

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	16MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	POR, PWM
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p87c51fb-5a-512

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

BLOCK DIAGRAM

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

PIN DESCRIPTIONS

	PI	N NUMB	ER		
MNEMONIC	DIP	LCC	QFP	TYPE	NAME AND FUNCTION
V _{SS}	20	22	16	1	Ground: 0 V reference.
V _{CC}	40	44	38	1	Power Supply: This is the power supply voltage for normal, idle, and power-down operation.
P0.0–0.7	39–32	43–36	37–30	I/O	Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application, it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the code bytes during program verification and received code bytes during EPROM programming. External pull-ups are required during program verification.
P1.0-P1.7	1–8	2–9	40–44, 1–3	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I_{IL}). Port 1 also receives the low-order address byte during program memory verification.
					Alternate functions for 8XC51FX and 8XC51RX+ Port 1 include:
	1	2	40	I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout (see Programmable Clock-Out)
	2	3	41	1	T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control
	3	4	42	1	ECI (P1.2): External Clock Input to the PCA
	4	5	43	I/O	CEX0 (P1.3): Capture/Compare External I/O for PCA module 0
	5	6	44	I/O	CEX1 (P1.4): Capture/Compare External I/O for PCA module 1
	6	7	1	1/0	CEX2 (P1.5): Capture/Compare External I/O for PCA module 2
	7	8	2	1/0	CEX3 (P1.6): Capture/Compare External I/O for PCA module 3
	8	9	3	1/0	CEX4 (P1.7): Capture/Compare External I/O for PCA module 4
P2.0-P2.7	21–28	24-31	18–25	1/0	Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 2 pins that are externally being pulled low will source current because of the internal pull-ups. (See DC Electrical Characteristics: I_{IL}). Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 special function register. Some Port 2 pins receive the high order address bits during EPROM programming and verification.
P3.0–P3.7	10–17	11, 13–19	5, 7–13	I/O	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current because of the pull-ups. (See DC Electrical Characteristics: I_{IL}). Port 3 also serves the special features of the 80C51 family, as listed below:
	10	11	5	1	RxD (P3.0): Serial input port
	11	13	7	0	TxD (P3.1): Serial output port
	12	14	8		INTO (P3.2): External interrupt
	13	15	9		INT1 (P3.3): External interrupt
	14	16	10		T0 (P3.4): Timer 0 external input
	15	17	11		II (P3.5): Timer 1 external input
	10	10	12		WR (F3.0): External data memory write strobe
	17	19	13		RD (F3.1). External data memory read strobe
RST	9	10	4		Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. An internal diffused resistor to V_{SS} permits a power-on reset using only an external capacitor to V_{CC} .
ALE/PROG	30	33	27	0	Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG) during EPROM programming. ALE can be disabled by setting SFR auxiliary.0. With this bit set, ALE will be active only during a MOVX instruction.

