

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-UFBGA, WLCSP
Supplier Device Package	64-WLCSP (3.14x3.13)

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	package mechanical data	. 175
Table 93.	UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array	
T 1 1 0 4	package mechanical data	
Table 94.	UFBGA64 recommended PCB design rules (0.5 mm pitch BGA)	. 179
Table 95.	WLCSP64 - 64-ball, 3.141 x 3.127 mm, 0.35 mm pitch wafer level chip scale	
	package mechanical data	. 181
Table 96.	WLCSP64 recommended PCB design rules (0.35 mm pitch)	. 182
Table 97.	WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale	
	package mechanical data	. 185
Table 98.	WLCSP49 recommended PCB design rules (0.4 mm pitch)	. 186
Table 99.	LQFP48 - 48-pin, 7 x 7 mm low-profile guad flat package	
	mechanical data	. 188
Table 100.	UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat	
	package mechanical data	. 191
Table 101.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat	
	package mechanical data	. 193
Table 102.	Package thermal characteristics	
Table 103.	STM32L431xx ordering information scheme	
Table 104.	Document revision history	
		00

3 Functional overview

3.1 ARM[®] Cortex[®]-M4 core with FPU

The ARM[®] Cortex[®]-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM[®] Cortex[®]-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.

With its embedded ARM core, the STM32L431xx family is compatible with all ARM tools and software.

Figure 1 shows the general block diagram of the STM32L431xx family devices.

3.2 Adaptive real-time memory accelerator (ART Accelerator[™])

The ART Accelerator[™] is a memory accelerator which is optimized for STM32 industrystandard ARM[®] Cortex[®]-M4 processors. It balances the inherent performance advantage of the ARM[®] Cortex[®]-M4 over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor near 100 DMIPS performance at 80MHz, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 80 MHz.

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

3.10 Interconnect matrix

Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency.

Depending on peripherals, these interconnections can operate in Run, Sleep, low-power run and sleep, Stop 0, Stop 1 and Stop 2 modes.

Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low-power run	Low-power sleep	Stop 0 / Stop 1	Stop 2
	TIMx	Timers synchronization or chaining	Y	Y	Y	Y	-	-
TIMx	ADCx DACx	Conversion triggers	Y	Y	Y	Y	-	-
	DMA	Memory to memory transfer trigger	Y	Υ	Υ	Y	-	-
	COMPx	Comparator output blanking	Y	Y	Υ	Y	-	-
TIM15/TIM16	IRTIM	Infrared interface output generation	Y	Y	Υ	Y	-	-
COMPx	TIM1 TIM2	Timer input channel, trigger, break from analog signals comparison	Y	Y	Y	Y	-	-
	LPTIMERx	Low-power timer triggered by analog signals comparison	Y	Y	Y	Y	Y	Y (1)
ADCx	TIM1	Timer triggered by analog watchdog	Y	Y	Υ	Y	-	-
	TIM16	Timer input channel from RTC events	Υ	Υ	Υ	Y	-	-
RTC	LPTIMERx	Low-power timer triggered by RTC alarms or tampers	Y	Y	Y	Y	Y	Y (1)
All clocks sources (internal and external)	TIM2 TIM15, 16	Clock source used as input channel for RC measurement and trimming	Y	Y	Y	Y	-	-
CSS CPU (hard fault) RAM (parity error) Flash memory (ECC error) COMPx PVD	TIM1 TIM15,16	Timer break	Y	Y	Y	Y	_	-

Table 5. STM32L431xx peripherals interconnect matrix

Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low-power run	Low-power sleep	Stop 0 / Stop 1	Stop 2
	TIMx	External trigger	Y	Y	Y	Υ	-	-
GPIO	LPTIMERx	External trigger	Y	Y	Y	Y	Y	Y (1)
	ADCx DACx	Conversion external trigger	Y	Y	Y	Y	-	-

Table 5. STM32L431xx peripherals interconnect matrix (continued)

1. LPTIM1 only.

3.22 Timers and watchdogs

The STM32L431xx includes one advanced control timers, up to five general-purpose timers, two basic timers, two low-power timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

Timer type	Timer type Timer		Counter Prescaler type factor		DMA request generation	Capture/ compare channels	Complementary outputs						
Advanced control	TIM1	16-bit	Up, down, Up/down	Any integer between 1 and 65536	Yes	4	3						
General- purpose	IIM2 3		Up, down, Up/down	Any integer between 1 and 65536	Yes	4	No						
General- purpose	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1						
General- purpose	TIM16		Up	Any integer between 1 and 65536	Yes	1	1						
Basic	TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No						

Table 9. Timer feature comparison

3.22.1 Advanced-control timer (TIM1)

The advanced-control timer can each be seen as a three-phase PWM multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead-times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes) with full modulation capability (0-100%)
- One-pulse mode output

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switches driven by these outputs.

