

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-UFBGA
Supplier Device Package	64-UFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l431rbi6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.17	Voltage reference buffer (VREFBUF)
3.18	Comparators (COMP)
3.19	Operational amplifier (OPAMP)
3.20	Touch sensing controller (TSC)
3.21	Random number generator (RNG)
3.22	Timers and watchdoos
	3.22.1 Advanced-control timer (TIM1)
	3.22.2 General-purpose timers (TIM2, TIM15, TIM16)
	3.22.3 Basic timers (TIM6 and TIM7)
	3.22.4 Low-power timer (LPTIM1 and LPTIM2)
	3.22.5 Infrared interface (IRTIM)
	3.22.6 Independent watchdog (IWDG) 39
	3.22.7 System window watchdog (WWDG)
	3.22.8 SysTick timer
3.23	Real-time clock (RTC) and backup registers
3.24	Inter-integrated circuit interface (I ² C) 41
3.25	Universal synchronous/asynchronous receiver transmitter (USART) 42
3.26	Low-power universal asynchronous receiver transmitter (LPUART) 43
3.27	Serial peripheral interface (SPI) 44
3.28	Serial audio interfaces (SAI) 44
3.29	Single wire protocol master interface (SWPMI)
3.30	Controller area network (CAN)
3.31	Secure digital input/output and MultiMediaCards Interface (SDMMC) 46
3.32	Clock recovery system (CRS)
3.33	Quad SPI memory interface (QUADSPI)
3.34	Development support
	3.34.1 Serial wire JTAG debug port (SWJ-DP)
	3.34.2 Embedded Trace Macrocell™
Pino	uts and pin description
Mem	ory mapping
Elect	rical characteristics
6.1	Parameter conditions

DocID028800 Rev 1

4

5

6

3.12 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.13 Direct memory access controller (DMA)

The device embeds 2 DMAs. Refer to *Table 6: DMA implementation* for the features implementation.

Direct memory access (DMA) is used in order to provide high-speed data transfer between peripherals and memory as well as memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps CPU resources free for other operations.

The two DMA controllers have 14 channels in total, each dedicated to managing memory access requests from one or more peripherals. Each has an arbiter for handling the priority between DMA requests.

The DMA supports:

- 14 independently configurable channels (requests)
- Each channel is connected to dedicated hardware DMA requests, software trigger is also supported on each channel. This configuration is done by software.
- Priorities between requests from channels of one DMA are software programmable (4 levels consisting of very high, high, medium, low) or hardware in case of equality (request 1 has priority over request 2, etc.)
- Independent source and destination transfer size (byte, half word, word), emulating packing and unpacking. Source/destination addresses must be aligned on the data size.
- Support for circular buffer management
- 3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error) logically ORed together in a single interrupt request for each channel
- Memory-to-memory transfer
- Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral transfers
- Access to Flash, SRAM, APB and AHB peripherals as source and destination
- Programmable number of data to be transferred: up to 65536.

Table 6. DMA implementation

DMA features	DMA1	DMA2
Number of regular channels	7	7

3.26 Low-power universal asynchronous receiver transmitter (LPUART)

The device embeds one Low-Power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop mode are programmable and can be:

- Start bit detection
- Any received data frame
- A specific programmed data frame