8XC51FA/FB/FC AND 80C51FA ORDERING I

	MEMORY SIZE 8K × 8	MEMORY SIZE 16K × 8	MEMORY SIZE 32K × 8	ROMIess	TEMPERATURE RANGE °C AND PACKAGE	VOLTAGE RANGE	FREQ. (MHz)	DWG. #
ROM	P83C51FA-4N	P83C51FB-4N	P83C51FC-4N		0 to 170, 40 Din Plantia Dual In line Pla	2.7 \ to 5.5 \	0 to 16	SOT120 1
OTP	P87C51FA-4N	P87C51FB-4N	P87C51FC-4N	FOUCSTFA-4N	0 to +70, 40-Pin Plastic Dual III-lille Pkg.	2.7 V 10 5.5 V	01010	301129-1
ROM	P83C51FA-4A	P83C51FB-4A	P83C51FC-4A		0 to 170, 44 Pin Plastic Loaded Chin Carrier	2 7\/ to 5 5\/	0 to 16	SOT197 2
OTP	P87C51FA-4A	P87C51FB-4A	P87C51FC-4A	F 60C5 1FA-4A	0 to +70, 44-Fill Flastic Leaded Chip Camer	2.7 0 10 5.5 0	01010	301107-2
ROM	P83C51FA-4B	P83C51FB-4B	P83C51FC-4B		0 to 170, 44 Pip Plastic Quad Elat Pack	2 7\/ to 5 5\/	0 to 16	SOT207 2
OTP	P87C51FA-4B	P87C51FB-4B	P87C51FC-4B	FOUCSTFA-4D	0 to +70, 44-Fill Flastic Quau Flat Fack	2.7 V to 5.5 V	01010	301307-2
ROM	P83C51FA-5N	P83C51FB-5N	P83C51FC-5N		40 to 185 40 Pin Plastic Dual In line Pkg	2 7\/ to 5 5\/	0 to 16	SOT120 1
OTP	P87C51FA-5N	P87C51FB-5N	P87C51FC-5N	FOUCSTFA-SN	-40 to +85, 40-Fill Flastic Dual III-lifle Fkg.	2.7 V 10 5.5 V	01010	301129-1
ROM	P83C51FA-5A	P83C51FB-5A	P83C51FC-5A		40 to 1.85, 44 Pin Plastic Loaded Chip Carrier	2 7\/ to 5 5\/	0 to 16	SOT197 2
OTP	P87C51FA-5A	P87C51FB-5A	P87C51FC-5A	FOUCSTFA-SA	-40 to +65, 44-Fill Flastic Leaded Chip Carrier	2.7 V to 5.5 V	01010	301107-2
ROM	P83C51FA-5B	P83C51FB-5B	P83C51FC-5B		40 to 195, 44 Dip Plantia Quad Elat Back		0 to 16	SOT207 2
OTP	P87C51FA-5B	P87C51FB-5B	P87C51FC-5B	FOUCSTFA-SB	-40 to +65, 44-Fill Flastic Quad Flat Fack	2.7 V 10 5.5 V	01010	301307-2
ROM	P83C51FA-IN	P83C51FB-IN	P83C51FC-IN		0 to 170, 40 Pin Plastic Dual In line Pkg	5\/	0 to 22	SOT120 1
OTP	P87C51FA-IN	P87C51FB-IN	P87C51FC-IN	FOUCSTFA-IN	0 to +70, 40-Fin Flastic Dual In-line Fkg.	50	01033	301129-1
ROM	P83C51FA-IA	P83C51FB-IA	P83C51FC-IA		0 to 170, 44 Pin Plantia Londod Chin Corrier	E\/	0 to 22	SOT107 2
OTP	P87C51FA-IA	P87C51FB-IA	P87C51FC-IA	FOUCSTFA-IA	0 to +70, 44-Fill Flastic Leaded Chip Carrier	50	0 10 33	301107-2
ROM	P83C51FA-IB	P83C51FB-IB	P83C51FC-IB		0 to 170, 44 Pip Plantin Quad Elat Paak	5\/	0 to 22	SOT207 2
OTP	P87C51FA-IB	P87C51FB-IB	P87C51FC-IB	FOUCSTFA-ID	0 to +70, 44-FIT Plastic Quad Flat Fack	57	0 10 33	301307-2
ROM	P83C51FA–JN	P83C51FB–JN	P83C51FC–JN		40 to 195, 40 Pin Plantia Dual In line Pkg	E\/	0 to 22	SOT120 1
OTP	P87C51FA–JN	P87C51FB–JN	P87C51FC–JN	FOUCSTFA-JN	-40 to +85, 40-Fill Flastic Dual III-lille Fkg.	57	0 10 33	301129-1
ROM	P83C51FA–JA	P83C51FB–JA	P83C51FC–JA		40 to 195 44 Dip Dipatia Landad Chip Corrige	E\/	0 to 22	COT407 0
OTP	P87C51FA–JA	P87C51FB–JA	P87C51FC-JA	FOUCDIFA-JA		50	01033	301107-2
ROM	P83C51FA–JB	P83C51FB–JB	P83C51FC-JB		40 to 195, 44 Pip Plastic Quad Elat Pack	5\/	0 to 22	SOT207 2
OTP	P87C51FA-JB	P87C51FB-JB	P87C51FC-JB	1 0000 IFA-JB	-40 to 400, 44-F III Flastic Quau Flat Fack	50	0 10 33	501507-2

ω

2000 Aug 07

Note: For Multi Time Programmable devices, See P89C51RX+ Flash datasheet.

80C51 8-bit microcontroller family 8K-64K/256-1K OTP/ROM/ROMless, low voltage (2.7V-5.5V), low power, high speed (33MHz)