Many features are shared with those of the general-purpose TIMx timers (described in *Section 3.22.2*) using the same architecture, so the advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

3.23 Real-time clock (RTC) and backup registers

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode.
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.

The RTC and the 32 backup registers are supplied through a switch that takes power either from the V_{DD} supply when present or from the VBAT pin.

The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby or Shutdown mode.

The RTC clock sources can be:

- A 32.768 kHz external crystal (LSE)
- An external resonator or oscillator (LSE)
- The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
- The high-speed external clock (HSE) divided by 32.

The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes except Shutdown mode.

All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes.

SAI features	Support ⁽¹⁾
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97	Х
Mute mode	Х
Stereo/Mono audio frame capability.	Х
16 slots	Х
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit	Х
FIFO Size	X (8 Word)
SPDIF	Х

Table 12. SAI implementation

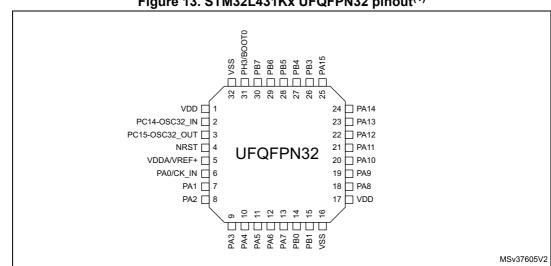
1. X: supported

3.29 Single wire protocol master interface (SWPMI)

The Single wire protocol master interface (SWPMI) is the master interface corresponding to the Contactless Frontend (CLF) defined in the ETSI TS 102 613 technical specification. The main features are:

- full-duplex communication mode
- automatic SWP bus state management (active, suspend, resume)
- configurable bitrate up to 2 Mbit/s
- automatic SOF, EOF and CRC handling

SWPMI can be served by the DMA controller.


3.30 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

The CAN peripheral supports:

- Supports CAN protocol version 2.0 A, B Active
- Bit rates up to 1 Mbit/s

Figure 13. STM32L431Kx UFQFPN32 pinout⁽¹⁾

1. The above figure shows the package top view.

Na	Name Abbreviation Definition						
Pin r	name	Unless otherwise specified ir reset is the same as the actu	h brackets below the pin name, the pin function during and after al pin name				
		S	Supply pin				
Pin	type	I	Input only pin				
		I/O	Input / output pin				
		FT 5 V tolerant I/O					
		TT 3.6 V tolerant I/O					
		RST Bidirectional reset pin with embedded weak pull-up resisto					
I/O str	ructure	Option for TT or FT I/Os					
		_f ⁽¹⁾	I/O, Fm+ capable				
		a ⁽²⁾	I/O, with Analog switch function supplied by V{DDA}				
No	otes	Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.					
Pin	Alternate functions	Functions selected through 0	Functions selected through GPIOx_AFR registers				
functions	Additional functions	Functions directly selected/e	nabled through peripheral registers				

