E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, PWM, WDT
Number of I/O	83
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l431vct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.23 Real-time clock (RTC) and backup registers

The RTC is an independent BCD timer/counter. It supports the following features:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
- Two programmable alarms.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy.
- Three anti-tamper detection pins with programmable filter.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode.
- 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period.

The RTC and the 32 backup registers are supplied through a switch that takes power either from the V_{DD} supply when present or from the VBAT pin.

The backup registers are 32-bit registers used to store 128 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby or Shutdown mode.

The RTC clock sources can be:

- A 32.768 kHz external crystal (LSE)
- An external resonator or oscillator (LSE)
- The internal low power RC oscillator (LSI, with typical frequency of 32 kHz)
- The high-speed external clock (HSE) divided by 32.

The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes except Shutdown mode.

All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt and wakeup the device from the low-power modes.

	1	2	3	4	5	6	7	8	9	10	11	12	
А	PE3	PE1	PB8	PH3/BOOT0	PD7	PD5	PB4	PB3	PA15	PA14	PA13	PA12	
в	PE4	PE2	PB9	PB7	PB6	PD6	PD4	PD3	PD1	PC12	PC10	PA11	
с	PC13	PE5	PE0	VDD	VDD PB5 PD2 PD0						VDD	PA10	
D	PC14- OSC32_IN	PE6	vss							PA9	PA8	PC9	
E	PC15- OSC32_OUT	VBAT	VSS		PC8						PC7	PC6	
F	PH0-OSC_IN	VSS			UFBGA100						VSS	VSS	
G	PH1- OSC_OUT	VDD)			VDD	VDD	
н	PC0	NRST	VDD							PD15	PD14	PD13	
J	VSSA	PC1	PC2							PD12	PD11	PD10	
к	VREF-	PC3	PA2	PA5	PC4			PD9	PD8	PB15	PB14	PB13	
L	VREF+	PA0	PA3	PA6	PC5	PB2	PE8	PE10	PE12	PB10	PB11	PB12	
м	VDDA	PA1	PA4	PA7	PB0	PB1	PE7	PE9	PE11	PE13	PE14	PE15	
												MSv3	39213

Figure 6. STM32L431Vx UFBGA100 ballout⁽¹⁾

1. The above figure shows the package top view.

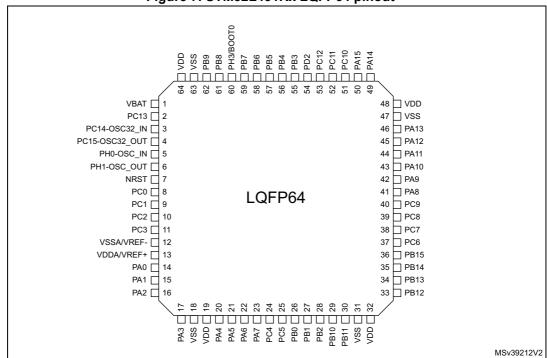


Figure 7. STM32L431Rx LQFP64 pinout⁽¹⁾

1. The above figure shows the package top view.

			Pi	n Nu	mbe	ər			Diaman		¢)		Pin function	s
UFQFPN32	LQFP48	UFQFPN48	WLCSP49	WLCSP64	LQFP64	UFBGA64	LQFP100	UFBGA100	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	-	-	-	-	97	C3	PE0	I/O	FT	-	TIM16_CH1, EVENTOUT	-
-	-	-	-	-	-	-	98	A2	PE1	I/O	FT	-	EVENTOUT	-
32	47	47	A6	A7	63	D4	99	D3	VSS	S	-	-	-	-
1	48	48	A7	A8	64	E4	100	C4	VDD	S	-	-	-	-

Table 14. STM32L431xx pin definitions (continued)

PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
The speed should not exceed 2 MHz with a maximum load of 30 pF
These GPIOs must not be used as current sources (e.g. to drive an LED).

After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0392 reference manual.

3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated.

