

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, QSPI, SAI, SPI, SWPMI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	39
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l431ccu6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.17	Voltage reference buffer (VREFBUF)
3.18	Comparators (COMP)
3.19	Operational amplifier (OPAMP)
3.20	Touch sensing controller (TSC)
3.21	Random number generator (RNG)
3.22	Timers and watchdogs
	3.22.1 Advanced-control timer (TIM1)
	3.22.2 General-purpose timers (TIM2, TIM15, TIM16)
	3.22.3 Basic timers (TIM6 and TIM7)
	3.22.4 Low-power timer (LPTIM1 and LPTIM2)
	3.22.5 Infrared interface (IRTIM)
	3.22.6 Independent watchdog (IWDG) 39
	3.22.7 System window watchdog (WWDG)
	3.22.8 SysTick timer
3.23	Real-time clock (RTC) and backup registers
3.24	Inter-integrated circuit interface (I ² C) 41
3.25	Universal synchronous/asynchronous receiver transmitter (USART) 42
3.26	Low-power universal asynchronous receiver transmitter (LPUART) 43
3.27	Serial peripheral interface (SPI) 44
3.28	Serial audio interfaces (SAI) 44
3.29	Single wire protocol master interface (SWPMI)
3.30	Controller area network (CAN)
3.31	Secure digital input/output and MultiMediaCards Interface (SDMMC) 46
3.32	Clock recovery system (CRS)
3.33	Quad SPI memory interface (QUADSPI)
3.34	Development support
	3.34.1 Serial wire JTAG debug port (SWJ-DP)
	3.34.2 Embedded Trace Macrocell™
Pino	uts and pin description
Mem	ory mapping
Elect	rical characteristics
6.1	Parameter conditions

DocID028800 Rev 1

4

5

6

RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still running.

The RTC can remain active (Stop mode with RTC, Stop mode without RTC).

Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode to detect their wakeup condition.

Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode, most of the VCORE domain is put in a lower leakage mode.

Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator remains ON, allowing a very fast wakeup time but with much higher consumption.

The system clock when exiting from Stop 0, Stop1 or Stop2 modes can be either MSI up to 48 MHz or HSI16, depending on software configuration.

• Standby mode

The Standby mode is used to achieve the lowest power consumption with BOR. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.

The RTC can remain active (Standby mode with RTC, Standby mode without RTC).

The brown-out reset (BOR) always remains active in Standby mode.

The state of each I/O during standby mode can be selected by software: I/O with internal pull-up, internal pull-down or floating.

After entering Standby mode, SRAM1 and register contents are lost except for registers in the Backup domain and Standby circuitry. Optionally, SRAM2 can be retained in Standby mode, supplied by the low-power Regulator (Standby with RAM2 retention mode).

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).

The system clock after wakeup is MSI up to 8 MHz.

Shutdown mode

The Shutdown mode allows to achieve the lowest power consumption. The internal regulator is switched off so that the VCORE domain is powered off. The PLL, the HSI16, the MSI, the LSI and the HSE oscillators are also switched off.

The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).

The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode, therefore the switch to Backup domain is not supported.

SRAM1, SRAM2 and register contents are lost except for registers in the Backup domain.

The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic wakeup, timestamp, tamper).

The system clock after wakeup is MSI at 4 MHz.

