

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

20000	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, QSPI, SAI, SPI, SWPMI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	39
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l431cct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.10 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.

Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run and sleep, Stop 0, Stop 1 and Stop 2 modes.

Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low-power run	Low-power sleep	Stop 0 / Stop 1	Stop 2
	TIMx	Timers synchronization or chaining	Y	Y	Y	Y	-	-
TIMx	ADCx DACx	Conversion triggers	Y	Y	Y	Y	-	-
	DMA	Memory to memory transfer trigger	Y	Y	Υ	Y	-	-
	COMPx	Comparator output blanking	Y	Y	Y	Y	-	-
TIM15/TIM16	IRTIM	Infrared interface output generation	Y	Y	Υ	Y	-	-
COMPx	TIM1 TIM2	Timer input channel, trigger, break from analog signals comparison			Y	Y	-	-
	LPTIMERx	Low-power timer triggered by analog signals comparison			Y	Y	Y	Y (1)
ADCx	TIM1	Timer triggered by analog watchdog	Y	Y	Υ	Y	-	-
	TIM16	Timer input channel from RTC events	Υ	Υ	Υ	Y	-	-
RTC	LPTIMERx	Low-power timer triggered by RTC alarms or tampers	Y	Y	Y	Y	Y	Y (1)
All clocks sources (internal and external)	TIM2 TIM15, 16	Clock source used as input channel for RC measurement and trimming	Y	Y	Y	Y	-	-
CSS CPU (hard fault) RAM (parity error) Flash memory (ECC error) COMPx PVD	TIM1 TIM15,16	Timer break	Y	Y	Y	Y	_	-

Table 5. STM32L431xx peripherals interconnect matrix

3.19 Operational amplifier (OPAMP)

The STM32L431xx embeds one operational amplifier with external or internal follower routing and PGA capability.

The operational amplifier features:

- Low input bias current
- Low offset voltage
- Low-power mode
- Rail-to-rail input

3.20 Touch sensing controller (TSC)

The touch sensing controller provides a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect finger presence near an electrode which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

The main features of the touch sensing controller are the following:

- Proven and robust surface charge transfer acquisition principle
- Supports up to 21 capacitive sensing channels
- Up to 3 capacitive sensing channels can be acquired in parallel offering a very good response time
- Spread spectrum feature to improve system robustness in noisy environments
- Full hardware management of the charge transfer acquisition sequence
- Programmable charge transfer frequency
- Programmable sampling capacitor I/O pin
- Programmable channel I/O pin
- Programmable max count value to avoid long acquisition when a channel is faulty
- Dedicated end of acquisition and max count error flags with interrupt capability
- One sampling capacitor for up to 3 capacitive sensing channels to reduce the system components
- Compatible with proximity, touchkey, linear and rotary touch sensor implementation
- Designed to operate with STMTouch touch sensing firmware library

3.21 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

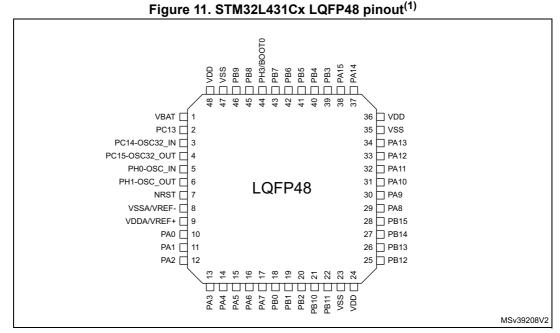
DocID028800 Rev 1

Note: The number of capacitive sensing channels is dependent on the size of the packages and subject to I/O availability.

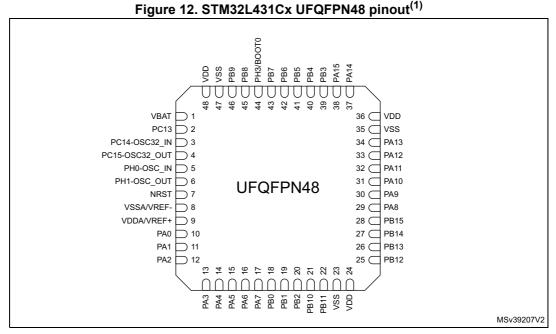
- Transmission
 - Three transmit mailboxes
 - Configurable transmit priority
- Reception
 - Two receive FIFOs with three stages
 - 14 Scalable filter banks
 - Identifier list feature
 - Configurable FIFO overrun
- Time-triggered communication option
 - Disable automatic retransmission mode
 - 16-bit free running timer
 - Time Stamp sent in last two data bytes
- Management
 - Maskable interrupts
 - Software-efficient mailbox mapping at a unique address space

3.31 Secure digital input/output and MultiMediaCards Interface (SDMMC)

The card host interface (SDMMC) provides an interface between the APB peripheral bus and MultiMediaCards (MMCs), SD memory cards and SDIO cards.