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

Product specification

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

Table 2. 8XC51FA/FB/FC, 8XC51RA+/RB+/RC+/RD+ Special Function Registers

SYMBOL	DESCRIPTION	DIRECT ADDRESS	BIT A MSB	DDRESS	, SYMBO	L, OR AL	TERNATIV	E PORT	FUNCTIO	N LSB	RESET VALUE
ACC*	Accumulator	E0H	E7	E6	E5	E4	E3	E2	E1	E0	00H
AUXR#	Auxiliary	8EH	-	-	-	-	-	-	EXTRAM (RX+ only)	AO	xxxxxx00B
AUXR1#	Auxiliary 1	A2H	-	-	-	LPEP ³	GF3	0	-	DPS	xxx0xxx0B
B*	B register	F0H	F7	F6	F5	F4	F3	F2	F1	F0	00H
CCAP0H#	Module 0 Capture High	FAH									xxxxxxxB
CCAP1H#	Module 1 Capture High	FBH									xxxxxxxB
CCAP2H#	Module 2 Capture High	FCH									xxxxxxxB
CCAP3H#	Module 3 Capture High	FDH									xxxxxxxB
CCAP4H#	Module 4 Capture High	FEH									xxxxxxxB
CCAP0L#	Module 0 Capture Low	EAH									xxxxxxxB
CCAP1L#	Module 1 Capture Low	EBH									xxxxxxxB
CCAP2L#	Module 2 Capture Low	ECH									XXXXXXXXB
	Module 3 Capture Low										XXXXXXXXB
CCAP4L#	Nodule 4 Capture Low										XXXXXXXD
CCAPM0#	Module 0 Mode	DAH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM1#	Module 1 Mode	DBH	_	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM2#	Module 2 Mode	DCH	_	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM3#	Module 3 Mode	DDH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
CCAPM4#	Module 4 Mode	DEH	-	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	x0000000B
			DF	DE	DD	DC	DB	DA	D9	D8	
CCON*#	PCA Counter Control	D8H	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	00x00000B
CH#	PCA Counter High	F9H			-			-	-	-	00H
CL#	PCA Counter Low	E9H									00H
CMOD#	PCA Counter Mode	D9H	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF	00xxx000B
DPTR: DPH	Data Pointer (2 bytes) Data Pointer High	83H									00H
DPL	Data Pointer Low	82H									00H
			AF	AE	AD	AC	AB	AA	A9	A8	
IE*	Interrupt Enable	A8H	EA	EC	ET2	ES	ET1	EX1	ET0	EX0	00H
			BF	BE	BD	BC	BB	BA	B9	B8	
IP*	Interrupt Priority	B8H	_	PPC	PT2	PS	PT1	PX1	PT0	PX0	x0000000B
			B7	B6	B5	B4	B3	B2	B1	B0	
IPH#	Interrupt Priority High	B7H	-	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	x0000000B
			87	86	85	84	83	82	81	80	
P0*	Port 0	80H	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	FFH
			97	96	95	94	93	92	91	90	
P1*	Port 1	90H	CEX4	CEX3	CEX2	CEX1	CEX0	ECI	T2EX	T2	FFH
			A7	A6	A5	A4	A3	A2	A1	A0	
P2*	Port 2	A0H	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8	FFH
			B7	B6	B5	B4	B3	B2	B1	B0	
P3*	Port 3	B0H	RD	WR	T1	T0	INT1	INTO	TxD	RxD	FFH
				-			-				
PCON#1	Power Control	87H	SMOD1	SMOD0	-	POF ²	GF1	GF0	PD	IDL	00xx0000B

* SFRs are bit addressable.

SFRs are modified from or added to the 80C51 SFRs.

- Reserved bits.

1. Reset value depends on reset source.

2. Bit will not be affected by Reset.

3. LPEP - Low Power OTP-EPROM only operation.

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

Table 2. 8XC51FA/FB/FC, 8XC51RA+/RB+/RC+/RD+ Special Function Registers (Continued)

SYMBOL	DESCRIPTION	DIRECT ADDRESS	BIT A MSB	ADDRESS	, SYMBO	L, OR AL	TERNATIV	E PORT	FUNCTIC	N LSB	RESET VALUE
			D7	D6	D5	D4	D3	D2	D1	D0	
PSW*	Program Status Word	D0H	CY	AC	F0	RS1	RS0	OV	-	Р	000000x0B
RACAP2H#	Timer 2 Capture High	СВН									00H
RACAP2L#	Timer 2 Capture Low	CAH									00H
SADDB#	Slove Address										00
SADDR#	Slave Address Mask	B9H									00H 00H
		2011									
SBUF	Serial Data Buffer	99H									xxxxxxxB
			9F	9E	9D	9C	9B	9A	99	98	
SCON*	Serial Control	98H	SM0/FE	SM1	SM2	REN	TB8	RB8	ТІ	RI	00H
SP	Stack Pointer	81H									07H
			8F	8E	8D	8C	8B	8A	89	88	
TCON*	Timer Control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00H
									_	_	
			CF	CE	CD	CC	СВ	CA	C9	C8	
T2CON*	Timer 2 Control	C8H	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00H
T2MOD#	Timer 2 Mode Control	C9H	_	-	-	-	-	-	T2OE	DCEN	xxxxxx00B
тно	Timer High 0	8CH									00H
TH1	Timer High 1	8DH									00H
TH2#	Timer High 2	CDH									00H
TLO	Timer Low 0	8AH									00H
TL1	Timer Low 1	8BH									00H
TL2#	Timer Low 2	ССН									00H
тмор	Timer Mode	89H	GATE	C/T	M1	M0	GATE	C/T	M1	MO	00H
WDTRST	HDW Watchdog Timer Reset (RX+ only)	0A6H									

* SFRs are bit addressable.

SFRs are modified from or added to the 80C51 SFRs.

Reserved bits.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator.

To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, because the input to the internal clock circuitry is through a divide-by-two flip-flop. However, minimum and maximum high and low times specified in the data sheet must be observed.

RESET

A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods), while the oscillator is running. To insure a good power-on reset, the RST pin must be high long enough to allow the oscillator time to start up (normally a few milliseconds) plus two machine cycles. At power-on, the voltage on V_{CC} and RST must come up at the same time for a proper start-up. Ports 1, 2, and 3 will asynchronously be driven to their reset condition when a voltage above V_{IH1} (min.) is applied to RESET.