			Pi	n Nu	mbe	ər				_	0		Pin functions			
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions		
8	12	12	E5	F6	16	F3	25	K3	PA2	I/O	FT_a	-	TIM2_CH3, USART2_TX, LPUART1_TX, QUADSPI_BK1_NCS, COMP2_OUT, TIM15_CH1, EVENTOUT	COMP2_INM, ADC1_IN7, WKUP4, LSCO		
9	13	13	E4	G6	17	G3	26	L3	PA3	I/O	TT_a	-	TIM2_CH4, USART2_RX, LPUART1_RX, QUADSPI_CLK, SAI1_MCLK_A, TIM15_CH2, EVENTOUT	OPAMP1_ VOUT, COMP2_INP, ADC1_IN8		
-	-	-	-	H8	18	C2	27	E3	VSS	S	-	-	-	-		
-	-	-	-	H7	19	D2	28	H3	VDD	S	-	-	-	-		
10	14	14	G6	E5	20	H3	29	М3	PA4	I/O	TT_a	-	SPI1_NSS, SPI3_NSS, USART2_CK, SAI1_FS_B, LPTIM2_OUT, EVENTOUT	COMP1_INM, COMP2_INM, ADC1_IN9, DAC1_OUT1		
11	15	15	F5	F5	21	F4	30	K4	PA5	I/O	TT_a	-	TIM2_CH1, TIM2_ETR, SPI1_SCK, LPTIM2_ETR, EVENTOUT	COMP1_INM, COMP2_INM, ADC1_IN10, DAC1_OUT2		
12	16	16	F4	G5	22	G4	31	L4	PA6	I/O	FT_a	-	TIM1_BKIN, SPI1_MISO, COMP1_OUT, USART3_CTS, LPUART1_CTS, QUADSPI_BK1_IO3, TIM1_BKIN_COMP2, TIM16_CH1, EVENTOUT	ADC1_IN11		
13	17	17	F3	H6	23	H4	32	M4	PA7	I/O	FT_fa	-	TIM1_CH1N, I2C3_SCL, SPI1_MOSI, QUADSPI_BK1_IO2, COMP2_OUT, EVENTOUT	ADC1_IN12		
-	-	-	-	D4	24	H5	33	K5	PC4	I/O	FT_a	-	USART3_TX, EVENTOUT	COMP1_INM, ADC1_IN13		
-	-	-	-	E4	25	H6	34	L5	PC5	I/O	FT_a	-	USART3_RX, EVENTOUT	COMP1_INP, ADC1_IN14, WKUP5		

Table 14. STM32L431xx pin definitions (continued)

STM32L431xx

Pinouts and pin description

		Tab	le 15. Alternate	function AF0 t	o AF7 (for AF8	8 to AF15 see <mark>Ta</mark>	ble 16) (contir	nued)		
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	
P	ort	SYS_AF	TIM1/TIM2/ LPTIM1	TIM1/TIM2	USART2	12C1/12C2/12C3	SPI1/SPI2	SPI3	USART1/ USART2/ USART3	
	PD0	-	-	-	-	-	SPI2_NSS	-	-	
	PD1	-	-	-	-	-	SPI2_SCK	-	-	
	PD2	-	-	-	-	-	-	-	USART3_RTS_ DE	
	PD3	-	-	-	-	-	SPI2_MISO	-	USART2_CTS	
	PD4	-	-	-	-	-	SPI2_MOSI	-	USART2_RTS_ DE	
	PD5	-	-	-	-	-	-	-	USART2_TX	
	PD6	-	-	-	-	-	-	-	USART2_RX	
Port D	PD7	-	-	-	-	-	-	-	USART2_CK	
	PD8	-	-	-	-	-	-	-	USART3_TX	
	PD9	-	-	-	-	-	-	-	USART3_RX	
	PD10	-	-	-	-	-	-	-	USART3_CK	
	PD11	-	-	-	-	-	-	-	USART3_CTS	
	PD12	-	-	-	-	-	-	-	USART3_RTS_ DE	
	PD13	-	-	-	-	-	-	-	-	
	PD14	-	-	-	-	-	-	-	-	
	PD15	-	-	-	-	-	-	-	-	
Port E	PE0	-	-	-	-	-	-	-	-	