STM32L431xx

Pinouts and pin description

	Table 15. Alternate function AF0 to AF7 (for AF8 to AF15 see Table 16) (continued)											
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7			
P	ort	SYS_AF	TIM1/TIM2/ LPTIM1	TIM1/TIM2	USART2	12C1/12C2/12C3	SPI1/SPI2	SPI3	USART1/ USART2/ USART3			
	PD0	-	-	-	-	-	SPI2_NSS	-	-			
	PD1	-	-	-	-	-	SPI2_SCK	-	-			
	PD2	-	-	-	-	-	-	-	USART3_RTS_ DE			
	PD3	-	-	-	-	-	SPI2_MISO	-	USART2_CTS			
	PD4	-	-	-	-	-	SPI2_MOSI	-	USART2_RTS_ DE			
	PD5	-	-	-	-	-	-	-	USART2_TX			
	PD6	-	-	-	-	-	-	-	USART2_RX			
Port D	PD7	-	-	-	-	-	-	-	USART2_CK			
	PD8	-	-	-	-	-	-	-	USART3_TX			
	PD9	-	-	-	-	-	-	-	USART3_RX			
	PD10	-	-	-	-	-	-	-	USART3_CK			
	PD11	-	-	-	-	-	-	-	USART3_CTS			
	PD12	-	-	-	-	-	-	-	USART3_RTS_ DE			
	PD13	-	-	-	-	-	-	-	-			
	PD14	-	-	-	-	-	-	-	-			
	PD15	-	-	-	-	-	-	-	-			
Port E	PE0	-	-	-	-	-	-	-	-			