The SDMMC features include the following:

- Full compliance with MultiMediaCard System Specification Version 4.2. Card support for three different databus modes: 1-bit (default), 4-bit and 8-bit
- Full compatibility with previous versions of MultiMediaCards (forward compatibility)
- Full compliance with SD Memory Card Specifications Version 2.0
- Full compliance with SD I/O Card Specification Version 2.0: card support for two different databus modes: 1-bit (default) and 4-bit
- Data transfer up to 48 MHz for the 8 bit mode
- Data write and read with DMA capability


3.32 Clock recovery system (CRS)

The STM32L431xx devices embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

1. The above figure shows the package top view.

1. The above figure shows the package top view.

			Pi	n Nu	mbe	ər				_	0		Pin function	IS
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
8	12	12	E5	F6	16	F3	25	K3	PA2	I/O	FT_a	-	TIM2_CH3, USART2_TX, LPUART1_TX, QUADSPI_BK1_NCS, COMP2_OUT, TIM15_CH1, EVENTOUT	COMP2_INM, ADC1_IN7, WKUP4, LSCO
9	13	13	E4	G6	17	G3	26	L3	PA3	I/O	TT_a	-	TIM2_CH4, USART2_RX, LPUART1_RX, QUADSPI_CLK, SAI1_MCLK_A, TIM15_CH2, EVENTOUT	OPAMP1_ VOUT, COMP2_INP, ADC1_IN8
-	-	-	-	H8	18	C2	27	E3	VSS	S	-	-	-	-
-	-	-	-	H7	19	D2	28	H3	VDD	S	-	-	-	-
10	14	14	G6	E5	20	H3	29	М3	PA4	I/O	TT_a	-	SPI1_NSS, SPI3_NSS, USART2_CK, SAI1_FS_B, LPTIM2_OUT, EVENTOUT	COMP1_INM, COMP2_INM, ADC1_IN9, DAC1_OUT1
11	15	15	F5	F5	21	F4	30	K4	PA5	I/O	TT_a	-	TIM2_CH1, TIM2_ETR, SPI1_SCK, LPTIM2_ETR, EVENTOUT	COMP1_INM, COMP2_INM, ADC1_IN10, DAC1_OUT2
12	16	16	F4	G5	22	G4	31	L4	PA6	I/O	FT_a	-	TIM1_BKIN, SPI1_MISO, COMP1_OUT, USART3_CTS, LPUART1_CTS, QUADSPI_BK1_IO3, TIM1_BKIN_COMP2, TIM16_CH1, EVENTOUT	ADC1_IN11
13	17	17	F3	H6	23	H4	32	M4	PA7	I/O	FT_fa	-	TIM1_CH1N, I2C3_SCL, SPI1_MOSI, QUADSPI_BK1_IO2, COMP2_OUT, EVENTOUT	ADC1_IN12
-	-	-	-	D4	24	H5	33	K5	PC4	I/O	FT_a	-	USART3_TX, EVENTOUT	COMP1_INM, ADC1_IN13
-	-	-	-	E4	25	H6	34	L5	PC5	I/O	FT_a	-	USART3_RX, EVENTOUT	COMP1_INP, ADC1_IN14, WKUP5

Table 14. STM32L431xx pin definitions (continued)