DocID028800 Rev 1

5

67/200

6.1.6 Power supply scheme

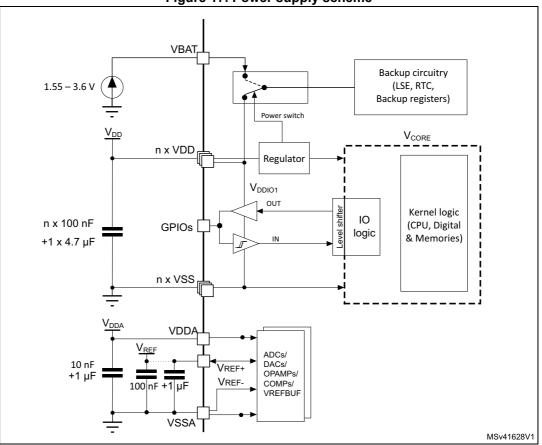


Figure 17. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

6.3 **Operating conditions**

6.3.1 General operating conditions

Table 21	. General	operating	conditions
----------	-----------	-----------	------------

Symbol	Parameter	Conditions	Min	Мах	Unit		
f _{HCLK}	Internal AHB clock frequency	-	0	80			
f _{PCLK1}	Internal APB1 clock frequency	-	0	80	MHz		
f _{PCLK2}	Internal APB2 clock frequency	-	0	80			
V _{DD}	Standard operating voltage	-	1.71 (1)	3.6	V		
		ADC or COMP used	1.62				
		DAC or OPAMP used	1.8				
V_{DDA}	Analog supply voltage	VREFBUF used	2.4	3.6	V		
		ADC, DAC, OPAMP, COMP, VREFBUF not used	0				
V _{BAT}	Backup operating voltage	-	1.55	3.6	V		
	V _{IN} I/O input voltage	TT_xx I/O	-0.3	V _{DDIOx} +0.3			
V _{IN}		All I/O except TT_xx	-0.3	MIN(MIN(V _{DD} , V _{DDA})+3.6 V, 5.5 V) ⁽²⁾⁽³⁾	V		
		LQFP100	-	476			
		LQFP64	-	444			
		LQFP48	-	350			
	Power dissipation at	UFBGA100	-	350			
P _D	T _A = 85 °C for suffix 6 or	UFBGA64	-	307	mW		
	$T_A = 105 \ ^{\circ}C$ for suffix 7 ⁽⁴⁾	UFQFPN48	-	606			
		UFQFPN32	-	523			
		WLCSP64	-	434			
		WLCSP49	-	416			
	Ambient temperature for the	Maximum power dissipation	-40	85			
	suffix 6 version	Low-power dissipation ⁽⁵⁾	-40	105			
Та	Ambient temperature for the	Maximum power dissipation	-40	105	°C		
IA	suffix 7 version	Low-power dissipation ⁽⁵⁾	-40	125			
	Ambient temperature for the	Maximum power dissipation	-40	125			
	suffix 3 version	Low-power dissipation ⁽⁵⁾	-40	130			
		Suffix 6 version	-40	105			
Т _Ј	Junction temperature range	Suffix 7 version	-40	125	°C		
		Suffix 3 version	-40	130			

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 18: Current consumption measurement scheme*.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted with the minimum wait states number, depending on the f_{HCLK} frequency (refer to the table "Number of wait states according to CPU clock (HCLK) frequency" available in the RM0392 reference manual).
- When the peripherals are enabled f_{PCLK} = f_{HCLK}

The parameters given in *Table 25* to *Table 38* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*.