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

			Pi	n Nu	Imbe	ər			Dia		a		Pin functions		
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	function (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
-	27	27	E1	G1	35	F8	53	K11	PB14	I/O	FT_f	-	TIM1_CH2N, I2C2_SDA, SPI2_MISO, USART3_RTS_DE, TSC_G1_IO3, SWPMI1_RX, SAI1_MCLK_A, TIM15_CH1, EVENTOUT	-	
-	28	28	D3	F2	36	F7	54	K10	PB15	I/O	FT	-	RTC_REFIN, TIM1_CH3N, SPI2_MOSI, TSC_G1_IO4, SWPMI1_SUSPEND, SAI1_SD_A, TIM15_CH2, EVENTOUT	-	
-	-	-	-	-	-	-	55	K9	PD8	I/O	FT	-	USART3_TX, EVENTOUT	-	
-	-	-	-	-	-	-	56	K8	PD9	I/O	FT	-	USART3_RX, EVENTOUT	-	
-	-	-	-	-	-	-	57	J12	PD10	I/O	FT	-	USART3_CK, TSC_G6_IO1, EVENTOUT	-	
-	-	-	-	-	-	-	58	J11	PD11	I/O	FT	-	USART3_CTS, TSC_G6_IO2, LPTIM2_ETR, EVENTOUT	-	
-	-	-	-	-	-	-	59	J10	PD12	I/O	FT	-	USART3_RTS_DE, TSC_G6_IO3, LPTIM2_IN1, EVENTOUT	-	
-	-	-	-	-	-	-	60	H12	PD13	I/O	FT	-	TSC_G6_IO4, LPTIM2_OUT, EVENTOUT	-	
-	-	-	-	-	-	-	61	H11	PD14	I/O	FT	-	EVENTOUT	-	
-	-	-	-	-	-	-	62	H10	PD15	I/O	FT	-	EVENTOUT	-	
-	-	-	-	F1	37	F6	63	E12	PC6	I/O	FT	-	TSC_G4_IO1, SDMMC1_D6, EVENTOUT	-	
-	-	-	-	E1	38	E7	64	E11	PC7	I/O	FT	-	TSC_G4_IO2, SDMMC1_D7, EVENTOUT	-	

Table 14. STM32L431xx pin definitions (continued)

Table 16. Alternate function AF8 to AF15 (for AFU to AF7 see Table 15) (continued)									
		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
Po	ort	LPUART1	CAN1/TSC	QUADSPI		SDMMC1/ COMP1/ COMP2/ SWPMI1	SAI1	TIM2/TIM15/ TIM16/LPTIM2	EVENTO
	PC0	LPUART1_RX	-	-		-	-	LPTIM2_IN1	EVENTO
Port C	PC1	LPUART1_TX	-	-		-	-	-	EVENTO
	PC2	-	-	-		-	-	-	EVENTC
	PC3	-	-	-		-	SAI1_SD_A	LPTIM2_ETR	EVENTC
	PC4	-	-	-		-	-	-	EVENTC
	PC5	-	-	-		-	-	-	EVENTO
	PC6	-	TSC_G4_IO1	-		SDMMC1_D6	-	-	EVENTO
	PC7	-	TSC_G4_IO2	-		SDMMC1_D7	-	-	EVENTO
	PC8	-	TSC_G4_IO3	-		SDMMC1_D0	-	-	EVENTO
Port C	PC9	-	TSC_G4_IO4			SDMMC1_D1	-	-	EVENTO
	PC10	-	TSC_G3_IO2	-		SDMMC1_D2	-	-	EVENTO
	PC11	-	TSC_G3_IO3	-		SDMMC1_D3	-	-	EVENTO
	PC12	-	TSC_G3_IO4	-		SDMMC1_CK	-	-	EVENTO
	PC13	-	-	-	-	-	-	-	EVENTO
	PC14	-	-	-	-	-	-	-	EVENTO
	PC15	-	-	-	-	-	-	-	EVENTO
	PD0	-	CAN1_RX	-	-	-	-	-	EVENTO
Port D	PD1	-	CAN1_TX	-	-	-	-	-	EVENTO
	PD2	-	TSC_SYNC	-		SDMMC1_ CMD	-	-	EVENTO