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

LOW POWER MODES

Stop Clock Mode

The static design enables the clock speed to be reduced down to 0 MHz (stopped). When the oscillator is stopped, the RAM and Special Function Registers retain their values. This mode allows step-by-step utilization and permits reduced system power consumption by lowering the clock frequency down to any value. For lowest power consumption the Power Down mode is suggested.

Idle Mode

In the idle mode (see Table 3), the CPU puts itself to sleep while all of the on-chip peripherals stay active. The instruction to invoke the idle mode is the last instruction executed in the normal operating mode before the idle mode is activated. The CPU contents, the on-chip RAM, and all of the special function registers remain intact during this mode. The idle mode can be terminated either by any enabled interrupt (at which time the process is picked up at the interrupt service routine and continued), or by a hardware reset which starts the processor in the same manner as a power-on reset.

Power-Down Mode

To save even more power, a Power Down mode (see Table 3) can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values down to 2.0V and care must be taken to return V_{CC} to the minimum specified operating voltages before the Power Down Mode is terminated.

Either a hardware reset or external interrupt can be used to exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and the on-chip RAM to retain their values.

To properly terminate Power Down the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10ms).

With an external interrupt, INT0 and INT1 must be enabled and configured as level-sensitive. Holding the pin low restarts the oscillator but bringing the pin back high completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

LPEP

The LPEP bit (AUXR.4), only needs to be set for applications operating at V_{CC} less than 4V.

POWER OFF FLAG

The Power Off Flag (POF) is set by on-chip circuitry when the V_{CC} level on the 8XC51FX/8XC51RX+ rises from 0 to 5V. The POF bit can be set or cleared by software allowing a user to determine if the reset is the result of a power-on or a warm start after powerdown. The V_{CC} level must remain above 3V for the POF to remain unaffected by the V_{CC} level.

Design Consideration

• When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCE™ Mode

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems without the device having to be removed from the circuit. The ONCE Mode is invoked by:

- 1. Pull ALE low while the device is in reset and PSEN is high;
- 2. Hold ALE low as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins go into a float state, and the other port pins and ALE and PSEN are weakly pulled high. The oscillator circuit remains active. While the device is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Programmable Clock-Out

A 50% duty cycle clock can be programmed to come out on P1.0. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed:

- 1. to input the external clock for Timer/Counter 2, or
- 2. to output a 50% duty cycle clock ranging from 61Hz to 4MHz at a 16MHz operating frequency.

To configure the Timer/Counter 2 as a clock generator, bit $C\overline{T}2$ (in T2CON) must be cleared and bit T20E in T2MOD must be set. Bit TR2 (T2CON.2) also must be set to start the timer.

The Clock-Out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L) as shown in this equation:

 $\frac{\text{Oscillator Frequency}}{4 \times (65536 - \text{RCAP2H}, \text{RCAP2L})}$

Where (RCAP2H,RCAP2L) = the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

In the Clock-Out mode Timer 2 roll-overs will not generate an interrupt. This is similar to when it is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and the Clock-Out frequency will be the same.

Table 3. External Pin Status During Idle and Power-Down Mode

MODE	PROGRAM MEMORY	ALE	PSEN	PORT 0	PORT 1	PORT 2	PORT 3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power-down	Internal	0	0	Data	Data	Data	Data
Power-down	External	0	0	Float	Data	Data	Data

Figure 8. UART Framing Error Detection

Figure 9. UART Multiprocessor Communication, Automatic Address Recognition

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

(8XC51FX and 8XC51RX+ ONLY)

Figure 15. PCA Timer/Counter

Figure 16. PCA Interrupt System

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

(8XC51FX and 8XC51RX+ ONLY)

	CM	OD Addr	ess = OD9	Н					R	eset Value = 00XX X000
		CIDL	WDTE	_	_	_	CPS1	CPS0	ECF	
	Bit:	7	6	5	4	3	2	1	0	
Symbol	Funct	ion								
CIDL	Counte it to be	er Idle con e gated off	trol: CIDL = during idle	= 0 prograr	ms the PCA	Counter to	continue fu	nctioning du	iring idle M	ode. CIDL = 1 programs
WDTE	Watch	dog Timer	Enable: W	DTE = 0 d	isables Wate	chdog Time	er function o	n PCA Mod	ule 4. WDT	E = 1 enables it.
_	Not im	plemente	d, reserved	for future	use.*	Ū				
CPS1	PCA C	Count Puls	e Select bit	1.						
CPS0	PCA C	Count Puls	e Select bit	0.						
	CPS1	CPS0	Select	ed PCA In	put**					
	0	0	0	Intern	al clock, fos	c ÷ 12				
	0	1	1	Intern	al clock, fos	sc ÷ 4				
	1	0	2	Timer	0 overflow					
	1	1	3	Exter	nal clock at l	ECI/P1.2 p	in (max. rate	e = f _{OSC} ÷ 8)	
ECF	PCA E that fu	Enable Counction of Counction	unter Overf CF.	low interru	pt: ECF = 1	enables Cl	= bit in CCO	N to genera	te an interr	rupt. ECF = 0 disables
NOTE: User softwar new bit will ** fosc = osci	are should no be 0, and its llator frequer	ot write 1s to active value	reserved bits. T will be 1. The	These bits may value read fror	/ be used in futu m a reserved bit	re 8051 family is indetermina	products to inve te.	oke new feature	es. In that case	, the reset or inactive value of th
										SU0003

