions		
-	-	-	-	-	-	-	97	C3	PE0	I/O	FT	-	TIM16_CH1, EVENTOUT	-		
-	-	-	-	-	-	-	98	A2	PE1	I/O	FT	-	EVENTOUT	-		
32	47	47	A6	A7	63	D4	99	D3	VSS	S	-	-	-	-		
1	48	48	A7	A8	64	E4	100	C4	VDD	S	-	-	-	-		

Table 14. STM32L431xx pin definitions (continued)

PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:

 The speed should not exceed 2 MHz with a maximum load of 30 pF
 These GPIOs must not be used as current sources (e.g. to drive an LED).

After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0392 reference manual.

3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated.

STM32L431xx

Pinouts and pin description

	Table 15. Alternate function AF0 to AF7 (for AF8 to AF15 see Table 16) (continued)													
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7					
P	ort	SYS_AF	TIM1/TIM2/ LPTIM1	TIM1/TIM2	USART2	12C1/12C2/12C3	SPI1/SPI2	SPI3	USART1/ USART2/ USART3					
	PD0	-	-	-	-	-	SPI2_NSS	-	-					
	PD1	-	-	-	-	-	SPI2_SCK	-	-					
	PD2	-	-	-	-	-	-	-	USART3_RTS_ DE					
	PD3	-	-	-	-	-	SPI2_MISO	-	USART2_CTS					
	PD4	-	-	-	-	-	SPI2_MOSI	-	USART2_RTS_ DE					
	PD5	-	-	-	-	-	-	-	USART2_TX					
	PD6	-	-	-	-	-	-	-	USART2_RX					
Port D	PD7	-	-	-	-	-	-	-	USART2_CK					
	PD8	-	-	-	-	-	-	-	USART3_TX					
	PD9	-	-	-	-	-	-	-	USART3_RX					
	PD10	-	-	-	-	-	-	-	USART3_CK					
	PD11	-	-	-	-	-	-	-	USART3_CTS					
	PD12	-	-	-	-	-	-	-	USART3_RTS DE					
	PD13	-	-	-	-	-	-	-	-					
	PD14	-	-	-	-	-	-	-	-					
	PD15	-	-	-	-	-	-	-	-					
Port E	PE0	-	-	-	-	-	-	-	-					

DocID028800 Rev 1

5

67/200

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Pe	ort	SYS_AF	TIM1/TIM2/ LPTIM1	TIM1/TIM2	USART2	12C1/12C2/12C3	SPI1/SPI2	SPI3	USART1/ USART2/ USART3
	PE1	-	-	-	-	-	-	-	-
	PE2	TRACECK	-	-	-	-	-	-	-
	PE3	TRACED0	-	-	-	-	-	-	-
	PE4	TRACED1	-	-	-	-	-	-	-
	PE5	TRACED2	-	-	-	-	-	-	-
	PE6	TRACED3	-	-	-	-	-	-	-
	PE7	-	TIM1_ETR	-	-	-	-	-	-
D. (F	PE8	-	TIM1_CH1N	-	-	-	-	-	-
Port E	PE9	-	TIM1_CH1	-	-	-	-	-	-
	PE10	-	TIM1_CH2N	-	-	-	-	-	-
	PE11	-	TIM1_CH2	-	-	-	-	-	-
	PE12	-	TIM1_CH3N	-	-	-	SPI1_NSS	-	-
	PE13	-	TIM1_CH3	-	-	-	SPI1_SCK	-	-
	PE14	-	TIM1_CH4	TIM1_BKIN2	TIM1_BKIN2_ COMP2	-	SPI1_MISO	-	-
	PE15	-	TIM1_BKIN	-	TIM1_BKIN_ COMP1	-	SPI1_MOSI	-	-
	PH0	-	-	-	-	-	-	-	-
Port H	PH1	-	-	-	-	-	-	-	-
	PH3	-	-	-	-	-	-	-	-