STM32L431xx

71/200

Pinouts and pin description

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit	
M	DVD threshold 1	Rising edge	2.26	2.31	2.36	V	
VPVD1		Falling edge	2.15	2.20	2.25	v	
M	DVD threshold 2	Rising edge	2.41	2.46	2.51	V	
VPVD2	PVD threshold 2	Falling edge	2.31	2.36	2.41	v	
V	DVD threshold 2	Rising edge	2.56	2.61	2.66	V	
VPVD3		Falling edge	2.47	2.52	2.57	v	
V	DVD threshold 4	Rising edge	2.69	2.74	2.79	V	
VPVD4		Falling edge	2.59	2.64	2.69	v	
V	DVD threshold 5	Rising edge	2.85	2.91	2.96	V	
VPVD5		Falling edge	2.75	2.81	2.86	v	
V _{PVD6}	DVD threshold 6	Rising edge	2.92	2.98	3.04	V	
	PVD threshold 6	Falling edge	2.84	2.90	2.96		
Vevet POPHO	Hysteresis voltage of BORH0	Hysteresis in continuous mode	-	20	-	mV	
		Hysteresis in other mode	-	30	-		
V _{hyst_BOR_PVD}	Hysteresis voltage of BORH (except BORH0) and PVD	-	-	100	-	mV	
I _{DD} (BOR_PVD) ⁽²⁾	BOR ⁽³⁾ (except BOR0) and PVD consumption from V _{DD}	-	-	1.1	1.6	μA	
V	V _{DDA} peripheral voltage	Rising edge	1.61	1.65	1.69	V	
VPVM3	monitoring	Falling edge	1.6	1.64	1.68	V	
V	V _{DDA} peripheral voltage	Rising edge	1.78	1.82	1.86	V	
VPVM4	monitoring	Falling edge	1.77	1.81	1.85	v	
V _{hyst_PVM3}	PVM3 hysteresis	-	-	10	-	mV	
V _{hyst_PVM4}	PVM4 hysteresis	-	-	10	-	mV	
I _{DD} (PVM1) (2)	PVM1 consumption from V_{DD}	-	-	0.2	-	μA	
I _{DD} (PVM3/PVM4) (2)	PVM3 and PVM4 consumption from V _{DD}	-	-	2	-	μA	

Table 23. Embedded reset and power control block characteristics (continued)

1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.

2. Guaranteed by design.

3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current characteristics tables.

ш
e
ö
t
Ť
ы́.
=
C
5
B
a,
ดิ
E.
Ť.
S
Ë.
0
S

DocID028800 Rev 1

X

		Table 34	. Curre	ent con	isumpt	ion in S	Stop 1 i	mode						
Symbol	Baramatar	Conditions				TYP					MAX ⁽¹⁾			Unit
Symbol	Parameter	-	V_{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C 25 °C 55 °C 85 °C 105 ° 204 9.3 27.4 98.9 198.° 205 9.4 27.6 99.5 199.°	105 °C	125 °C	Unit		
	Supply		1.8 V	4.34	12.4	43.6	96.4	204	9.3	27.4	98.9	198.7	397.5	
I _{DD} (Stop 1) Stop 1 mo	current in	_	2.4 V	4.35	12.5	43.8	97	205	9.4	27.6	99.5	199.0	398.0	
	Stop 1 mode,		3 V	4.41	12.6	44.1	97.7	207	9.5	27.8	100.3	200.4	400.8	μν
	RIC disabled		3.6 V	4.56	12.9	44.8	98.9	210	9.7	28.3	101.7	202.1	05 °C 125 °C 199.7 397.5 199.0 398.0 200.4 400.8 202.1 404.2 198.9 397.8 199.5 399.0 200.9 401.9 202.5 405.0 - -	
			1.8 V	4.63	12.7	43.9	96.8	205	9.9	28.0	99.5	198.9	397.8	
		RTC clocked by LSI	2.4 V	4.78	12.8	44.2	97.4	206	10.1	28.3	100.3	199.5	399.0	
		INTO Glocked by LSI	3 V	4.93	13	44.6	98.1	207	10.4	28.7	101.2	200.9	401.9	
S			3.6 V	5.05	13.4	45.3	99.5	210	10.8	29.4	102.8	202.5	405.0	-
	Supply		1.8 V	4.7	12.8	44	96.9	205	-	-	-	-	-	
I _{DD} (Stop 1	current in stop	op RTC clocked by LSE bypassed, at 32768 Hz ed	2.4 V	4.95	13	44.4	97.6	206	-	-	-	-	-	Δ
with RTC) 1 mode	1 mode,		3 V	5.33	13.6	45.4	99.1	209	-	-	-	-	-	- -
	RIC enabled		3.6 V	6.91	16.1	48.8	103	216	-	-	-	-	-	
			1.8 V	4.76	12.3	43.7	99.1	-	-	-	-	-	-	
		RTC clocked by LSE quartz ⁽²⁾	2.4 V	4.95	12.4	43.8	99.3	-	-	-	-	-	-	
		in low drive mode	3 V	5.1	12.6	44.1	99.6	-	-	-	-	-	-	1
			3.6 V	5.65	13	44.8	101	-	-	-	-	-	-	
		Wakeup clock MSI = 48 MHz, voltage Range 1. See ⁽³⁾ .	3 V	1.14	-	-	-	-	-	-	-	-	-	
I _{DD} (wakeup from Stop1)	Supply current during wakeup from Stop 1	Wakeup clock MSI = 4 MHz, voltage Range 2. See ⁽³⁾ .	3 V	1.22	-	-	-	-	-	-	-	-	-	mA
	r I	Wakeup clock HSI16 = 16 MHz, voltage Range 1. See ⁽³⁾ .	3 V	1.20	-	-	-	-	-	-	-	-	2C 125 °C 7 397.5 0 398.0 4 400.8 1 404.2 9 397.8 5 399.0 9 401.9 5 405.0 - - - <td< td=""><td></td></td<>	