	Peripheral	Range 1	Range 2	Low-power run and sleep	Unit
	RTCA	1.7	1.1	2.1	
	CRS	0.3	0.3	0.6	
	I2C1 independent clock domain	3.5	2.8	3.4	
	I2C1 clock domain	1.1	0.9	1.0	
	I2C2 independent clock domain	3.5	3.0	3.4	
	I2C2 clock domain	1.1	0.7	0.9	
	I2C3 independent clock domain	2.9	2.3	2.5	
	I2C3 clock domain	0.9	0.4	0.8	
	LPUART1 independent clock domain	1.9	1.6	1.8	
	LPUART1 clock domain	0.6	0.6	0.6	
	LPTIM1 independent clock domain	2.9	2.4	2.8	
	LPTIM1 clock domain	0.8	0.4	0.7	
	LPTIM2 independent clock domain	3.1	2.7	3.9	
	LPTIM2 clock domain	0.8	0.7	0.8	
APB1	OPAMP	0.4	0.2	0.4	µA/MHz
	PWR	0.4	0.1	0.4	μονινιιι
	SPI2	1.8	1.6	1.6	
	SPI3	1.7	1.3	1.6	
	SWPMI1 independent clock domain	1.9	1.6	1.9	
	SWPMI1 clock domain	0.9	0.7	0.8	
	TIM2	6.2	5.0	5.9	
	TIM6	1.0	0.6	0.9	
	TIM7	1.0	0.6	0.6	
	USART2 independent clock domain	4.1	3.6	3.8	
	USART2 clock domain	1.3	0.9	1.1	
	USART3 independent clock domain	4.3	3.5	4.2	
	USART3 clock domain	1.5	1.1	1.3	
	WWDG	0.5	0.5	0.5	
	All APB1 on	45.4	35	47.8	
APB2	AHB to APB2 ⁽⁴⁾	1.0	0.9	0.9	

Table 39. Peripheral current	nt consumption (continued)
------------------------------	----------------------------

	Peripheral	Range 1	Range 2	Low-power run and sleep	Unit
	FW	0.2	0.2	0.2	
	SAI1 independent clock domain	2.3	1.8	1.9	
	SAI1 clock domain	2.1	1.8	2.0	
	SDMMC1 independent clock domain	4.7	3.9	3.9	
	SDMMC1 clock domain	2.5	1.9	1.9	
	SPI1	1.8	1.6	1.7	
APB2	SYSCFG/VREFBUF/COMP	0.6	0.5	0.6	
	TIM1	8.1	6.5	7.6	µA/MHz
	TIM15	3.7	3.0	3.4	
	TIM16	2.7	2.1	2.6	
	USART1 independent clock domain	4.8	4.2	4.6	
	USART1 clock domain	1.5	1.3	1.7	
	All APB2 on	24.2	19.9	22.6	
	ALL	94.8	76.5	94.0	

Table 39. Peri	pheral current	consumption	(continued)

1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).

2. The GPIOx (x= A...H) dynamic current consumption is approximately divided by a factor two versus this table values when the GPIO port is locked thanks to LCKK and LCKy bits in the GPIOx_LCKR register. In order to save the full GPIOx current consumption, the GPIOx clock should be disabled in the RCC when all port I/Os are used in alternate function or analog mode (clock is only required to read or write into GPIO registers, and is not used in AF or analog modes).

3. The AHB to APB1 Bridge is automatically active when at least one peripheral is ON on the APB1.

4. The AHB to APB2 Bridge is automatically active when at least one peripheral is ON on the APB2.

6.3.6 Wakeup time from low-power modes and voltage scaling transition times

The wakeup times given in *Table 40* are the latency between the event and the execution of the first user instruction.

The device goes in low-power mode after the WFE (Wait For Event) instruction.

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{WUSLEEP}	Wakeup time from Sleep mode to Run mode	-	6	6	Nb of
twulpsleep	Wakeup time from Low- power sleep mode to Low- power run mode	Wakeup in Flash with Flash in power-down during low-power sleep mode (SLEEP_PD=1 in FLASH_ACR) and with clock MSI = 2 MHz	6	8.3	CPU cycles