DocID028800 Rev 1

5

67/200

5

Memory mapping

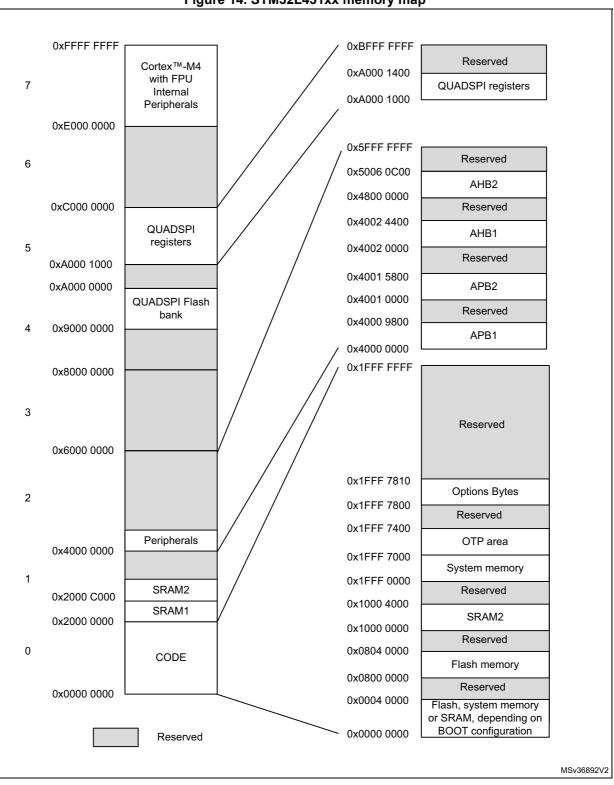


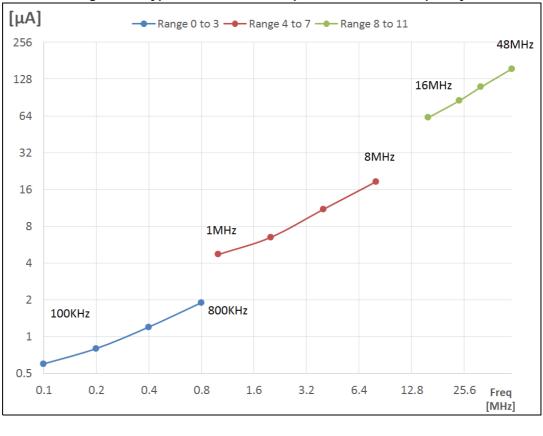
Figure 14. STM32L431xx memory map

DocID028800 Rev 1

Symbol	Parameter		Conditions	Тур	Мах	Unit		
		Range 1	Wakeup clock MSI = 48 MHz	3.8	5.7			
	Wake up time from Stop 0	Range	Wakeup clock HSI16 = 16 MHz	4.1	6.9			
	mode to Run mode in		Wakeup clock MSI = 24 MHz	4.07	6.2			
	Flash	Range 2	Wakeup clock HSI16 = 16 MHz	4.1	6.8			
+			Wakeup clock MSI = 4 MHz	8.45	11.8			
twustop0		Range 1	Wakeup clock MSI = 48 MHz	1.5	2.9	μs		
	Wake up time from Stop 0	Range	Wakeup clock HSI16 = 16 MHz	2.4	2.76			
	mode to Run mode in		Wakeup clock MSI = 24 MHz	2.4	3.48			
	SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	2.4	2.76			
			Wakeup clock MSI = 4 MHz	8.16	10.94			
		Dongo 1	Wakeup clock MSI = 48 MHz	6.34	7.86			
		Range 1	Wakeup clock HSI16 = 16 MHz	6.84	8.23			
	Wake up time from Stop 1 mode to Run in Flash	Range 2	Wakeup clock MSI = 24 MHz	6.74	8.1			
			Wakeup clock HSI16 = 16 MHz	6.89	8.21	-		
			Wakeup clock MSI = 4 MHz	10.47	12.1			
		Range 1	Wakeup clock MSI = 48 MHz	4.7	5.97			
	Wake up time from Stop 1	Range	Wakeup clock HSI16 = 16 MHz	5.9	6.92			
t _{WUSTOP1}	mode to Run mode in		Wakeup clock MSI = 24 MHz	5.4	6.51	μs		
	SRAM1	Range 2	Wakeup clock HSI16 = 16 MHz	5.9	6.92			
			Wakeup clock MSI = 4 MHz	11.1	12.2			
	Wake up time from Stop 1 mode to Low-power run mode in Flash	Regulator in low-power	Makaun alaak MOL = 2 ML	16.4	17.73			
	Wake up time from Stop 1 mode to Low-power run mode in SRAM1	mode (LPR=1 in PWR_CR1)	Wakeup clock MSI = 2 MHz	17.3	18.82			

Table 40. Low-power mode wakeup timings⁽¹⁾ (continued)

Symbol	Parameter		Conditions		Min	Тур	Мах	Unit
			Range 0	-	-	0.6	1	
			Range 1	-	-	0.8	1.2	
			Range 2	-	-	1.2	1.7	
			Range 3	-	-	1.9	2.5	
			Range 4	-	-	4.7	6	
I _{DD} (MSI) ⁽⁴⁾	MSI oscillator power consumption	MSI and PLL mode	Range 5	-	-	6.5	9	Αμ -
			Range 6	-	-	11	15	
			Range 7	-	-	18.5	25	
			Range 8	-	-	62	80	
			Range 9	-	-	85	110	
			Range 10	-	-	110	130	
			Range 11	-	-	155	190	


Table 48. MSI oscillator characteristics⁽¹⁾ (continued)

1. Guaranteed by characterization results.

2. This is a deviation for an individual part once the initial frequency has been measured.

3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.

4. Guaranteed by design.

Figure 25. Typical current consumption versus MSI frequency

DocID028800 Rev 1

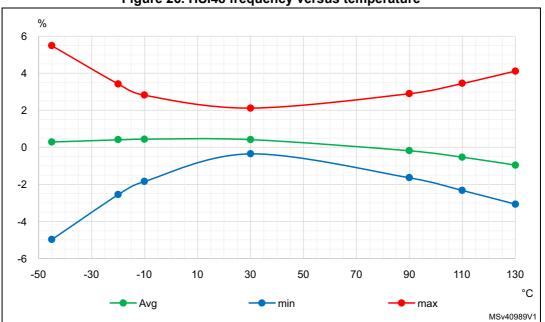


Figure 26. HSI48 frequency versus temperature

Low-speed internal (LSI) RC oscillator

Table 50. L	SI oscillator	characteristics ⁽¹⁾
-------------	---------------	--------------------------------