Figure 17. CMOD: PCA Counter Mode Register

	Bit Ad	dressable								-
		CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	
	Bit:	7	6	5	4	3	2	1	0	-
Symbol	Funct	ion								
CF	PCA (set. C	Counter Ov F may be	verflow flag set by eithe	. Set by hai er hardware	rdware whe	n the counte but can on	er rolls over ly be cleare	. CF flags a d by softwa	in interrupt are.	if bit ECF in CMOD is
CF CR	PCA (set. C PCA (counte	Counter O F may be Counter Ru er off.	verflow flag set by eithe un control b	. Set by hai er hardware bit. Set by se	rdware when or software oftware to tu	n the counte but can on irn the PCA	er rolls over ly be cleare counter on	. CF flags a d by softwa . Must be c	in interrupt are. leared by s	if bit ECF in CMOD is oftware to turn the PC/
CF CR -	PCA (set. C PCA (counte Not im	Counter O F may be Counter Ru er off. nplemente	verflow flag set by eithe un control b d, reserved	. Set by hai er hardware bit. Set by so for future u	rdware when or software oftware to tu use*.	n the counte but can on irn the PCA	er rolls over ly be cleare . counter on	. CF flags a d by softwa . Must be c	in interrupt are. leared by s	if bit ECF in CMOD is oftware to turn the PC/
CF CR - CCF4	PCA (set. C PCA (counte Not im PCA N	Counter Or F may be Counter Ru er off. nplementer Module 4 in	verflow flag set by eithe un control b d, reserved nterrupt flag	 Set by har Fardware Set by set for future u Set by har 	rdware when or software oftware to tu use*. ardware whe	n the counte but can on irn the PCA	er rolls over ly be cleare counter on or capture o	CF flags a d by softwa . Must be c ccurs. Mus	in interrupt are. leared by s t be cleared	if bit ECF in CMOD is oftware to turn the PC/
CF CR - CCF4 CCF3	PCA C set. C PCA C counte Not im PCA N PCA N	Counter O F may be Counter Ru er off. nplemente Module 4 in Module 3 in	verflow flag set by eithe un control b d, reserved nterrupt flag nterrupt flag	I. Set by hai er hardware bit. Set by so for future u g. Set by ha g. Set by ha	rdware when or software oftware to tu use*. ardware whe ardware whe	n the counte but can on irn the PCA en a match o	er rolls over ly be cleare counter on or capture o or capture o	CF flags a d by softwa . Must be c ccurs. Mus ccurs. Mus	in interrupt are. leared by s t be cleared t be cleared	if bit ECF in CMOD is oftware to turn the PC/ d by software. d by software.
CF CR - CCF4 CCF3 CCF2	PCA (set. C PCA (counte Not im PCA N PCA N	Counter O F may be Counter Ri er off. nplemente Module 4 in Module 3 in Module 2 in	verflow flag set by eithe un control b d, reserved nterrupt flag nterrupt flag nterrupt flag	I. Set by hai er hardware it. Set by so for future u g. Set by ha g. Set by ha g. Set by ha	rdware when or software oftware to tu use*. ardware whe ardware whe ardware whe	n the count but can on irn the PCA en a match o en a match o en a match o	er rolls over ly be cleare counter on or capture o or capture o or capture o	CF flags a d by softwa . Must be c ccurs. Mus ccurs. Mus ccurs. Mus	n interrupt are. leared by s t be cleared t be cleared t be cleared	if bit ECF in CMOD is oftware to turn the PC/ d by software. d by software. d by software.
CF CR _ CCF4 CCF3 CCF2 CCF1	PCA (set. C PCA (counte Not im PCA N PCA N PCA N	Counter O F may be Counter Ru er off. nplementer Module 4 in Module 3 in Module 2 in Module 1 in	verflow flag set by eithe un control b d, reserved nterrupt flag nterrupt flag nterrupt flag nterrupt flag	I. Set by hai er hardware bit. Set by so for future u g. Set by ha g. Set by ha g. Set by ha g. Set by ha	rdware when or software oftware to tu use*. urdware whe urdware whe urdware whe urdware whe	n the count but can on irn the PCA on a match o on a match o on a match o on a match o	er rolls over ly be cleare counter on or capture o or capture o or capture o or capture o or capture o	CF flags a d by softwa . Must be c ccurs. Mus ccurs. Mus ccurs. Mus ccurs. Mus	n interrupt are. leared by s t be cleared t be cleared t be cleared t be cleared t be cleared	if bit ECF in CMOD is oftware to turn the PC/ d by software. d by software. d by software. d by software.