Table 40. Low-power mode wakeup timings⁽¹⁾

Symbol	Parameter		Conditions	Тур	Max	Unit	
		Dongo 1	Wakeup clock MSI = 48 MHz	8.02	9.24		
	Wake up time from Stop 2	Range 1	Wakeup clock HSI16 = 16 MHz	7.66	8.95		
	mode to Run mode in		Wakeup clock MSI = 24 MHz	8.5	9.54		
twustop2	Flash	Range 2	Wakeup clock HSI16 = 16 MHz	7.75	8.95		
			Wakeup clock MSI = 4 MHz	12.06	13.16		
	Wake up time from Stop 2 mode to Run mode in SRAM1	Range 1	Wakeup clock MSI = 48 MHz	5.45	6.79	μs	
		Range	Wakeup clock HSI16 = 16 MHz	6.9	7.98		
		Range 2	Wakeup clock MSI = 24 MHz	6.3	7.36		
			Wakeup clock HSI16 = 16 MHz	6.9	7.9		
			Wakeup clock MSI = 4 MHz	13.1	13.31		
+	Wakeup time from Standby	Damas 4	Wakeup clock MSI = 8 MHz	12.2	18.35		
^t WUSTBY	mode to Run mode	Range 1	Wakeup clock MSI = 4 MHz	19.14	25.8	μs	
t _{WUSTBY}	Wakeup time from Standby	Range 1	Wakeup clock MSI = 8 MHz	12.1	18.3		
SRAM2	with SRAM2 to Run mode	Range	Wakeup clock MSI = 4 MHz	19.2	25.87	μs	
twushdn	Wakeup time from Shutdown mode to Run mode	Range 1	Wakeup clock MSI = 4 MHz	261.5	315.7	μs	

 Table 40. Low-power mode wakeup timings⁽¹⁾ (continued)

1. Guaranteed by characterization results.

Table 41. Regulator modes transition times⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{WULPRUN}	Wakeup time from Low-power run mode to Run mode $^{(2)}$	Code run with MSI 2 MHz	5	7	110
t _{VOST}	Regulator transition time from Range 2 to Range 1 or Range 1 to Range 2 ⁽³⁾	Code run with MSI 24 MHz	20	40	μs

1. Guaranteed by characterization results.

2. Time until REGLPF flag is cleared in PWR_SR2.

3. Time until VOSF flag is cleared in PWR_SR2.

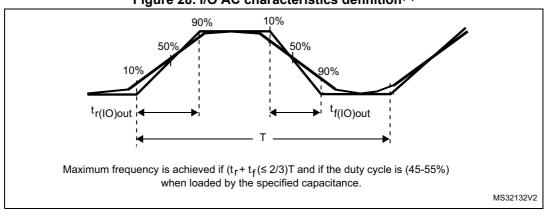
Table 42. Wakeup time using USART/LPUART⁽¹⁾

Symbol	Parameter	Conditions	Тур	Max	Unit
	Wakeup time needed to calculate the	Stop mode 0	-	1.7	
t _{WUUSART} t _{WULPUART}	maximum USART/LPUART baudrate allowing to wakeup up from stop mode when USART/LPUART clock source is HSI	Stop mode 1/2	-	8.5	μs

1. Guaranteed by design.

Speed	Symbol	Parameter	Conditions	Min	Max	Unit			
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	50				
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	25				
	Fmax	Maximum fraguanay	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	5	MHz			
	гшах	Maximum frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	100 ⁽³⁾				
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	37.5				
10			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	5				
10			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	5.8				
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	11				
	Tr/Tf	Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	28	ns			
	11/11		C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	2.5				
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	5				
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	12				
			C=30 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	120 ⁽³⁾				
			C=30 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	50				
	F max		C=30 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	10				
	Fmax	Maximum frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	180 ⁽³⁾	MHz			
11			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	75				
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	10				
			C=30 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	3.3				
	Tr/Tf	Output rise and fall time	C=30 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	6	ns			
			C=30 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	16				
Fm+	Fmax	Maximum frequency	C = 50 pE = 1.6 V/s/V = -53.6 V/s	-	1	MHz			
LU14	Tf	Output fall time ⁽⁴⁾	-C=50 pF, 1.6 V≤V _{DDIOx} ≤3.6 V	-	5	ns			

 Table 61. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)


 The I/O speed is configured using the OSPEEDRy[1:0] bits. The Fm+ mode is configured in the SYSCFG_CFGR1 register. Refer to the RM0392 reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. This value represents the I/O capability but the maximum system frequency is limited to 80 MHz.