S
~ ?
~
C S
Ä
ω
-
XX
×

Pinouts and pin description

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15	
Po	ort	LPUART1	CAN1/TSC	QUADSPI		SDMMC1/ COMP1/ COMP2/ SWPMI1	SAI1	TIM2/TIM15/ TIM16/LPTIM2	EVENTOUT	
	PA0	-	-	-	-	COMP1_OUT	SAI1_EXTCLK	TIM2_ETR	EVENTOUT	
	PA1	-	-	-		-	-	TIM15_CH1N	EVENTOUT	
	PA2	LPUART1_TX	-	QUADSPI_ BK1_NCS		COMP2_OUT	-	TIM15_CH1	EVENTOUT	
	PA3	LPUART1_RX	-	QUADSPI_CLK		-	SAI1_MCLK_A	TIM15_CH2	EVENTOUT	
	PA4	-	-	-	-	-	SAI1_FS_B	LPTIM2_OUT	EVENTOUT	
	PA5	-	-	-	-	-	-	LPTIM2_ETR	EVENTOUT	
	PA6	LPUART1_CTS	-	QUADSPI_ BK1_IO3		TIM1_BKIN_ COMP2	-	TIM16_CH1	EVENTOUT	
Port A	PA7	-	-	QUADSPI_ BK1_IO2		COMP2_OUT	-	-	EVENTOUT	
	PA8	-	-	-		SWPMI1_IO	SAI1_SCK_A	LPTIM2_OUT	EVENTOUT	
	PA9	-	-	-		-	SAI1_FS_A	TIM15_BKIN	EVENTOUT	
	PA10	-	-			-	SAI1_SD_A	-	EVENTOUT	
	PA11	-	CAN1_RX		-	TIM1_BKIN2_ COMP1	-	-	EVENTOUT	
	PA12	-	CAN1_TX		-	-	-	-	EVENTOUT	
	PA13	-	-		-	SWPMI1_TX	SAI1_SD_B	-	EVENTOUT	
	PA14	-	-	-	-	SWPMI1_RX	SAI1_FS_B	-	EVENTOUT	
	PA15	-	TSC_G3_IO1	-		SWPMI1_ SUSPEND	-	-	EVENTOUT	

DocID028800 Rev 1

5

69/200

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

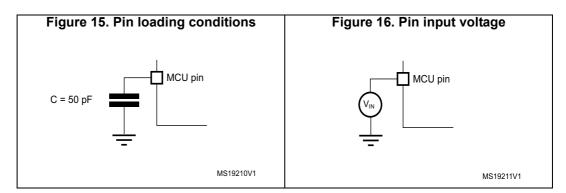
Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves


Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 15*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 16.

Symbol	Ratings	Max	Unit
ΣIV_{DD}	Total current into sum of all V _{DD} power lines (source) ⁽¹⁾	140	
ΣIV _{SS}	Total current out of sum of all V_{SS} ground lines (sink) ⁽¹⁾	140	
IV _{DD(PIN)}	Maximum current into each V _{DD} power pin (source) ⁽¹⁾	100	
IV _{SS(PIN)}	Maximum current out of each V_{SS} ground pin $(sink)^{(1)}$	100	
	Output current sunk by any I/O and control pin except FT_f	20	
I _{IO(PIN)}	Output current sunk by any FT_f pin	20	
	Output current sourced by any I/O and control pin	20	mA
ΣI	Total output current sunk by sum of all I/Os and control pins ⁽²⁾	100	
$\Sigma I_{IO(PIN)}$	Total output current sourced by sum of all I/Os and control $pins^{(2)}$	100	
I _{INJ(PIN)} ⁽³⁾	Injected current on FT_xxx, TT_xx, RST and B pins, except PA4, PA5	-5/+0 ⁽⁴⁾	
. /	Injected current on PA4, PA5	-5/0	
Σ I _{INJ(PIN)}	Total injected current (sum of all I/Os and control pins) ⁽⁵⁾	25	1

Table 19. Current characteristics

1. All main power (V_{DD} , V_{DDA} , V_{BAT}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supplies, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.

3. Positive injection (when $V_{IN} > V_{DDIOx}$) is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

A negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer also to *Table 18: Voltage characteristics* for the maximum allowed input voltage values.

When several inputs are submitted to a current injection, the maximum ∑|I_{INJ(PIN)}| is the absolute sum of the negative injected currents (instantaneous values).