Table 13. Legend/abbreviations used in the pinout table

1. The related I/O structures in *Table 14* are: FT_f, FT_fa.

2. The related I/O structures in *Table 14* are: FT_a, FT_fa, TT_a.

			Pi	n Nu	mbe	ər				_	0		Pin functions			
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions		
8	12	12	E5	F6	16	F3	25	K3	PA2	I/O	FT_a	-	TIM2_CH3, USART2_TX, LPUART1_TX, QUADSPI_BK1_NCS, COMP2_OUT, TIM15_CH1, EVENTOUT	COMP2_INM, ADC1_IN7, WKUP4, LSCO		
9	13	13	E4	G6	17	G3	26	L3	PA3	I/O	TT_a	-	TIM2_CH4, USART2_RX, LPUART1_RX, QUADSPI_CLK, SAI1_MCLK_A, TIM15_CH2, EVENTOUT	OPAMP1_ VOUT, COMP2_INP, ADC1_IN8		
-	-	-	-	H8	18	C2	27	E3	VSS	S	-	-	-	-		
-	-	-	-	H7	19	D2	28	H3	VDD	S	-	-	-	-		
10	14	14	G6	E5	20	H3	29	М3	PA4	I/O	TT_a	-	SPI1_NSS, SPI3_NSS, USART2_CK, SAI1_FS_B, LPTIM2_OUT, EVENTOUT	COMP1_INM, COMP2_INM, ADC1_IN9, DAC1_OUT1		
11	15	15	F5	F5	21	F4	30	K4	PA5	I/O	TT_a	-	TIM2_CH1, TIM2_ETR, SPI1_SCK, LPTIM2_ETR, EVENTOUT	COMP1_INM, COMP2_INM, ADC1_IN10, DAC1_OUT2		
12	16	16	F4	G5	22	G4	31	L4	PA6	I/O	FT_a	-	TIM1_BKIN, SPI1_MISO, COMP1_OUT, USART3_CTS, LPUART1_CTS, QUADSPI_BK1_IO3, TIM1_BKIN_COMP2, TIM16_CH1, EVENTOUT	ADC1_IN11		
13	17	17	F3	H6	23	H4	32	M4	PA7	I/O	FT_fa	-	TIM1_CH1N, I2C3_SCL, SPI1_MOSI, QUADSPI_BK1_IO2, COMP2_OUT, EVENTOUT	ADC1_IN12		
-	-	-	-	D4	24	H5	33	K5	PC4	I/O	FT_a	-	USART3_TX, EVENTOUT	COMP1_INM, ADC1_IN13		
-	-	-	-	E4	25	H6	34	L5	PC5	I/O	FT_a	-	USART3_RX, EVENTOUT	COMP1_INP, ADC1_IN14, WKUP5		

Table 14. STM32L431xx pin definitions (continued)

S
_
<
ω
Ň
4
7.7
ω
_
_
~
~
~
~

Pinouts and pin description

		Tabl	e 15. Alternate	function AF0 t	o AF7 (for AF8	8 to AF15 see <mark>Ta</mark>	<mark>ble 16</mark>) (contir	nued)	
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Po	ort	SYS_AF TIM1/TIM2/ LPTIM1		TIM1/TIM2	USART2	12C1/12C2/12C3	SPI1/SPI2	SPI3	USART1/ USART2/ USART3
	PB0	-	TIM1_CH2N	-	-	-	SPI1_NSS	-	USART3_CK
	PB1	-	TIM1_CH3N	-	-	-	-	-	USART3_RTS_ DE
Port B	PB2	RTC_OUT	LPTIM1_OUT	-	-	I2C3_SMBA	-	-	-
	PB3	JTDO- TRACESWO	TIM2_CH2	SPI1_		SPI1_SCK	SPI3_SCK	USART1_RTS_ DE	
	PB4	NJTRST	-	-	-	I2C3_SDA	SPI1_MISO	SPI3_MISO	USART1_CTS
	PB5	-	LPTIM1_IN1	-	-	I2C1_SMBA	SPI1_MOSI	SPI3_MOSI	USART1_CK
	PB6	-	LPTIM1_ETR	-	-	I2C1_SCL	-	-	USART1_TX
	PB7	-	LPTIM1_IN2	-	-	I2C1_SDA	-	-	USART1_RX
	PB8	-	-	-	-	I2C1_SCL	-	-	-
	PB9	-	IR_OUT	-	-	I2C1_SDA	SPI2_NSS	-	-
	PB10	-	TIM2_CH3	-	-	I2C2_SCL	SPI2_SCK	-	USART3_TX
Port B	PB11	-	TIM2_CH4	-	-	I2C2_SDA	-	-	USART3_RX
	PB12	-	TIM1_BKIN	-	TIM1_BKIN_ COMP2	I2C2_SMBA	I2C2_SMBA SPI2_NSS		USART3_CK
	PB13	-	TIM1_CH1N	-	-	I2C2_SCL	SPI2_SCK	-	USART3_CTS
	PB14	-	TIM1_CH2N	-	-	I2C2_SDA	SPI2_MISO	-	USART3_RTS_ DE
	PB15	RTC_REFIN	TIM1_CH3N	-	-	-	SPI2_MOSI	-	-

DocID028800 Rev 1

65/200

5

- 1. When RESET is released functionality is guaranteed down to V_{BOR0} Min.
- 2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table. Maximum I/O input voltage is the smallest value between MIN(V_{DD} , V_{DDA})+3.6 V and 5.5V.
- 3. For operation with voltage higher than Min (V_{DD}, V_{DDA}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.
- If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.10: Thermal characteristics).
- In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.10: Thermal characteristics).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 22* are derived from tests performed under the ambient temperature condition summarized in *Table 21*.