Pinouts and pin description

DocID028800 Rev 1

68/200

5

STM32L431xx

5			Table 26. Currer	nt consum	ption in R runni	tun and ng from	Low-po Flash,	ower run ART dis	modes, able	code w	ith data	process	ing			
			Cond	itions		ТҮР					MAX ⁽¹⁾					
	Symbol	Parameter	-	Voltage scaling	f _{HCLK}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Uni
					26 MHz	2.66	2.68	2.73	2.81	2.96	3.0	3.1	3.2	3.3	3.6	
					16 MHz	1.88	1.9	1.94	2.02	2.17	2.1	2.2	2.3	2.4	2.7	
					8 MHz	1.05	1.06	1.11	1.18	1.33	1.2	1.2	1.3	1.4	1.7	
				Range 2	4 MHz	0.6	0.62	0.66	0.73	0.87	0.7	0.7	0.8	0.9	1.2	
			$f_{HCLK} = f_{HSE}$ up to		2 MHz	0.36	0.37	0.34	0.48	0.62	0.4	0.4	0.5	0.6	0.9	
		Oursela	48MHz included,		1 MHz	0.23	0.25	0.25	0.36	0.5	0.3	0.3	0.4	0.5	0.8	
	I _{DD} (Run) current Run mo	Supply current in	bypass mode PLL ON above 48 MHz all peripherals disable		100 kHz	0.12	0.14	0.17	0.25	0.39	0.1	0.2	0.2	0.4	0.7	mA
_		Run mode			80 MHz	8.56	8.61	8.69	8.79	8.97	9.6	9.7	9.8	10.0	10.3	
õ				ble Range 1	72 MHz	7.74	7.79	7.86	7.96	8.14	8.7	8.7	8.8	9.0	9.4	
DO					64 MHz	7.63	7.68	7.75	7.85	8.04	8.6	8.6	8.7	8.9	9.3	
288					48 MHz	6.36	6.4	6.48	6.58	6.76	7.2	7.3	7.4	7.6	7.9	
8					32 MHz	4.56	4.6	4.66	4.76	4.93	5.2	5.2	5.3	5.5	5.8	
Rev					24 MHz	3.45	3.48	3.54	3.64	3.8	3.9	4.0	4.1	4.2	4.6	
<u> </u>					16 MHz	2.48	2.51	2.56	2.65	2.82	2.8	2.9	3.0	3.1	3.5	
		Cumple			2 MHz	310	317	364	440	593	375.3	400.9	456.7	595.3	909.6	
	Ipp(LPRun)	current in	f _{HCLK} = f _{MSI}		1 MHz	157	173	226	296	448	204.8	234.2	298.2	445.8	758.9	
		Low-power	all peripherals disat	ole	400 kHz	72.6	89	130	206	356	99.7	131.2	199.7	349.3	663.7	р ^{и, у}
		Tun	run		100 kHz	32.3	46	89.7	164	314	52.4	82.1	153.3	301.2	616.9]

1. Guaranteed by characterization results, unless otherwise specified.

		Con	ditions				ΤΥΡ					MAX ⁽¹⁾			
Symbol	Parameter	-	Voltage scaling	f _{HCLK}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	U
				26 MHz	0.68	0.69	0.74	0.81	0.95	0.8	0.8	0.9	1.0	1.3	
				16 MHz	0.46	0.48	0.52	0.59	0.73	0.5	0.6	0.6	0.8	1.1	
				8 MHz	0.29	0.30	0.34	0.41	0.55	0.3	0.4	0.4	0.6	0.9	
		£ _ £	Range 2	4 MHz	0.20	0.21	0.25	0.32	0.46	0.2	0.3	0.3	0.5	0.8	_
		$_{\rm HCLK} = _{\rm HSE} up$		2 MHz	0.16	0.17	0.21	0.28	0.42	0.2	0.2	0.3	0.4	0.7	
	Supply	included, bypass mode pll ON above 48 MHz all peripherals disable	5	1 MHz	0.13	0.15	0.19	0.26	0.40	0.1	0.2	0.3	0.4	0.7	_
Ipp(Sleep)	current in			100 kHz	0.11	0.13	0.17	0.24	0.38	0.1	0.2	0.2	0.4	0.7	_
mo	sleep			80 MHz	2.23	2.25	2.30	2.38	2.54	2.5	2.5	2.6	2.8	3.1	_
	moue,		Range 1	72 MHz	2.02	2.04	2.10	2.18	2.34	2.2	2.3	2.4	2.5	2.9	
				64 MHz	1.82	1.84	1.89	1.98	2.14	2.0	2.1	2.1	2.3	2.6	
				48 MHz	1.34	1.36	1.42	1.50	1.66	1.5	1.6	1.7	1.8	2.2	
				32 MHz	0.93	0.95	1.01	1.09	1.25	1.1	1.1	1.2	1.4	1.7	
				24 MHz	0.73	0.75	0.80	0.88	1.04	0.8	0.9	1.0	1.1	1.4	
				16 MHz	0.53	0.55	0.60	0.68	0.84	0.6	0.6	0.7	0.9	1.2	
	Supply			2 MHz	71.8	80.7	125	200	350	91.1	122.7	191.3	341.5	653.5	
	current in	f _{HCLK} = f _{MSI}		1 MHz	45.0	57.3	101	176	325	63.2	95.4	165.4	316.5	628.7	
DD(FL)	sleep	all peripherals dis	able	400 kHz	27.0	40.7	84.6	158	308	43.9	75.8	147.2	297.6	609.2	
	mode			100 kHz	22.8	30.9	63.3	113.2	207.7	35.2	67.9	140.9	290.8	602.4	-