Table 20. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

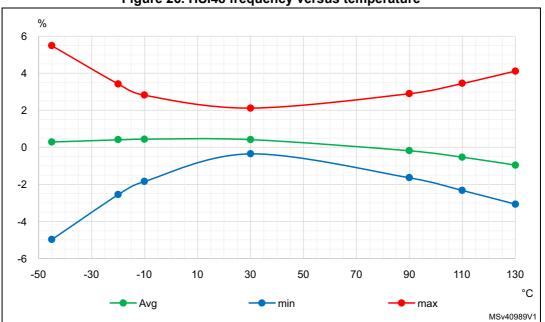


Figure 26. HSI48 frequency versus temperature

Low-speed internal (LSI) RC oscillator

Table 50. L	SI oscillator	characteristics ⁽¹⁾
-------------	---------------	--------------------------------

Symbol	Parameter	Conditions		Тур	Max	Unit
f _{LSI}		V _{DD} = 3.0 V, T _A = 30 °C	31.04	-	32.96	kHz
	LSI Frequency	V_{DD} = 1.62 to 3.6 V, TA = -40 to 125 °C	29.5	-	34	KI IZ
t _{SU} (LSI) ⁽²⁾	LSI oscillator start- up time	-	-	80	130	μs
t _{STAB} (LSI) ⁽²⁾	LSI oscillator stabilization time	5% of final frequency	-	125	180	μs
I _{DD} (LSI) ⁽²⁾	LSI oscillator power consumption	-	-	110	180	nA

1. Guaranteed by characterization results.

2. Guaranteed by design.

6.3.9 PLL characteristics

The parameters given in *Table 51* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 21: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{PLL_IN}	PLL input clock ⁽²⁾	-	4	-	16	MHz
	PLL input clock duty cycle	-	45	-	55	%

Table 51. PLL, PLLSAI1 characteristics⁽¹⁾

	Table 60. Abc accuracy - Innited test conditions 3. A A (continued)									
Sym- bol	Parameter	C	Min	Тур	Max	Unit				
		al Sampling rate ≤ 5.33 Msps, -	Single	Fast channel (max speed)	-	-69	-67			
	Total		ended	Slow channel (max speed)	-	-71	-67			
THD	harmonic distortion			Fast channel (max speed)	-	-72	-71	dB		
		3.6 V, Voltage scaling Range 1	Differential	Slow channel (max speed)	-	-72	-71			

Table 68. ADC accuracy - limited test conditions $3^{(1)(2)(3)}$ (continued)

1. Guaranteed by design.

2. ADC DC accuracy values are measured after internal calibration.

- 3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when V_{DDA} \geq 2.4 V. No oversampling.

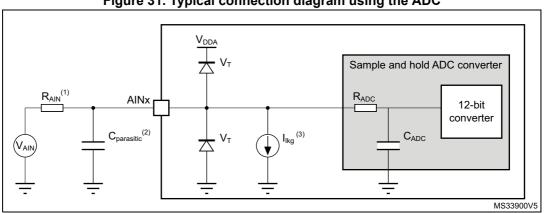
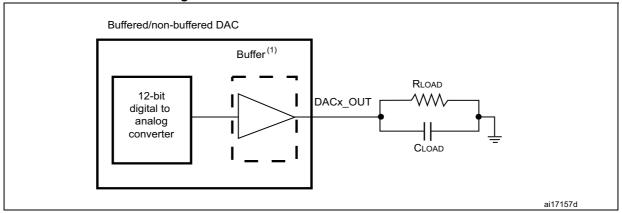


Figure 31. Typical connection diagram using the ADC

- Refer to Table 64: ADC characteristics for the values of $\mathsf{R}_{AIN},\,\mathsf{R}_{ADC}$ and C_{ADC} 1.
- $C_{\text{parasitic}}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (refer to *Table 59: I/O static characteristics* for the value of the pad capacitance). A high $C_{\text{parasitic}}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.
- 3. Refer to Table 59: I/O static characteristics for the values of Ilkg.


General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 17: Power supply scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

3. Refer to Table 59: I/O static characteristics.

4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to RM0392 reference manual for more details.

Figure 32. 12-bit buffered / non-buffered DAC

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Symbol	Parameter	Conditio	ns	Min	Тур	Мах	Unit
DNL	Differential non	DAC output buffer ON		-	-	±2	
DINL	linearity ⁽²⁾	DAC output buffer OFF		-	-	±2	
-	monotonicity	10 bits	guaranteed				
INL	Integral non	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±4	
INL	linearity ⁽³⁾	DAC output buffer OFF CL ≤ 50 pF, no RL	-	-	±4		
	Offset error at code 0x800 ⁽³⁾		V _{REF+} = 3.6 V	_	-	±12	
Offset			V _{REF+} = 1.8 V	-	-	±25	LSB
		DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±8	
Offset1	Offset error at code 0x001 ⁽⁴⁾	DAC output buffer OFF $CL \leq 50 \text{ pF}$, no RL		-	-	±5	
OffsetCal	Offset Error at code 0x800 after calibration	DAC output buffer ON	V _{REF+} = 3.6 V	-	-	±5	
Unserval		CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±7	