Symbol	Parameter	Conditions		Тур	Max	Unit		
f	LSI Frequency	V _{DD} = 3.0 V, T _A = 30 °C	31.04	-	32.96	kHz		
f _{LSI}		V_{DD} = 1.62 to 3.6 V, TA = -40 to 125 °C	29.5	-	34			
t _{SU} (LSI) ⁽²⁾	LSI oscillator start- up time	-	-	80	130	μs		
t _{STAB} (LSI) ⁽²⁾	LSI oscillator stabilization time	5% of final frequency	-	125	180	μs		
I _{DD} (LSI) ⁽²⁾	LSI oscillator power consumption	-	-	110	180	nA		

1. Guaranteed by characterization results.

2. Guaranteed by design.

6.3.9 PLL characteristics

The parameters given in *Table 51* are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in *Table 21: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	PLL input clock ⁽²⁾	-	4	-	16	MHz
^I PLL_IN	PLL input clock duty cycle	-	45	-	55	%

Table 51. PLL, PLLSAI1 characteristics⁽¹⁾

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

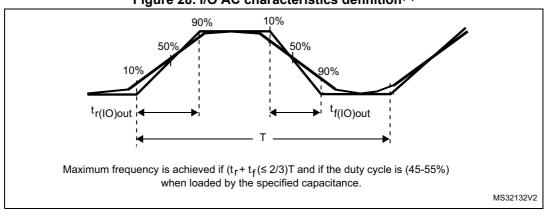
The test results are given in *Table 54*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ °C},$ f _{HCLK} = 80 MHz, conforming to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, T_A = +25 °C, f _{HCLK} = 80 MHz, conforming to IEC 61000-4-4	5A

Table 54. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.


Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

1. Refer to Table 61: I/O AC characteristics.

6.3.15 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, $\mathsf{R}_{\mathsf{PU}}.$

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 21: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3 _x V _{DDIOx}	v
V _{IH(NRST)}	NRST input high level voltage	-	0.7 _x V _{DDIOx}	-	-	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	70	ns
V _{NF(NRST)}	NRST input not filtered pulse	1.71 V ≤ V _{DD} ≤ 3.6 V	350	-	-	ns

Table 62. NRST pin characteristics⁽¹⁾

1. Guaranteed by design.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

6.3.17 Analog-to-Digital converter characteristics

Unless otherwise specified, the parameters given in *Table 64* are preliminary values derived from tests performed under ambient temperature, f_{PCLK} frequency and V_{DDA} supply voltage conditions summarized in *Table 21: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DDA}	Analog supply voltage	-	1.62	-	3.6	V	
M		V _{DDA} ≥ 2 V	2	-	V _{DDA}	V	
V_{REF^+}	Positive reference voltage	V _{DDA} < 2 V		V _{DDA}		V	
V _{REF-}	Negative reference voltage	-		V_{SSA}		V	
f	ADC clock frequency	Range 1	-	-	80	MHz	
f _{ADC}	ADC clock frequency	Range 2	-	-	26	WIHZ	
		Resolution = 12 bits	-	-	5.33		
	Sampling rate for FAST	Resolution = 10 bits	-	-	6.15		
	channels	Resolution = 8 bits	-	-	7.27	-	
f		Resolution = 6 bits	-	-	8.88	Msps	
f _s	Sampling rate for SLOW	Resolution = 12 bits	-	-	4.21	ivisps	
		Resolution = 10 bits	-	-	4.71	-	
	channels	Resolution = 8 bits	-	-	5.33	-	
		Resolution = 6 bits	-	-	6.15	-	
f _{TRIG}	External trigger frequency	f _{ADC} = 80 MHz Resolution = 12 bits	-	-	5.33	MHz	
		Resolution = 12 bits	-	-	15	1/f _{ADC}	
V _{CMIN}	Input common mode	Differential mode	(V _{REF+} + V _{REF-})/2 - 0.18	(V _{REF+} + V _{REF-})/2	(V _{REF+} + V _{REF-})/2 + 0.18	V	
V _{AIN} ⁽³⁾	Conversion voltage range(2)	-	0	-	V _{REF+}	V	
R _{AIN}	External input impedance	-	-	-	50	kΩ	
C _{ADC}	Internal sample and hold capacitor	-	-	5	-	pF	
t _{STAB}	Power-up time	-		1			
tau	Calibration time	f _{ADC} = 80 MHz		1.45			
t _{CAL}		-		116		1/f _{ADC}	