1. Guaranteed based on test during characterization, unless otherwise specified.

2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in *Table 40: Low-power mode wakeup timings*.

96/200

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 59: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously (see *Table 39: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDIOx} \times f_{SW} \times C$$

where

 ${\rm I}_{\rm SW}$ is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DDIOx} is the I/O supply voltage

 f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

 C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Symbol	Parameter		Conditions	Тур	Max	Unit		
		Pange 1	Wakeup clock MSI = 48 MHz	3.8	5.7			
	Wake up time from Stop 0	Trange T	Wakeup clock HSI16 = 16 MHz	4.1	6.9			
	mode to Run mode in	Range 2	Wakeup clock MSI = 24 MHz	4.07	6.2			
	Flash		Wakeup clock HSI16 = 16 MHz	4.1	6.8			
t			Wakeup clock MSI = 4 MHz	8.45	11.8			
WUSTOP0		Pango 1	Wakeup clock MSI = 48 MHz	1.5	2.9	μο		
	Wake up time from Stop 0	Range	Wakeup clock HSI16 = 16 MHz	2.4	2.76			
	mode to Run mode in		Wakeup clock MSI = 24 MHz	2.4	3.48			
	SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	2.4	2.76			
			Wakeup clock MSI = 4 MHz	8.16	10.94			
		Dance 1	Wakeup clock MSI = 48 MHz	6.34	7.86			
	Wake up time from Stop 1 mode to Run in Flash	Range	Wakeup clock HSI16 = 16 MHz	6.84	8.23			
		Range 2	Wakeup clock MSI = 24 MHz	6.74	8.1			
			Wakeup clock HSI16 = 16 MHz	6.89	8.21			
			Wakeup clock MSI = 4 MHz	10.47	12.1			
		Banga 1	Wakeup clock MSI = 48 MHz	4.7	5.97]		
	Wake up time from Stop 1	Range	Wakeup clock HSI16 = 16 MHz	5.9	6.92			
t _{WUSTOP1}	mode to Run mode in		Wakeup clock MSI = 24 MHz	5.4	6.51	μs		
	SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	5.9	6.92			
			Wakeup clock MSI = 4 MHz	11.1	12.2			
	Wake up time from Stop 1 mode to Low-power run mode in Flash	Regulator in low-power		16.4	17.73			
	Wake up time from Stop 1 mode to Low-power run mode in SRAM1	mode (LPR=1 in PWR_CR1)	vvakeup clock MSI = 2 MHz	17.3	18.82			