SU00036

Figure 18. CCON: PCA Counter Control Register

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

(8XC51FX and 8XC51RX+ ONLY)

Figure 21. PCA Capture Mode

Figure 22. PCA Compare Mode

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

(8XC51FX and 8XC51RX+ ONLY)

Figure 23. PCA High Speed Output Mode

Figure 24. PCA PWM Mode

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

DC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0^{\circ}C$ to +70°C or -40°C to +85°C, $V_{CC} = 2.7V$ to 5.5V, $V_{SS} = 0V$ (16MHz devices)

CYMDOL	DADAMETED	TEST		LIMITS		LINUT
STMBOL	PARAMETER	CONDITIONS	MIN	TYP ¹	MAX	UNIT
N .		4.0V < V _{CC} < 5.5V	-0.5		0.2V _{CC} -0.1	V
VIL VIL	input low voltage	2.7V <v<sub>CC< 4.0V</v<sub>	-0.5		0.7	V
V _{IH}	Input high voltage (ports 0, 1, 2, 3, EA)		0.2V _{CC} +0.9		V _{CC} +0.5	V
V _{IH1}	Input high voltage, XTAL1, RST		0.7V _{CC}		V _{CC} +0.5	V
V _{OL}	Output low voltage, ports 1, 2 ⁸	$V_{CC} = 2.7V$ $I_{OL} = 1.6mA^2$			0.4	V
V _{OL1}	Output low voltage, port 0, ALE, PSEN ^{8, 7}	$V_{CC} = 2.7V$ $I_{OL} = 3.2mA^2$			0.4	V
	Outsut high up have noted 4, 0, 0,3	V _{CC} = 2.7V I _{OH} = -20μA	V _{CC} – 0.7			V
VOH	Output nigh voltage, ports 1, 2, 3 3	V _{CC} = 4.5V I _{OH} = -30μA	V _{CC} – 0.7			V
V _{OH1}	Output high voltage (port 0 in external bus mode), ALE^9 , \overrightarrow{PSEN}^3	V _{CC} = 2.7V I _{OH} = -3.2mA	V _{CC} – 0.7			V
IIL	Logical 0 input current, ports 1, 2, 3	V _{IN} = 0.4V	-1		-50	μA
I _{TL}	Logical 1-to-0 transition current, ports 1, 2, 3 ⁶	V _{IN} = 2.0V See note 4			-650	μA
ILI	Input leakage current, port 0	$0.45 < V_{IN} < V_{CC} - 0.3$			±10	μA
Icc	Power supply current (see Figure 36): Active mode @ 16MHz (all except 8XC51RD+) 87C51RD+ Idle mode @ 16MHz Power-down mode or clock stopped (see Figure 40 for conditions)	See note 5 $T_{amb} = 0^{\circ}C$ to $70^{\circ}C$ $T_{amb} = -40^{\circ}C$ to $+85^{\circ}C$		3	15 16 4 50 75	mA mA mA μA μA
R _{RST}	Internal reset pull-down resistor		40		225	kΩ
C _{IO}	Pin capacitance ¹⁰ (except EA)				15	рF

NOTES:

Typical ratings are not guaranteed. The values listed are at room temperature, 5V.

Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the Vols of ALE and ports 1 and 3. The noise is due 2. to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. IoL can exceed these conditions provided that no single output sinks more than 5mA and no more than two outputs exceed the test conditions.

Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the V_{CC}-0.7 specification when the address bits are stabilizing.

Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when VIN is approximately 2V.

5.

- See Figures 37 through 40 for I_{CC} test conditions, and Figure 36 for I_{CC} vs Freq. Active mode: I_{CC} = (0.9 × FREQ. + 1.1)mA for all devices except 8XC51RD+; 8XC51RD+ I_{CC} = (0.9 x Freq +2.1) mA
 - Idle mode: $I_{CC} = (0.18 \times FREQ. +1.01)mA$

6. This value applies to $T_{amb} = 0^{\circ}C$ to $+70^{\circ}C$. For $T_{amb} = -40^{\circ}C$ to $+85^{\circ}C$, $I_{TL} = -750\mu$ A. 7. Load capacitance for port 0, ALE, and $\overrightarrow{PSEN} = 100$ pF, load capacitance for all other outputs = 80pF.

8. Under steady state (non-transient) conditions, IOL must be externally limited as follows:

- Maximum I_{OL} per port pin: Maximum I_{OL} per 8-bit port: 15mA (*NOTE: This is 85°C specification.)
 - 26mA
 - Maximum total I_{OL} for all outputs: 71mA

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

9. ALE is tested to V_{OH1}, except when ALE is off then V_{OH} is the voltage specification.

10. Pin capacitance is characterized but not tested. Pin capacitance is less than 25pF. Pin capacitance of ceramic package is less than 15pF (except EA is 25pF).