4. The fall time is defined between 70% and 30% of the output waveform accordingly to I²C specification.

1. Refer to Table 61: I/O AC characteristics.

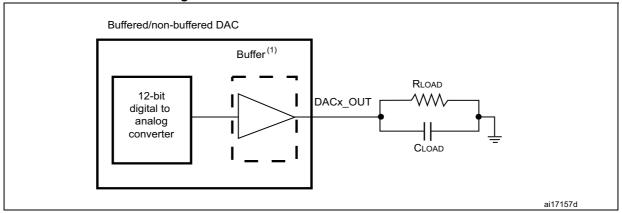
6.3.15 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, $\mathsf{R}_{\mathsf{PU}}.$

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3 _x V _{DDIOx}	v
V _{IH(NRST)}	NRST input high level voltage	-	0.7 _x V _{DDIOx}	-	-	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	70	ns
V _{NF(NRST)}	NRST input not filtered pulse	1.71 V ≤ V _{DD} ≤ 3.6 V	350	-	-	ns

Table 62. NRST pin characteristics⁽¹⁾


1. Guaranteed by design.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

3. Refer to Table 59: I/O static characteristics.

4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to RM0392 reference manual for more details.

Figure 32. 12-bit buffered / non-buffered DAC

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Symbol	Parameter	Conditio	Min	Тур	Max	Unit	
DNL	Differential non	DAC output buffer ON	DAC output buffer ON		-	±2	
DINL	linearity ⁽²⁾	DAC output buffer OFF		-	-	±2	
-	monotonicity	10 bits		ç	guarantee	d	
INL Integral non linearity ⁽³⁾		DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±4	
		DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±4	
		DAC output buffer ON	V _{REF+} = 3.6 V	-	-	±12	
Offset	Offset error at code 0x800 ⁽³⁾	CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±25	LSB
		DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±8	
Offset1	Offset error at code 0x001 ⁽⁴⁾	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±5	
OffsetCal	Offset Error at	DAC output butter ()N	V _{REF+} = 3.6 V	-	-	±5	
Unserval	code 0x800 after calibration	CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±7	

Table 71. DAC accuracy⁽¹⁾

Voltage reference buffer characteristics 6.3.19

Table 72. VREFBUF characteristics ⁽¹⁾								
Symbol	Parameter	Conditio	ons	Min	Тур	Max	Unit	
		Normal made	V _{RS} = 0	2.4	-	3.6		
M	Analog supply	Normal mode	V _{RS} = 1	2.8	-	3.6	1	
V _{DDA}	voltage	Degraded mode ⁽²⁾	V _{RS} = 0	1.65	-	2.4		
			V _{RS} = 1	1.65	-	2.8	V	
		Normal mode	V _{RS} = 0	2.046 ⁽³⁾	2.048	2.049 ⁽³⁾	v	
V _{REFBUF} _	Voltage reference	Normai mode	V _{RS} = 1	2.498 ⁽³⁾	2.5	2.502 ⁽³⁾		
OUT	output	Degraded mode ⁽²⁾	V _{RS} = 0	V _{DDA} -150 mV	-	V _{DDA}		
		Degraded mode	V _{RS} = 1	V _{DDA} -150 mV	-	V _{DDA}		
TRIM	Trim step resolution	-	-	-	±0.05	±0.1	%	
CL	Load capacitor	-	-	0.5	1	1.5	μF	
esr	Equivalent Serial Resistor of Cload	-	-	-	-	2	Ω	
I _{load}	Static load current	-	-	-	-	4	mA	
1	Line regulation	281/51/5361/	I _{load} = 500 μA	-	200	1000	ppm/V	
I _{line_reg}		$2.0 V \leq V_{\text{DDA}} \leq 3.0 V$	I _{load} = 4 mA	-	100	500	ppm/v	
l _{load_reg}	Load regulation	500 µA ≤ I _{load} ≤4 mA	Normal mode	-	50	500	ppm/mA	
T	Temperature	-40 °C < T _J < +125 °C		-	-	T _{coeff} _ vrefint + 50	ppm/ °C	
T _{Coeff}	coefficient	0 °C < T _J < +50 °C		-	-	T _{coeff} vrefint + 50		
PSRR	Power supply	DC		40	60	-	dB	
FORK	rejection	100 kHz		25	40	-	uБ	
		$CL = 0.5 \ \mu F^{(4)}$		-	300	350		
t _{START} Start-up time		$CL = 1.1 \ \mu F^{(4)}$		-	500	650	μs	
		$CL = 1.5 \ \mu F^{(4)}$		-	650	800		
I _{INRUSH}	Control of maximum DC current drive on VREFBUF_ OUT during start-up phase (5)	-	-	-	8	-	mA	