Table 40. Low-power mode wakeup timings⁽¹⁾ (continued)

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Figure 22. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 46*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit				
I _{DD(LSE)}		LSEDRV[1:0] = 00 Low drive capability	-	250	-					
	LSE current consumption	LSEDRV[1:0] = 01 Medium low drive capability	-	315	-					
		LSEDRV[1:0] = 10 Medium high drive capability	-	500	-	ΠA				
		LSEDRV[1:0] = 11 High drive capability	-	630	-					
		LSEDRV[1:0] = 00 Low drive capability	-	-	0.5					
Gm	Maximum critical crystal	LSEDRV[1:0] = 01 Medium low drive capability	-	-	0.75					
GM _{critmax}	gm	LSEDRV[1:0] = 10 Medium high drive capability	-	-	1.7	μΑνν				
		LSEDRV[1:0] = 11 High drive capability	-	-	2.7					
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	-	S				

Fable 46. LSE osc	illator characteristics	s (f _{LSE} = 32.768 kHz) ⁽¹⁾
-------------------	-------------------------	--

Electrical characteristics

Speed	Symbol	Parameter	Conditions	Min	Max	Unit				
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	5					
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1					
	Emoy	Maximum frequency	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1					
	гшах		C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	10					
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1.5					
00			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1					
00			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	25					
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	52					
	Tr/Tf	Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	140					
			C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	17	ns				
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	37					
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	110					
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	25					
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	- 10						
	Emoy	Maximum frequency	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1	— MHz				
	FIIIdX		C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	50					
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	15					
01			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1					
01			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	9					
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	16					
	Tr/Tf	Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	40					
	11/11		C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	4.5	115				
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	9	9				
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	21					

Table 6'	1. I/O AC	characteristics ⁽¹⁾⁽²⁾
----------	-----------	-----------------------------------

Sym- bol	Parameter	C	Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	4	5	
FT	Total		ended	Slow channel (max speed)	-	4	5	
	error		Differential	Fast channel (max speed)	-	3.5	4.5	
			Differential	Slow channel (max speed)	-	3.5	4.5	
			Single	Fast channel (max speed)	-	1	2.5	
FO	Offset		ended	Slow channel (max speed)	-	1	2.5	
	error		Differential	Fast channel (max speed)	-	1.5	2.5	
			Differential	Slow channel (max speed)	-	1.5	2.5	
			Single	Fast channel (max speed)	-	2.5	4.5	
FG	Gain error		ended	Slow channel (max speed)	-	2.5	4.5	ISB
	Call Cirol		Differential	Fast channel (max speed)	-	2.5	3.5	
		tial ADC clock frequency ≤ 80 MHz, Sampling rate ≤ 5.33 Msps, V _{DDA} = VREF+ = 3 V, TA = 25 °C	Differential	Slow channel (max speed)	-	2.5	3.5	
			Single ended	Fast channel (max speed)	-	1	1.5	
Differentia ED linearity error	Differential			Slow channel (max speed)	-	1	1.5	
	error		Differential	Fast channel (max speed)	-	1	1.2	
				Slow channel (max speed)	-	1	1.2	
			Single ended	Fast channel (max speed)	-	1.5	2.5	
	Integral			Slow channel (max speed)	-	1.5	2.5	-
	error		Differential	Fast channel (max speed)	-	1	2	
				Slow channel (max speed)	-	1	2	
			Single ended	Fast channel (max speed)	10.4	10.5	-	
ENOR	Effective			Slow channel (max speed)	10.4	10.5	-	bite
	bits		Differential	Fast channel (max speed)	10.8	10.9	-	5113
			Differential	Slow channel (max speed)	10.8	10.9	-	
	Signal to		Single	Fast channel (max speed)	64.4	65	-	
	noise and		ended	Slow channel (max speed)	64.4	65	-	1
	distortion ratio		Differential	Fast channel (max speed)	66.8	67.4	-	
	1010		Differential	Slow channel (max speed)	66.8	67.4	-	dB
			Single	Fast channel (max speed)	65	66	-	uВ
SNID	Signal-to-		ended	Slow channel (max speed)	65	66	-	
JUNE	noise ratio		Differential	Fast channel (max speed)	67	68	-	
			Dinerential	Slow channel (max speed)	67	68	-	