Symbol	Parameter Conditions		Min	Max	Unit
+	V _{DD} rise time rate		0	8	
t _{VDD}	V _{DD} fall time rate	-	10	8	
+	V _{DDA} rise time rate		0	8	µs/V
^t VDDA	V _{DDA} fall time rate	-	10	8	μ5/ V

 Table 22. Operating conditions at power-up / power-down

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 23* are derived from tests performed under the ambient temperature conditions summarized in *Table 21: General operating conditions*.

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit	
t _{RSTTEMPO} ⁽²⁾	Reset temporization after BOR0 is detected	V _{DD} rising	-	250	400	μs	
V _{BOR0} ⁽²⁾	Brown-out reset threshold 0	Rising edge	1.62	1.66	1.7	V	
VBOR0`´	Brown-out reset threshold 0	Falling edge	1.6	1.64	1.69	v	
V	Brown-out reset threshold 1	Rising edge	2.06	2.1	2.14	V	
V _{BOR1}	Brown-out reset threshold i	Falling edge	1.96	2	2.04	v	
V	Brown-out reset threshold 2	Rising edge	2.26	2.31	2.35	V	
V _{BOR2}	Brown-out reset threshold 2	Falling edge	2.16	2.20	2.24	v	
V	Brown-out reset threshold 3	Rising edge	2.56	2.61	2.66	v	
V _{BOR3}	Brown-out reset threshold 5	Falling edge	2.47	2.52	2.57	v	
N	Brown out report throohold 4	Rising edge	2.85	2.90	2.95	v	
V _{BOR4}	Brown-out reset threshold 4	Falling edge	2.76	2.81	2.86	v	
V	Programmable voltage	Rising edge	2.1	2.15	2.19	V	
V _{PVD0}	detector threshold 0	Falling edge	2	2.05	2.1		

Symbol	Parameter	Conditions	Conditions TYP			MAX ⁽¹⁾					U				
Symbol	Falametei	-	V_{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	-	
			1.8 V	63	133	522	1 490	4 270	-	-	-	-	-		
	Supply current	RTC clocked by LSE	2.4 V	165	253	710	1 830	4 980	-	-	-	-	-		
I _{DD} (Shutdown (in Shutdown		3 V	316	423	990	2 340	6 050	-	-	-	-	-		
			3.6 V	649	787	1 530	3 220	7 710	-	-	-	-	-	1	
		egisters	1.8 V	203	293	700	1 675	-	-	-	-	-	-	n	
	retained) RTC	RTC clocked by LSE quartz ⁽²⁾ in low drive	2.4 V	303	411	880	2 001	-	-	-	-	-	-		
	Chabica	enabled quartz -/ In ic	•	3 V	448	567	1 1 36	2 479	-	-	-	-	-	-	
			3.6 V	744	887	1 609	3 256	-	-	-	-	-	-		
l _{DD} (wakeup from Shutdown)	Supply current during wakeup from Shutdown mode	Wakeup clock is MSI = 4 MHz. See ⁽³⁾ .	3 V	0.780	-	-	-	-	-	-	-	-	-	n	

1. Guaranteed by characterization results, unless otherwise specified.

2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in *Table 40: Low-power mode wakeup timings*.

100/200

DocID028800 Rev 1

Electrical characteristics

Speed	Symbol	Parameter	Conditions	Min	Max	Unit	
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	5		
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1		
	Fmax	Maximum frequency	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1	MHz	
	FIIIdX	Maximum frequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	10		
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	1.5		
00			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	0.1		
00			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	25		
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	52		
	Tr/Tf	Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	140	ns	
	11/11		C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	17	115	
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	37		
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	110		
			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	25		
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	10	MHz	
	Fmax	Maximum frequency	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1		
	Filldx	Maximum nequency	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	50		
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	15		
01			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	1		
01			C=50 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	9		
			C=50 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	16		
	Tr/Tf	Output rise and fall time	C=50 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	40		
	11/11	Output rise and fall time	C=10 pF, 2.7 V≤V _{DDIOx} ≤3.6 V	-	4.5	ns	
			C=10 pF, 1.62 V≤V _{DDIOx} ≤2.7 V	-	9		
			C=10 pF, 1.08 V≤V _{DDIOx} ≤1.62 V	-	21		

Table 61	. I/O AC	characteristics ⁽¹⁾⁽²⁾
----------	----------	-----------------------------------