(1)

Г

Т

٦

Т

SPI characteristics

Unless otherwise specified, the parameters given in *Table 82* for SPI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 21: General operating conditions*.

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode receiver/full duplex 2.7 < V _{DD} < 3.6 V Voltage Range 1			40	
		Master mode receiver/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1			16	
		Master mode transmitter 1.71 < V _{DD} < 3.6 V Voltage Range 1			40	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode receiver 1.71 < V _{DD} < 3.6 V Voltage Range 1	-	-	40	MHz
		Slave mode transmitter/full duplex 2.7 < V _{DD} < 3.6 V Voltage Range 1			37 ⁽²⁾	
		Slave mode transmitter/full duplex 1.71 < V _{DD} < 3.6 V Voltage Range 1			20 ⁽²⁾	
		Voltage Range 2			13	
t _{su(NSS)}	NSS setup time	Slave mode, SPI prescaler = 2	4 _x T _{PCLK}	-	-	ns
t _{h(NSS)}	NSS hold time	Slave mode, SPI prescaler = 2	2 _x T _{PCLK}	-	-	ns
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	T _{PCLK} -2	T _{PCLK}	T _{PCLK} +2	ns
t _{su(MI)}	Data input satur timo	Master mode	4	-	-	ns
t _{su(SI)}		ata input setup time Slave mode		-	-	115
t _{h(MI)}	Data input hold time	t hold time		-	-	ns
t _{h(SI)}		Slave mode	1.5	-	-	115
t _{a(SO)}	Data output access time	Slave mode	9	-	36	ns
t _{dis(SO)}	Data output disable time	Slave mode	9	-	16	ns

Table	82.	SPI	characteristics ⁽	1)
-------	-----	-----	------------------------------	----

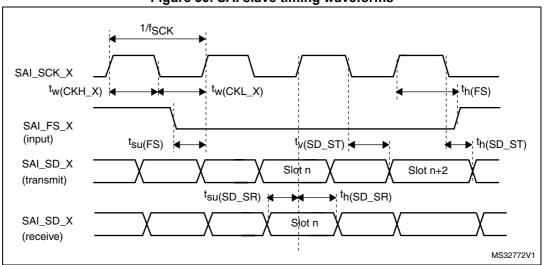


Figure 39. SAI slave timing waveforms

SDMMC characteristics

Unless otherwise specified, the parameters given in *Table 86* for SDIO are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 21: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output characteristics.