Table 66. ADC accuracy - limited test conditions $1^{(1)(2)(3)}$
--

Sym- bol	Parameter	(Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	5	5.4	
ET	Total		ended	Slow channel (max speed)	-	4	5	
	error		Differential	Fast channel (max speed)	-	4	5	
			Differential	Slow channel (max speed)	-	3.5	4.5	
			Single	Fast channel (max speed)	-	2	4	
FO	Offset		ended	Slow channel (max speed)	-	2	4	
	error		Differential	Fast channel (max speed)	-	2	3.5	
			Differential	Slow channel (max speed)	-	2	3.5	
			Single	Fast channel (max speed)	-	4	4.5	
FG	Gain orror		ended	Slow channel (max speed)	-	4	4.5	
EG	Gainenoi		Differential	Fast channel (max speed)	-	3	4	LOD
		ADC clock frequency ≤ 26 MHz, 1.65 V ≤ V _{DDA} = VREF+ ≤ 3.6 V, Voltage scaling Range 2	Differential	Slow channel (max speed)	-	3	4	
			Single ended	Fast channel (max speed)	-	1	1.5	
Differential ED linearity error	Differential			Slow channel (max speed)	-	1	1.5	
	error		Differential	Fast channel (max speed)	-	1	1.2	
				Slow channel (max speed)	-	1	1.2	
			Single ended	Fast channel (max speed)	-	2.5	3	
	Integral			Slow channel (max speed)	-	2.5	3	
	error		Differential	Fast channel (max speed)	-	2	2.5	
				Slow channel (max speed)	-	2	2.5	
			Single ended	Fast channel (max speed)	10.2	10.5	-	
ENOR	Effective			Slow channel (max speed)	10.2	10.5	-	bite
LINOD	bits		Differential	Fast channel (max speed)	10.6	10.7	-	DILS
			Differential	Slow channel (max speed)	10.6	10.7	-	
	Signal to		Single	Fast channel (max speed)	63	65	-	
	noise and		ended	Slow channel (max speed)	63	65	-	-
SINAD	distortion		Differential	Fast channel (max speed)	65	66	-	
	1010		Differential	Slow channel (max speed)	65	66	-	dD
			Single	Fast channel (max speed)	64	65	-	uD
SNID	Signal-to-		ended	Slow channel (max speed)	64	65	-	1
SINK	noise ratio		Differential	Fast channel (max speed)	66	67	-	
			Umerential	Slow channel (max speed)	66	67	-	

Table 69. ADC accuracy - limited test conditions $4^{(1)(2)(3)}$
--

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Cain	Coin orrer(5)	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ	-	-	±0.5	0/
Gain	Gain error.	DAC output buffer OFF CL ≤ 50 pF, no RL	-	-	±0.5	%
	Total	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ	-	-	±30	
TUE	error	DAC output buffer OFF CL ≤ 50 pF, no RL	-	-	±12	LOD
TUECal	Total unadjusted error after calibration	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ	-	-	±23	LSB
SNR	Signal-to-noise ratio	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ 1 kHz, BW 500 kHz	-	71.2	-	dP
		DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz BW 500 kHz	-	71.6	-	uв
Total harmonic		DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz	-	-78	-	dB
שחו	distortion	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz	-	-79	-	uв
SINAD	Signal-to-noise	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz	-	70.4	-	dP
	and distortion ratio	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz	-	71	-	uв
ENOR	Effective	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ, 1 kHz	-	11.4	-	1.11.
ENOB	number of bits	DAC output buffer OFF CL ≤ 50 pF, no RL, 1 kHz	-	11.5	-	DILS

Table 71. DAC accuracy ⁽¹⁾ (cont

1. Guaranteed by design.

2. Difference between two consecutive codes - 1 LSB.

3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.