Table 6		characteristics	(1) (2)
Table 6	4. ADC	characteristics	s(1) (2

Sym- bol	Parameter	(Conditions ⁽⁴⁾					Unit	
			Single	Fast channel (max speed)	-	4	6.5		
ET	Total		ended	Slow channel (max speed)	-	4	6.5		
	unadjusted error		Differential	Fast channel (max speed)	-	3.5	5.5		
			Dillerential	Slow channel (max speed)	-	3.5	5.5		
			Single	Fast channel (max speed)	-	1	4.5		
EO	Offset		ended	Slow channel (max speed)	-	1	5		
EU	error		Differential	Fast channel (max speed)	-	1.5	3		
			Dillerential	Slow channel (max speed)	-	1.5	3		
			Single	Fast channel (max speed)	-	2.5	6		
EG	Coin orror		ended	Slow channel (max speed)	-	2.5	6		
EG	G Gain error		Differential	Fast channel (max speed)	-	2.5	3.5	- LSB - - -	
			Dillerential	Slow channel (max speed)	-	2.5	3.5		
		earity	Single ended	Fast channel (max speed)	-	1	1.5		
ED	Differential			Slow channel (max speed)	-	1	1.5		
ED	error		Differential	Fast channel (max speed)	-	1	1.2		
				Slow channel (max speed)	-	1	1.2		
		Sampling rate ≤ 5.33 Msps,	Single ended	Fast channel (max speed)	-	1.5	3.5		
EL	Integral			Slow channel (max speed)	-	1.5	3.5	-	
EL	linearity error		D'fferentiet	Fast channel (max speed)	-	1	3		
			Differential	Slow channel (max speed)	-	1	2.5		
			Single	Fast channel (max speed)	10	10.5	-		
ENOB	Effective number of		ended	Slow channel (max speed)	10	10.5	-	bits	
ENOD	bits		Differential	Fast channel (max speed)	10.7	10.9	-	DILS	
			Dillerential	Slow channel (max speed)	10.7	10.9	-		
	Cignal to		Single	Fast channel (max speed)	62	65	-		
SINAD	Signal-to- noise and		ended	Slow channel (max speed)	62	65	-	dB	
SINAD	distortion ratio		Differential	Fast channel (max speed)	66	67.4	-		
	Tallo		Differential	Slow channel (max speed)	66	67.4	-		
			Single	Fast channel (max speed)	64	66	-		
	Signal-to-		ended	Slow channel (max speed)	64	66	-	1	
SNR	noise ratio		Differential	Fast channel (max speed)	66.5	68	-		
			Differential	Slow channel (max speed)	66.5	68	-		

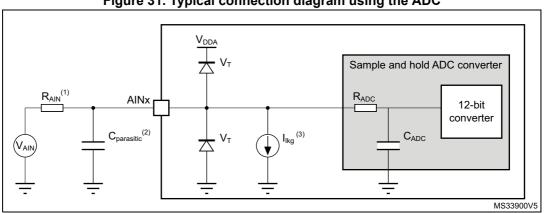


Figure 31. Typical connection diagram using the ADC

- Refer to Table 64: ADC characteristics for the values of $\mathsf{R}_{AIN},\,\mathsf{R}_{ADC}$ and C_{ADC} 1.
- $C_{\text{parasitic}}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (refer to *Table 59: I/O static characteristics* for the value of the pad capacitance). A high $C_{\text{parasitic}}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.
- 3. Refer to Table 59: I/O static characteristics for the values of Ilkg.

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 17: Power supply scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