1. Guaranteed by characterization results, unless otherwise specified.

Symbol	Deremeter	Conditions				TYP					MAX ⁽¹⁾			Unit
Symbol	Farameter	-	V_{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	
			1.8 V	63	133	522	1 490	4 270	-	-	-	-	-	
	Supply current	RTC clocked by LSE	2.4 V	165	253	710	1 830	4 980	-	-	-	-	-	
	in Shutdown mode (backup registers retained) RTC enabled	bypassed at 32768 Hz bypassed at 32768 Hz kup ters ned) RTC pled kup ters ned) RTC pled kup ters ned) RTC pled kup ters ned) RTC kup ters kup ters kup ters kup ters kup ters kup ters kup ters kup ters kup ters kup ters kup ters kup ters kup ters kup ters kup ters kup ters kup ters kup ters kup ters ters kup ters ters ters ters ters ters ters ters	3 V	316	423	990	2 340	6 050	-	-	-	-	-	
I _{DD} (Shutdown with RTC)			3.6 V	649	787	1 530	3 220	7 710	-	-	-	-	-	n۸
			1.8 V	203	293	700	1 675	-	-	-	-	-	-	
			2.4 V	303	411	880	2 001	-	-	-	-	-	-	1
			3 V	448	567	1 136	2 479	-	-	-	-	-	-	1
			3.6 V	744	887	1 609	3 256	-	-	-	-	-	-	1
l _{DD} (wakeup from Shutdown)	Supply current during wakeup from Shutdown mode	Wakeup clock is MSI = 4 MHz. See ⁽³⁾ .	3 V	0.780	-	-	-	-	-	-	-	-	-	mA

1. Guaranteed by characterization results, unless otherwise specified.

2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in *Table 40: Low-power mode wakeup timings*.

100/200

DocID028800 Rev 1

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{HCLK}]	Unit
			noquonoy bana	8 MHz/ 80 MHz	
			0.1 MHz to 30 MHz	-8	
		Peak level V _{DD} = 3.6 V, T _A = 25 °C, LQFP100 package compliant with IEC 61967-2	30 MHz to 130 MHz	2	dBull
S _{EMI}	Peak level		130 MHz to 1 GHz	5	υσμν
			1 GHz to 2 GHz	8	
			EMI Level	2.5	-

Table 55. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25$ °C, conforming to ANSI/ESDA/JEDEC JS-001	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \degree C$, conforming to ANSI/ESD STM5.3.1	C3	250	v

Table 56. ESD absolute maximum ratings	Table 56.	ESD absolut	te maximum	ratings
--	-----------	-------------	------------	---------