4. Difference between the value measured at Code (0x001) and the ideal value.

5. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and ($V_{REF+} - 0.2$) V when buffer is ON.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{v(SO)}		Slave mode 2.7 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	13.5	
	Data output valid time	Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 1	-	12.5	24	ns
		Slave mode 1.71 < V _{DD} < 3.6 V Voltage Range 2	-	12.5	33	
t _{v(MO)}		Master mode	-	4.5	6	
t _{h(SO)}	Data output hold time	Slave mode	7	-	-	ne
t _{h(MO)}		Master mode	0	-	-	115

Table 82. SPI characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization results.

2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50 %.

SAI characteristics

Unless otherwise specified, the parameters given in *Table 85* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 21: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: $0.5 \times V_{DD}$

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CK,SD,FS).

Symbol	Parameter	Conditions		Мах	Unit	
f _{MCLK}	SAI Main clock output	-	-	50	MHz	
		Master transmitter 2.7 ≤ V _{DD} ≤ 3.6 Voltage Range 1	- 18.5			
		Master transmitter 1.71 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	12.5	-	
		Master receiver Voltage Range 1	-	25		
f _{CK}	SAI clock frequency ⁽²⁾	Slave transmitter 2.7 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	22.5	MHz	
		Slave transmitter 1.71 ≤ V _{DD} ≤ 3.6 Voltage Range 1	-	14.5	-	
		Slave receiver Voltage Range 1	-	25		
		Voltage Range 2	-	12.5		
+	FS volid time	Master mode 2.7 \leq V _{DD} \leq 3.6	-	22		
۲v(FS)		Master mode 1.71 $\leq V_{DD} \leq 3.6$	-	40	115	
t _{h(FS)}	FS hold time	Master mode	10	-	ns	
t _{su(FS)}	FS setup time	Slave mode	1	-	ns	
t _{h(FS)}	FS hold time	Slave mode	2	-	ns	
$t_{su(SD_A_MR)}$	Data input setup time	Master receiver	2	-	ne	
$t_{su(SD_B_SR)}$		Slave receiver	1.5 -		113	
t _{h(SD_A_MR)}	Data input hold time	Master receiver	5	-	ns	
t _{h(SD_B_SR)}		Slave receiver	2.5	-	110	

Table 85. SAI characteristics⁽¹⁾

DocID028800 Rev 1

7.5 WLCSP64 package information

Figure 54. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale package outline

1. Drawing is not to scale.

Table 95. WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
А	0.516	0.546	0.576	0.0203	0.0215	0.0227
A1	-	0.166	-	-	0.0065	-
A2	-	0.380	-	-	0.0150	-
A3 ⁽²⁾	-	0.025	-	-	0.0010	-

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Gumbal		millimeters	<u> </u>		inches ⁽¹⁾	
Зутроі	Min	Тур	Мах	Min	Тур	Мах
А	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.175	-	-	0.0069	-
A2	-	0.380	-	-	0.0150	-
A3 ⁽²⁾	-	0.025	-	-	0.0010	-
b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110
D	3.106	3.141	3.176	0.1223	0.1237	0.1250
E	3.092	3.127	3.162	0.1217	0.1231	0.1245
е	-	0.400	-	-	0.0157	-
e1	-	2.400	-	-	0.0945	-
e2	-	2.400	-	-	0.0945	-
F	-	0.3705	-	-	0.0146	-
G	-	0.3635	-	-	0.0143	-
aaa	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
CCC	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020

Table 97. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scalepackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 58. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale package recommended footprint

Cumula al		millimeters				
Зутвої	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 99. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