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

DC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0^{\circ}C$ to +70°C or -40°C to +85°C, 33MHz devices; 5V ±10%; $V_{SS} = 0V$

CYMDOL	DADAMETED	TEST		LIMITS		LINUT
STMBOL	PARAMETER	CONDITIONS	MIN	TYP ¹	MAX	UNIT
V _{IL}	Input low voltage	4.5V < V _{CC} < 5.5V	-0.5		0.2V _{CC} -0.1	V
V _{IH}	Input high voltage (ports 0, 1, 2, 3, EA)		0.2V _{CC} +0.9		V _{CC} +0.5	V
V _{IH1}	Input high voltage, XTAL1, RST		0.7V _{CC}		V _{CC} +0.5	V
V _{OL}	Output low voltage, ports 1, 2, 3 ⁸	V _{CC} = 4.5V I _{OL} = 1.6mA ²			0.4	V
V _{OL1}	Output low voltage, port 0, ALE, PSEN 7, 8	$V_{CC} = 4.5V$ $I_{OL} = 3.2mA^2$			0.4	V
V _{OH}	Output high voltage, ports 1, 2, 3 ³	V _{CC} = 4.5V I _{OH} = -30μA	V _{CC} – 0.7			V
V _{OH1}	Output high voltage (port 0 in external bus mode), ALE ⁹ , PSEN ³	V _{CC} = 4.5V I _{OH} = -3.2mA	V _{CC} – 0.7			V
IIL	Logical 0 input current, ports 1, 2, 3	$V_{IN} = 0.4V$	-1		-50	μΑ
I _{TL}	Logical 1-to-0 transition current, ports 1, 2, 3 ⁶	V _{IN} = 2.0V See note 4			-650	μA
ILI	Input leakage current, port 0	$0.45 < V_{IN} < V_{CC} - 0.3$			±10	μΑ
I _{CC}	Power supply current (see Figure 36): Active mode (see Note 5) Idle mode (see Note 5)	See note 5		2	50	۵
	(see Figure 40 for conditions)	$T_{amb} = -40^{\circ}C \text{ to } +85^{\circ}C$		3	75	μΑ μΑ
R _{RST}	Internal reset pull-down resistor		40		225	kΩ
C _{IO}	Pin capacitance ¹⁰ (except EA)				15	pF

NOTES:

1. Typical ratings are not guaranteed. The values listed are at room temperature, 5V.

Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the Vols of ALE and ports 1 and 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. IOL can exceed these conditions provided that no single output sinks more than 5mA and no more than two outputs exceed the test conditions

3. Capacitive loading on ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall below the V_{CC}-0.7 specification when the address bits are stabilizing.

Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its maximum value when VIN is approximately 2V.

5. See Figures 37 through 40 for I_{CC} test conditions and Figure 36 for I_{CC} vs Freq.

Active mode: I_{CC(MAX)} = (0.9 × FREQ. + 1.1)mA. for all devices except 8XC51RD+; 8XC51RD+ I_{CC} = (0.9 × Freq +2.1) mA. Idle mode: I_{CC(MAX)} = (0.18 × FREQ. +1.0)mA
 This value applies to T_{amb} = 0°C to +70°C. For T_{amb} = -40°C to +85°C, I_{TL} = -750µA.
 Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.

Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows: 8.

Maximum IOL per port pin: 15mA (*NOTE: This is 85°C specification.)

Maximum IOL per 8-bit port: 26mA

Maximum total I_{OL} for all outputs: 71mA

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

ALE is tested to V_{OH1}, except when ALE is off then V_{OH} is the voltage specification.

10. Pin capacitance is characterized but not tested. Pin capacitance is less than 25pF. Pin capacitance of ceramic package is less than 15pF (except EA is 25pF).

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

AC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0^{\circ}C$ to +70°C or -40°C to +85°C, $V_{CC} = +2.7V$ to +5.5V, $V_{SS} = 0V^{1, 2, 3}$