1. Guaranteed by characterization results.

Sym- bol	Parameter	C	Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	4	5	
FT	Total		ended	Slow channel (max speed)	-	4	5	
	error		Differential	Fast channel (max speed)	-	3.5	4.5	
			Differential	Slow channel (max speed)	-	3.5	4.5	
			Single	Fast channel (max speed)	-	1	2.5	
FO	Offset		ended	Slow channel (max speed)	-	1	2.5	
	error		Differential	Fast channel (max speed)	-	1.5	2.5	
			Differential	Slow channel (max speed)	-	1.5	2.5	
			Single	Fast channel (max speed)	-	2.5	4.5	
FG	Gain error		ended	Slow channel (max speed)	-	2.5	4.5	ISB
	Call Cirol		Differential	Fast channel (max speed)	-	2.5	3.5	LOD
			Differentia	Slow channel (max speed)	-	2.5	3.5	
			Single	Fast channel (max speed)	-	1	1.5	
FD	Differential linearity		ended	Slow channel (max speed)	-	1	1.5	
	error	ADC clock frequency ≤	Differential	Fast channel (max speed)	-	1	1.2	
		80 MHz, Sampling rate < 5.33 Msps	Differential	Slow channel (max speed)	-	1	1.2	
		$V_{DDA} = VREF + = 3 V,$	Single	Fast channel (max speed)	-	1.5	2.5	
	Integral	TA = 25 °C	ended	Slow channel (max speed)	-	1.5	2.5	
	error		Difforantial	Fast channel (max speed)	-	1	2	
			Differential	Slow channel (max speed)	-	1	2	
			Single	Fast channel (max speed)	10.4	10.5	-	
ENOR	Effective		ended	Slow channel (max speed)	10.4	10.5	-	bite
	bits		Differential	Fast channel (max speed)	10.8	10.9	-	5113
			Differential	Slow channel (max speed)	10.8	10.9	-	
	Signal to		Single	Fast channel (max speed)	64.4	65	-	
	noise and		ended	Slow channel (max speed)	64.4	65	-	
	distortion ratio		Differential	Fast channel (max speed)	66.8	67.4	-	
	1010		Differential	Slow channel (max speed)	66.8	67.4	-	dB
			Single	Fast channel (max speed)	65	66	-	uВ
SNID	Signal-to-		ended	Slow channel (max speed)	65	66	-	
	noise ratio	e ratio	Differential	Fast channel (max speed)	67	68	-	
			Dinerential	Slow channel (max speed)	67	68	-	

Table 66. ADC accuracy - limited test conditions $1^{(1)(2)(3)}$
--

6.3.18 Digital-to-Analog converter characteristics

Symbol	Parameter	Co	onditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage for DAC ON		-	1.8	-	3.6	
V _{REF+}	Positive reference voltage		-	1.8	-	V _{DDA}	V
V _{REF-}	Negative reference voltage		-		V_{SSA}		
Rı	Resistive load	DAC output	connected to $\mathrm{V}_{\mathrm{SSA}}$	5	-	-	kΩ
		buffer ON	connected to V_{DDA}	25	-	-	
R _O	Output Impedance	DAC output bu	ffer OFF	9.6	11.7	13.8	kΩ
	Output impedance sample	V _{DD} = 2.7 V		-	-	2	1.0
R _{BON}	buffer ON	V _{DD} = 2.0 V		-	-	3.5	κΩ
	Output impedance sample	V _{DD} = 2.7 V		-	_	16.5	
R _{BOFF}	and hold mode, output buffer OFF	V _{DD} = 2.0 V		-	-	18.0	kΩ
CL	Conceitive load	DAC output bu	ffer ON	-	_	50	pF
C _{SH}		Sample and hold mode		-	0.1	1	μF
V _{DAC OUT}	Voltage on DAC_OUT	DAC output bu	ffer ON	0.2	-	V _{REF+} - 0.2	v
	σαιραί	DAC output bu	ffer OFF	0	-	V _{REF+}	
			±0.5 LSB	-	1.7	3	
	a 12-bit code transition	Normal mode	±1 LSB	-	1.6	2.9	
	between the lowest and	buffer ON	±2 LSB	-	1.55	2.85	
t _{SETTLING}	when DAC_OUT reaches	CL ≤ 50 pF, RI ≥ 5 kO	±4 LSB	-	1.48	2.8	μs
	final value ±0.5LSB,		±8 LSB	-	1.4	2.75	
	±8 LSB)	Normal mode [OFF, ±1LSB, C	DAC output buffer L = 10 pF	-	2	2.5	
	Wakeup time from off state (setting the ENx bit in the	Normal mode [CL ≤ 50 pF, RL	DAC output buffer ON .≥ 5 kΩ	-	4.2	7.5	
^I WAKEUP ⁽⁻⁾	DAC Control register) until final value ±1 LSB	Normal mode I OFF, CL ≤ 10 p	DAC output buffer	- 2	5	μs	
PSRR	V _{DDA} supply rejection ratio	Normal mode [CL ≤ 50 pF, RL	DAC output buffer ON . = 5 kΩ, DC	-	-80	-28	dB