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	T .:	CKMODE = 00	1.5	2	2.5	
4	Trigger conversion latency Regular and	CKMODE = 01	-	-	2.0	1 /5
t _{LATR}	injected channels without conversion abort	CKMODE = 10	-	-	2.25	1/f _{ADC}
		CKMODE = 11	-	-	2.125	
	Trigger conversion	CKMODE = 00	2.5	3	3.5	
+	Trigger conversion latency Injected channels	CKMODE = 01	-	-	3.0	1 /F
^t LATRINJ	aborting a regular conversion	CKMODE = 10	-	-	3.25	1/f _{ADC}
		CKMODE = 11	-	-	3.125	
+	Sampling time	f _{ADC} = 80 MHz	0.03125	-	8.00625	μs
t _s		-	2.5	-	640.5	1/f _{ADC}
t _{ADCVREG_STUP}	ADC voltage regulator start-up time	-	-	-	20	μs
	Total conversion time	f _{ADC} = 80 MHz Resolution = 12 bits	0.1875	-	8.1625	μs
t _{CONV}	(including sampling time)	Resolution = 12 bits	success	ts + 12.5 cycles for successive approximation = 15 to 653		
		fs = 5 Msps	-	730	830	
I _{DDA} (ADC)	ADC consumption from the V _{DDA} supply	fs = 1 Msps	-	160	220	μA
		fs = 10 ksps	-	16	50	
	ADC consumption from	fs = 5 Msps	-	130	160	
I _{DDV_S} (ADC)	the V _{REF+} single ended	fs = 1 Msps	-	30	40	μA
	mode	fs = 10 ksps	-	0.6	2	
	ADC consumption from	fs = 5 Msps	-	260	310	
I _{DDV_D} (ADC)	the V _{REF+} differential	fs = 1 Msps	-	60	70	μA
	mode	fs = 10 ksps	-	1.3	3	

 Table 64. ADC characteristics^{(1) (2)} (continued)

1. Guaranteed by design

2. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4V). It is disable when V_{DDA} \geq 2.4 V.

 V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package. Refer to Section 4: Pinouts and pin description for further details.

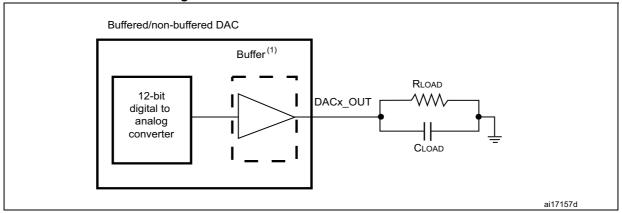
	Table 60. Abc accuracy - Innited test conditions 1. A A A (continued)							
Sym- bol	Parameter	Conditions ⁽⁴⁾				Тур	Max	Unit
	ADC clock frequency ≤	Single	Fast channel (max speed)	-	-74	-73		
THD	Total harmonic	80 MHz, Sampling rate ≤ 5.33 Msps,	ended	Slow channel (max speed)	-	-74	-73	dB
	distortion	ortion $V_{} = V_{} = 3V$	Differential	Fast channel (max speed)	-	-79	-76	uв
	TA = 25 °C	Differential	Slow channel (max speed)	-	-79	-76		

Table 66. ADC accuracy - limited test conditions $1^{(1)(2)(3)}$ (continued)

1. Guaranteed by design.

2. ADC DC accuracy values are measured after internal calibration.

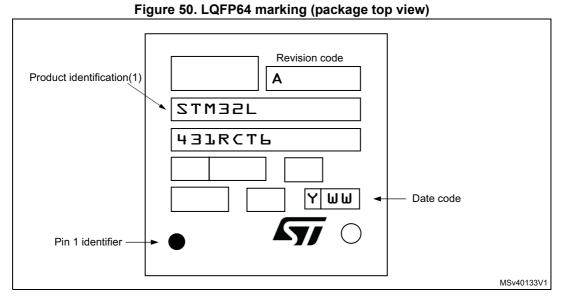
- 3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when V_{DDA} \geq 2.4 V. No oversampling.