Table 71. DAC accuracy⁽¹⁾

Voltage reference buffer characteristics 6.3.19

Table 72. VREFBUF characteristics ⁽¹⁾								
Symbol	Parameter	Conditio	ons	Min	Тур	Max	Unit	
		Normal made	V _{RS} = 0	2.4	-	3.6		
M	Analog supply	Normal mode	V _{RS} = 1	2.8	-	3.6		
V _{DDA}	voltage	Degraded mode ⁽²⁾	V _{RS} = 0	1.65	-	2.4		
			V _{RS} = 1	1.65	-	2.8	V	
		Normal mode	V _{RS} = 0	2.046 ⁽³⁾	2.048	2.049 ⁽³⁾	v	
V _{REFBUF} _	Voltage reference	Normai mode	V _{RS} = 1	2.498 ⁽³⁾	2.5	2.502 ⁽³⁾		
OUT	output	Degraded mode ⁽²⁾	V _{RS} = 0	V _{DDA} -150 mV	-	V _{DDA}		
		Degraded mode	V _{RS} = 1	V _{DDA} -150 mV	-	V _{DDA}		
TRIM	Trim step resolution	-	-	-	±0.05	±0.1	%	
CL	Load capacitor	-	-	0.5	1	1.5	μF	
esr	Equivalent Serial Resistor of Cload			-	-	2	Ω	
I _{load}	Static load current			-	-	4	mA	
1	Line regulation	281/51/ 5361/	I _{load} = 500 μA	-	200	1000	nnm\/	
I _{line_reg}		$2.0 V \leq V_{\text{DDA}} \leq 3.0 V$	I _{load} = 4 mA	-	100	500	ppm/V	
l _{load_reg}	Load regulation	500 μ A \leq I _{load} \leq 4 mA Normal mode		-	50	500	ppm/mA	
T	Temperature coefficient	-40 °C < T _J < +125 °C	;	-	-	T _{coeff} _ vrefint + 50	ppm/ °C	
T _{Coeff}		0 °C < T _J < +50 °C		-	-	T _{coeff} vrefint + 50	ppm/ C	
PSRR	Power supply	Power supply DC			40	60	-	dB
FORK	rejection	100 kHz	100 kHz		40	-	uБ	
	Start-up time	CL = 0.5 µF ⁽⁴⁾			-	300	350	
t _{START}		CL = 1.1 μF ⁽⁴⁾		-	500	650	μs	
		$CL = 1.5 \ \mu F^{(4)}$		-	650	800		
I _{INRUSH}	Control of maximum DC current drive on VREFBUF_ OUT during start-up phase (5)	-	-	-	8	-	mA	

(1)

Г

Т

٦

Т

SPI characteristics

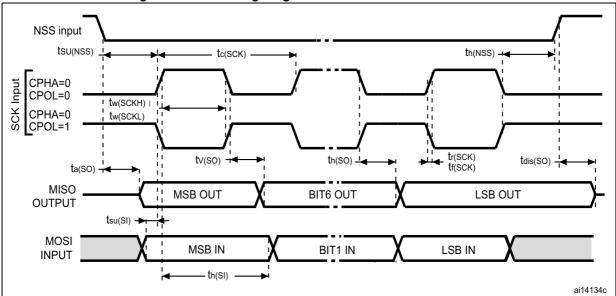
Unless otherwise specified, the parameters given in *Table 82* for SPI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 21: General operating conditions*.