Voltage reference buffer characteristics 6.3.19

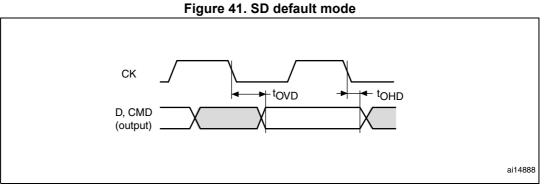
		Table 72. VRE	BUF characte	eristics ⁽¹⁾		-	
Symbol	Parameter	Conditio	ons	Min	Тур	Max	Unit
		Normal mode	V _{RS} = 0	2.4	-	3.6	
V	Analog supply	Normal mode	V _{RS} = 1	2.8	-	3.6	
V_{DDA}	voltage	Degraded mode ⁽²⁾	V _{RS} = 0	1.65	-	2.4	
			V _{RS} = 1	1.65	-	2.8	V
		Normal mode	V _{RS} = 0	2.046 ⁽³⁾	2.048	2.049 ⁽³⁾	v
V _{REFBUF} _	Voltage reference	Normarmode	V _{RS} = 1	2.498 ⁽³⁾	2.5	2.502 ⁽³⁾	
OUT	output	Degraded mode ⁽²⁾	V _{RS} = 0	V _{DDA} -150 mV	-	V _{DDA}	
			V _{RS} = 1	V _{DDA} -150 mV	-	V _{DDA}	
TRIM	Trim step resolution	-	-	-	±0.05	±0.1	%
CL	Load capacitor	-	-	0.5	1	1.5	μF
esr	Equivalent Serial Resistor of Cload	-	-	-	-	2	Ω
I _{load}	Static load current	-	-	-	-	4	mA
1	Line regulation	2.8 V ≤ V _{DDA} ≤ 3.6 V	I _{load} = 500 μA	-	200	1000	ppm/V
I _{line_reg}			I _{load} = 4 mA	-	100	500	phu/v
I _{load_reg}	Load regulation	500 µA ≤ I _{load} ≤4 mA	Normal mode	-	50	500	ppm/mA
Т	Temperature	-40 °C < T _J < +125 °C		-	-	T _{coeff} _ vrefint + 50	ppm/ °C
T _{Coeff}	coefficient	0 °C < T _J < +50 °C		-	-	T _{coeff} _ vrefint + 50	ppm/ C
PSRR	Power supply	DC		40	60	-	dB
TORK	rejection	100 kHz		25	40	-	ЧD
		$CL = 0.5 \ \mu F^{(4)}$		-	300	350	
t _{START}	Start-up time	$CL = 1.1 \ \mu F^{(4)}$		-	500	650	μs
		$CL = 1.5 \ \mu F^{(4)}$		-	650	800	
I _{INRUSH}	Control of maximum DC current drive on VREFBUF_ OUT during start-up phase (5)	-	-	-	8	-	mA

(1)

Quad SPI characteristics

Unless otherwise specified, the parameters given in *Table 83* and *Table 84* for Quad SPI are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in *Table 21: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load C = 15 or 20 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}


Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		1.71 < V _{DD} < 3.6 V, C _{LOAD} = 20 pF Voltage Range 1	-	-	40		
F _{CK}	Quad SPI clock frequency	$1.71 < V_{DD} < 3.6 V$, $C_{LOAD} = 15 pF$ Voltage Range 1	-	-	48	MHz	
1/t _(CK)		$2.7 < V_{DD} < 3.6 V$, $C_{LOAD} = 15 pF$ Voltage Range 1	-	-	60	1011 12	
		1.71 < V _{DD} < 3.6 V C _{LOAD} = 20 pF Voltage Range 2		-	26		
t _{w(CKH)}	Quad SPI clock high and	f _{AHBCLK} = 48 MHz, presc=0	t _(CK) /2-2	-	t _(CK) /2		
t _{w(CKL)}	low time	AHBCLK - 40 Minz, prese-0		-	t _(CK) /2+2		
t ann	Data input setup time	Voltage Range 1	2	-	-		
t _{s(IN)}		Voltage Range 2	3.5	-	-		
+	Data input hold time	Voltage Range 1	5	-	-	ns	
t _{h(IN)}		Voltage Range 2 6.5 -		-	-	115	
+	Data autaut valid tima	Voltage Range 1	-	1	5	-	
t _{v(OUT)}	Data output valid time	Voltage Range 2	-	3	5		
+	Data output hold time	Voltage Range 1	0	-	-		
t _{h(OUT)}	Data output hold time	Voltage Range 2	0	-	-		

Table 83. Qua	ad SPI characteristics	in	SDR	mode ⁽¹⁾
---------------	------------------------	----	-----	---------------------

1. Guaranteed by characterization results.

CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

SWPMI characteristics

The Single Wire Protocol Master Interface (SWPMI) and the associated SWPMI_IO transceiver are compliant with the ETSI TS 102 613 technical specification.