Sym- bol	Parameter	(Conditions ⁽⁴)	Min	Тур	Max	Unit
			Single	Fast channel (max speed)	-	5.5	7.5	
ET	Total		ended	Slow channel (max speed)	-	4.5	6.5	
	ET unadjusted error		Differential	Fast channel (max speed)	-	4.5	7.5	
		Differential	Slow channel (max speed)	-	4.5	5.5		
			Single	Fast channel (max speed)	-	2	5	
EO	Offset		ended	Slow channel (max speed)	-	2.5	5	
EU	error		Differential	Fast channel (max speed)	-	2	3.5	
			Differential	Slow channel (max speed)	-	2.5	3	
			Single	Fast channel (max speed)	-	4.5	7	
EG	Gain error		ended	Slow channel (max speed)	-	3.5	6	
EG	Gainenor		Differential	Fast channel (max speed)	-	3.5	4	LSB
		Differential	Slow channel (max speed)	-	3.5	5	1	
			Single ended	Fast channel (max speed)	-	1.2	1.5	-
ED	Differential			Slow channel (max speed)	-	1.2	1.5	
ED	linearity error		Differential	Fast channel (max speed)	-	1	1.2	
				Slow channel (max speed)	-	1	1.2	
		1.65 V ≤ V _{DDA} = V _{REF+} ≤ 3.6 V,	Single	Fast channel (max speed)	-	3	3.5	
EL	Integral linearity	S.o v, Voltage scaling Range 1	ended	Slow channel (max speed)	-	2.5	3.5	
EL	error		Differential	Fast channel (max speed)	-	2	2.5	
			Differential	Slow channel (max speed)	-	2	2.5	
			Single	Fast channel (max speed)	10	10.4	-	
ENOB	Effective number of		ended	Slow channel (max speed)	10	10.4	-	bits
ENOD	bits		Differential	Fast channel (max speed)	10.6	10.7	-	DILS
			Differential	Slow channel (max speed)	10.6	10.7	-	
	Cignal to		Single	Fast channel (max speed)	62	64	-	
	noise and	Signal-to-	ended	Slow channel (max speed)	62	64	-	
SINAD	SINAD distortion ratio		Differential	Fast channel (max speed)	65	66	-	1
			Differential	Slow channel (max speed)	65	66	-	٩D
			Single	Fast channel (max speed)	63	65	-	dB
	Signal-to-		ended	Slow channel (max speed)	63	65	-	
SNR	noise ratio		Difforential	Fast channel (max speed)	66	67	-	
			Differential	Slow channel (max speed)	66	67	-	

3. Refer to Table 59: I/O static characteristics.

4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to RM0392 reference manual for more details.


Figure 32. 12-bit buffered / non-buffered DAC

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

Symbol	Parameter	Conditio	Min	Тур	Max	Unit	
DNL	Differential non	DAC output buffer ON		-	-	±2	
DINL	linearity ⁽²⁾	DAC output buffer OFF		-	-	±2	
-	monotonicity	10 bits		ç	guarantee	d	
INL	Integral non	DAC output buffer ON CL ≤ 50 pF, RL ≥ 5 kΩ		-	-	±4	
INL	linearity ⁽³⁾	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±4	
	Offset error at code 0x800 ⁽³⁾	DAC output buffer ON	V _{REF+} = 3.6 V	-	-	±12	
Offset		CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±25	LSB
		DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±8	
Offset1	Offset error at code 0x001 ⁽⁴⁾	DAC output buffer OFF CL ≤ 50 pF, no RL		-	-	±5	
OffsetCal	Offset Error at OffsetCal code 0x800		V _{REF+} = 3.6 V	-	-	±5	
Unserval	after calibration	CL ≤ 50 pF, RL ≥ 5 kΩ	V _{REF+} = 1.8 V	-	-	±7	

Table 71. DAC accuracy⁽¹⁾

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

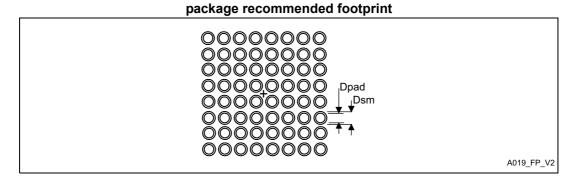


Table 93. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array package mechanical data (continued)

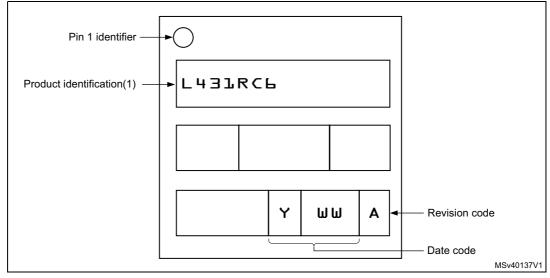
Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	0.460	0.530	0.600	0.0181	0.0209	0.0236
F	0.700	0.750	0.800	0.0276	0.0295	0.0315
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 52. UFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch ultra profile fine pitch ball grid array

Table 94. UFBGA64 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm


Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