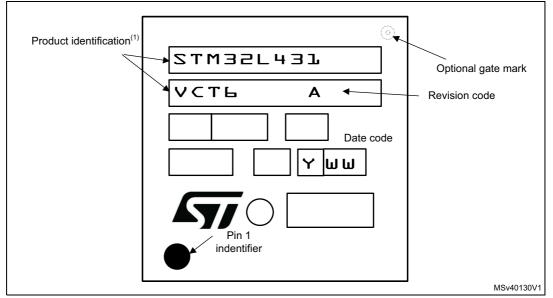

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{PP}	Clock frequency in data transfer mode	-	0	-	50	MHz		
-	SDIO_CK/fPCLK2 frequency ratio	-	-	-	4/3	-		
t _{W(CKL)}	Clock low time	f _{PP} = 50 MHz	8	10	-	ns		
t _{W(CKH)}	Clock high time	f _{PP} = 50 MHz	8	10	-	ns		
CMD, D inpu	ts (referenced to CK) in MMC and SD H	S mode						
t _{ISU}	Input setup time HS	f _{PP} = 50 MHz	3.5	-	-	ns		
t _{IH}	Input hold time HS	f _{PP} = 50 MHz	2.5	-	-	ns		
CMD, D outp	uts (referenced to CK) in MMC and SD	HS mode						
t _{OV}	Output valid time HS	f _{PP} = 50 MHz	-	12	13	ns		
t _{OH}	Output hold time HS	f _{PP} = 50 MHz	10	-	-	ns		
CMD, D inputs (referenced to CK) in SD default mode								
t _{ISUD}	Input setup time SD	f _{PP} = 50 MHz	3.5	-	-	ns		
t _{IHD}	Input hold time SD	f _{PP} = 50 MHz	3	-	-	ns		

Table 86. SD / MMC dynamic characteristics, V_{DD} =2.7 V to 3.6 V⁽¹⁾

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

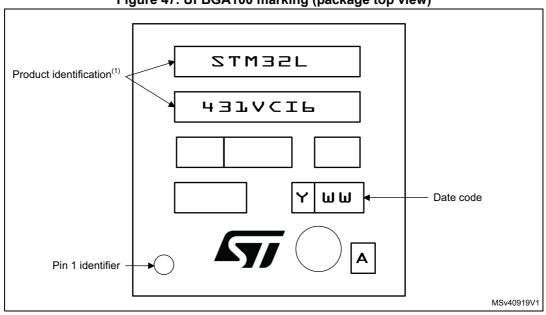
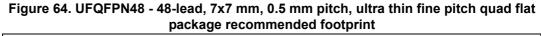
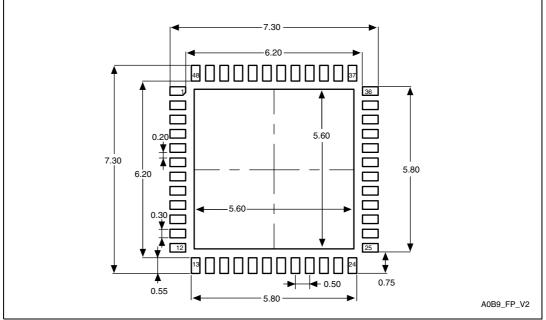


Figure 47. UFBGA100 marking (package top view)


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.



package mechanical data									
Cumb al	millimeters			inches ⁽¹⁾					
Symbol	Min	Тур	Max	Min	Тур	Мах			
А	0.500	0.550	0.600	0.0197	0.0217	0.0236			
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020			
D	6.900	7.000	7.100	0.2717	0.2756	0.2795			
Е	6.900	7.000	7.100	0.2717	0.2756	0.2795			
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244			
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244			
L	0.300	0.400	0.500	0.0118	0.0157	0.0197			
Т	-	0.152	-	-	0.0060	-			
b	0.200	0.250	0.300	0.0079	0.0098	0.0118			
е	-	0.500	-	-	0.0197	-			
ddd	-	-	0.080	-	-	0.0031			

Table 100. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flatpackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID028800 Rev 1