Symbol	Parameter Conditions		Min	Тур	Max	Unit
t _{SWPSTART}	SWPMI regulator startup time	SWP Class B 2.7 V ≤ V _{DD} ≤ 3,3V	-	-	300	μs
towner	SWP bit duration	V _{CORE} voltage range 1	500	-	-	ns
ISWPBIT		V _{CORE} voltage range 2	620	-	-	115

Table 88. SWPMI electrical characteristics

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 package information

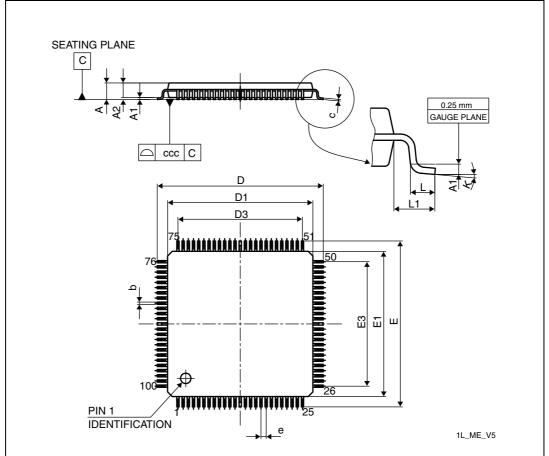


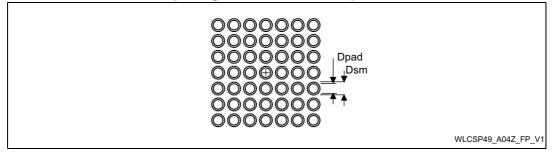
Figure 42. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 89. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059

			ge mechanic		(1)		
Symbol		millimeters			inches ⁽¹⁾		
Cymbol	Min	Тур	Max	Min	Тур	Max	
А	0.525	0.555	0.585	0.0207	0.0219	0.0230	
A1	-	0.175	-	-	0.0069	-	
A2	-	0.380	-	-	0.0150	-	
A3 ⁽²⁾	-	0.025	-	-	0.0010	-	
b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110	
D	3.106	3.141	3.176	0.1223	0.1237	0.1250	
Е	3.092	3.127	3.162	0.1217	0.1231	0.1245	
е	-	0.400	-	-	0.0157	-	
e1	-	2.400	-	-	0.0945	-	
e2	-	2.400	-	-	0.0945	-	
F	-	0.3705	-	-	0.0146	-	
G	-	0.3635	-	-	0.0143	-	
ааа	-	-	0.100	-	-	0.0039	
bbb	-	-	0.100	-	-	0.0039	
CCC	-	-	0.100	-	-	0.0039	
ddd	-	-	0.050	-	-	0.0020	
eee	-	-	0.050	-	-	0.0020	


Table 97. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scalepackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 58. WLCSP49 - 49-ball, 3.141 x 3.127 mm, 0.4 mm pitch wafer level chip scale package recommended footprint

Symbol		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
с	0.090	-	0.200	0.0035	-	0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3	-	5.500	-	-	0.2165	-	
E	8.800	9.000	9.200	0.3465	0.3543	0.3622	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
E3	-	5.500	-	-	0.2165	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
CCC	-	-	0.080	-	-	0.0031	

Table 99. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

7.10 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 21: General operating conditions*.

The maximum chip-junction temperature, T_{J} max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma \; ((\mathsf{V}_{\mathsf{DDIOx}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
Θ _{JA}	Thermal resistance junction-ambient UFQFPN48 - 7 × 7 mm / 0.5 mm pitch	33	°C/W
	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm / 0.5 mm pitch	57	
	Thermal resistance junction-ambient WLCSP49 3.141 x 3.127 / 0.4 mm pitch	48	
	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	46	
	Thermal resistance junction-ambient UFBGA64 - 5 × 5 mm / 0.5 mm pitch	65	
	Thermal resistance junction-ambient WLCSP64 3.141 x 3.127 / 0.35 mm pitch	46	
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch	42	
	Thermal resistance junction-ambient UFBGA100 - 7 × 7 mm / 0.5 mm pitch	57	

Table 102. Package thermal characteristics

7.10.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