Table 70. DAC characteristics ⁽¹	Table 7). DAC	characteristics ⁽⁷	1)
---	---------	--------	-------------------------------	----

	•			a)		
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	VREFBUF	I _{load} = 0 μA	-	16	25	
I _{DDA} (VREF BUF)	consumption from V _{DDA}	I _{load} = 500 μA	-	18	30	μA
		I _{load} = 4 mA	-	35	50	

Table 72. VREFBUF characteristics⁽¹⁾ (continued)

1. Guaranteed by design, unless otherwise specified.

2. In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which will follow (V_{DDA} - drop voltage).

3. Guaranteed by test in production.

4. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.

5. To correctly control the VREFBUF inrush current during start-up phase and scaling change, the V_{DDA} voltage should be in the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for V_{RS} = 0 and V_{RS} = 1.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
GBW	Gain Bandwidth Product	Normal mode	V _{DDA} ≥ 2.4 V (OPA_RANGE = 1)	550	1600	2200	kHz
		Low-power mode		100	420	600	
		Normal mode	V _{DDA} < 2.4 V (OPA_RANGE = 0)	250	700	950	
		Low-power mode		40	180	280	
SR ⁽³⁾	Slew rate (from 10 and 90% of output voltage)	Normal mode	- V _{DDA} ≥ 2.4 V	-	700	-	V/ms
		Low-power mode		-	180	-	
		Normal mode	V (2.4.)	-	300	-	
		Low-power mode	V _{DDA} < 2.4 V	-	80	-	
AO	Open loop gain	Normal mode	•	55	110	-	dB
		Low-power mode		45	110	-	
V _{OHSAT} ⁽³⁾	High saturation voltage	Normal mode	I _{load} = max or R _{load} = min Input at V _{DDA} .	V _{DDA} - 100	-	-	mV
		Low-power mode		V _{DDA} - 50	-	-	
V _{OLSAT} ⁽³⁾	Low saturation voltage	Normal mode	I _{load} = max or R _{load} = min Input at 0.	-	-	100	
		Low-power mode		-	-	50	
φ _m	Phase margin	Normal mode		-	74	-	0
		Low-power mode		-	66	-	
GM	Gain margin	Normal mode		-	13	-	dB
		Low-power mode		-	20	-	
twakeup	Wake up time from OFF state.	Normal mode	$C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 4 \text{ k}\Omega$ follower configuration	-	5	10	μs
		Low-power mode	$C_{LOAD} \le 50 \text{ pf},$ $R_{LOAD} \ge 20 \text{ k}\Omega$ follower configuration	-	10	30	
I _{bias}	OPAMP input bias current	General purpose input		-	-	_(4)	nA
PGA gain ⁽³⁾	Non inverting gain value	-		-	2	-	
				-	4	-	
				-	8	-	
				-	16	-	

 Table 74. OPAMP characteristics⁽¹⁾ (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{v(SO)}	Data output valid time	Slave mode 2.7 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	13.5	ns
		Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	24	
		Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 2	-	12.5	33	
t _{v(MO)}		Master mode	-	4.5	6	
t _{h(SO)}	 Data output hold time 	Slave mode	7	-	-	ns
t _{h(MO)}		Master mode	0	-	-	

Table 82. SPI characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization results.

2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50 %.

7.10.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Part numbering*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32L431xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 82$ °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

P_{INTmax} = 50 mA × 3.5 V= 175 mW

P_{IOmax} = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax} = 175 + 272 = 447 mW

Using the values obtained in *Table 102* T_{Jmax} is calculated as follows:

For LQFP64, 46 °C/W

T_{Jmax} = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.562 °C = 102.562 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105$ °C) see Section 8: Part numbering.

In this case, parts must be ordered at least with the temperature range suffix 6 (see Part numbering).

Note: With this given P_{Dmax} we can find the T_{Amax} allowed for a given device temperature range (order code suffix 6 or 7).

Suffix 6: $T_{Amax} = T_{Jmax} - (46^{\circ}C/W \times 447 \text{ mW}) = 105-20.562 = 84.438^{\circ}C$ Suffix 7: $T_{Amax} = T_{Jmax} - (46^{\circ}C/W \times 447 \text{ mW}) = 125-20.562 = 104.438^{\circ}C$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