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode receiver/full duplex 2.7 < V _{DD} < 3.6 V Voltage Range 1			40	
	SPI clock frequency	Master mode receiver/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1			16	
		Master mode transmitter 1.71 < V _{DD} < 3.6 V Voltage Range 1			40	
f _{SCK} 1/t _{c(SCK)}		Slave mode receiver 1.71 < V _{DD} < 3.6 V Voltage Range 1	-	-	40	MHz
		Slave mode transmitter/full duplex 2.7 < V _{DD} < 3.6 V Voltage Range 1			37 ⁽²⁾	
		Slave mode transmitter/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1			20 ⁽²⁾	
		Voltage Range 2			13	
t _{su(NSS)}	NSS setup time	Slave mode, SPI prescaler = 2	4 _x T _{PCLK}	-	-	ns
t _{h(NSS)}	NSS hold time	Slave mode, SPI prescaler = 2	2 _x T _{PCLK}	-	-	ns
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	T _{PCLK} -2	T _{PCLK}	T _{PCLK} +2	ns
t _{su(MI)}	Data input setup time	Master mode	4	-	-	ns
t _{su(SI)}		Slave mode	1.5	-	-	115
t _{h(MI)}	Data input hold time	Master mode	6.5	-	-	ns
t _{h(SI)}		Slave mode	1.5	-	-	115
t _{a(SO)}	Data output access time	Slave mode	9	-	36	ns
t _{dis(SO)}	Data output disable time	Slave mode	9	-	16	ns

Table	82.	SPI	characteristics ⁽	1)
-------	-----	-----	------------------------------	----



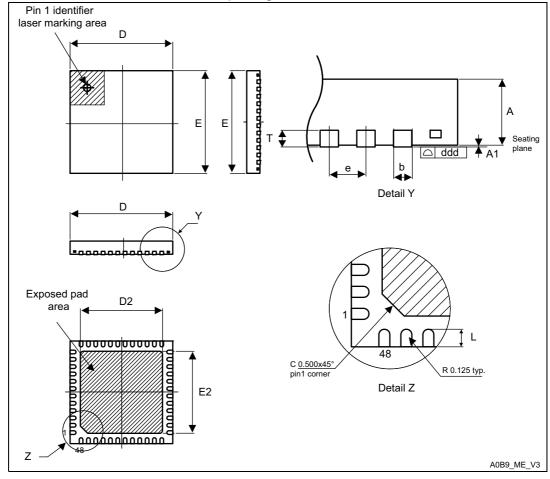
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Data output valid time	Slave mode 2.7 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	13.5	
t _{v(SO)}		Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	24	ns
		Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 2	-	12.5	33	
t _{v(MO)}		Master mode	-	4.5	6	
t _{h(SO)}	Data output hold time	Slave mode	7	-	-	ns
t _{h(MO)}		Master mode	0	-	-	115

Table 82. SPI characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization results.

2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50 %.

Symbol		millimeters				
	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031


Table 99. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

7.8 UFQFPN48 package information

Figure 63. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

7.10 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 21: General operating conditions*.

The maximum chip-junction temperature, T_{J} max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma \; ((\mathsf{V}_{\mathsf{DDIOx}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit			
	Thermal resistance junction-ambient UFQFPN48 - 7 × 7 mm / 0.5 mm pitch	33				
	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm / 0.5 mm pitch	57	°C/W			
	Thermal resistance junction-ambient WLCSP49 3.141 x 3.127 / 0.4 mm pitch	48				
Θ	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	46				
Θ_{JA}	Thermal resistance junction-ambient UFBGA64 - 5 × 5 mm / 0.5 mm pitch	65	CIW			
	Thermal resistance junction-ambient WLCSP64 3.141 x 3.127 / 0.35 mm pitch	46				
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch	42				
	Thermal resistance junction-ambient UFBGA100 - 7 × 7 mm / 0.5 mm pitch	57				

Table 102. Package thermal characteristics

7.10.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

8 Part numbering

Table 103. STM32L431xx or	dering info	orma	tion so	chem	ne			
Example:	STM32	L	431	С	С	Т	6	TR
Device family								
STM32 = ARM [®] based 32-bit microcontroller								
Product type								
L = ultra-low-power								
Device subfamily								
431: STM32L431xx								
Pin count								
K = 32 pins								
C = 48 pins								
R = 64 pins								
V = 100 pins								
Flash memory size								
B = 128 kB of Flash memory								
C = 256 KB of Flash memory								
Package								
T = LQFP ECOPACK [®] 2								
U = QFN ECOPACK®2								
I = UFBGA ECOPACK®2								
$Y = CSP ECOPACK^{®}2$								
Temperature range								
6 = Industrial temperature range, -40 to 85 °C (105	S°C junction)						
7 = Industrial temperature range, -40 to 105 °C (12								
3 = Industrial temperature range, -40 to 125 °C (13	-	-						
		,						
Packing								

TR = tape and reel

xxx = programmed parts

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID028800 Rev 1