			16MHz	CLOCK	VARIABL	E CLOCK	
SYMBOL	FIGURE	PARAMETER	MIN	MAX	MIN	MAX	UNIT
1/t _{CLCL}	29	Oscillator frequency ⁵ Speed versions : 4; 5;S			3.5	16	MHz
t _{LHLL}	29	ALE pulse width	85		2t _{CLCL} -40		ns
t _{AVLL}	29	Address valid to ALE low	22		t _{CLCL} -40		ns
t _{LLAX}	29	Address hold after ALE low	32		t _{CLCL} -30		ns
t _{LLIV}	29	ALE low to valid instruction in		150		4t _{CLCL} -100	ns
t _{LLPL}	29	ALE low to PSEN low	32		t _{CLCL} -30		ns
t _{PLPH}	29	PSEN pulse width	142		3t _{CLCL} -45		ns
t _{PLIV}	29	PSEN low to valid instruction in		82		3t _{CLCL} -105	ns
t _{PXIX}	29	Input instruction hold after PSEN	0		0		ns
t _{PXIZ}	29	Input instruction float after PSEN		37		t _{CLCL} -25	ns
t _{AVIV} 5	29	Address to valid instruction in		207		5t _{CLCL} -105	ns
t _{PLAZ}	29	PSEN low to address float		10		10	ns
Data Memo	ory					•	
t _{RLRH}	30, 31	RD pulse width	275		6t _{CLCL} -100		ns
t _{WLWH}	30, 31	WR pulse width	275		6t _{CLCL} -100		ns
t _{RLDV}	30, 31	RD low to valid data in		147		5t _{CLCL} -165	ns
t _{RHDX}	30, 31	Data hold after RD	0		0		ns
t _{RHDZ}	30, 31	Data float after RD		65		2t _{CLCL} -60	ns
t _{LLDV}	30, 31	ALE low to valid data in		350		8t _{CLCL} -150	ns
t _{AVDV}	30, 31	Address to valid data in		397		9t _{CLCL} -165	ns
t _{LLWL}	30, 31	ALE low to RD or WR low	137	239	3t _{CLCL} -50	3t _{CLCL} +50	ns
t _{AVWL}	30, 31	Address valid to \overline{WR} low or \overline{RD} low	122		4t _{CLCL} -130		ns
t _{QVWX}	30, 31	Data valid to WR transition	13		t _{CLCL} -50		ns
t _{WHQX}	30, 31	Data hold after WR	13		t _{CLCL} -50		ns
t _{QVWH}	31	Data valid to WR high	287		7t _{CLCL} -150		ns
t _{RLAZ}	30, 31	RD low to address float		0		0	ns
t _{WHLH}	30, 31	RD or WR high to ALE high	23	103	t _{CLCL} -40	t _{CLCL} +40	ns
External Cl	ock		-			-	
t _{CHCX}	33	High time	20		20	tCLCL-tCLCX	ns
t _{CLCX}	33	Low time	20		20	t _{CLCL} -t _{CHCX}	ns
t _{CLCH}	33	Rise time		20		20	ns
t _{CHCL}	33	Fall time		20		20	ns
Shift Regis	ter						
t _{XLXL}	32	Serial port clock cycle time	750		12t _{CLCL}		ns
t _{QVXH}	32	Output data setup to clock rising edge	492		10t _{CLCL} -133		ns
t _{XHQX}	32	Output data hold after clock rising edge	8		2t _{CLCL} -117		ns
t _{XHDX}	32	Input data hold after clock rising edge	0		0		ns
t _{XHDV}	32	Clock rising edge to input data valid		492		10t _{CLCL} -133	ns

NOTES:

 Parameters are valid over operating temperature range unless otherwise specified.
 Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.
 Interfacing the microcontroller to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0 drivers.

4. See application note AN457 for external memory interface.

5. Parts are guaranteed to operate down to 0Hz.

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

Figure 34. AC Testing Input/Output

Figure 36. I_{CC} vs. FREQ Valid only within frequency specifications of the device under test

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

Figure 40. I_{CC} Test Condition, Power Down Mode All other pins are disconnected. V_{CC} = 2V to 5.5V

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS

 $T_{amb} = 21^{\circ}C$ to $+27^{\circ}C$, $V_{CC} = 5V\pm10\%$, $V_{SS} = 0V$ (See Figure 44)

SYMBOL	PARAMETER	MIN	МАХ	UNIT
V _{PP}	Programming supply voltage	12.5	13.0	V
I _{PP}	Programming supply current		50 ¹	mA
1/t _{CLCL}	Oscillator frequency	4	6	MHz
t _{AVGL}	Address setup to PROG low	48t _{CLCL}		
t _{GHAX}	Address hold after PROG	48t _{CLCL}		
t _{DVGL}	Data setup to PROG low	48t _{CLCL}		
t _{GHDX}	Data hold after PROG	48t _{CLCL}		
t _{EHSH}	P2.7 (ENABLE) high to V _{PP}	48t _{CLCL}		
t _{SHGL}	V _{PP} setup to PROG low	10		μs
t _{GHSL}	V _{PP} hold after PROG	10		μs
t _{GLGH}	PROG width	90	110	μs
t _{AVQV}	Address to data valid		48t _{CLCL}	
t _{ELQZ}	ENABLE low to data valid		48t _{CLCL}	
t _{EHQZ}	Data float after ENABLE	0	48t _{CLCL}	
t _{GHGL}	PROG high to PROG low	10		μs

NOTE:

1. Not tested.

NOTES:

FOR PROGRAMMING CONFIGURATION SEE FIGURE 41.

FOR VERIFICATION CONDITIONS SEE FIGURE 43.

** SEE TABLE 9.

Figure 44. EPROM Programming and Verification

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

ROM CODE SUBMISSION FOR 16K ROM DEVICES (80C54, 83C51FB AND 83C51RB+)

When submitting ROM code for the 16K ROM devices, the following must be specified:

- 1. 16k byte user ROM data
- 2. 64 byte ROM encryption key
- 3. ROM security bits.

ADDRESS	CONTENT	BIT(S)	COMMENT
0000H to 3FFFH	DATA	7:0	User ROM Data
4000H to 403FH	KEY	7:0	ROM Encryption Key FFH = no encryption
4040H	SEC	0	ROM Security Bit 1 0 = enable security 1 = disable security
4040H	SEC	1	ROM Security Bit 2 0 = enable security 1 = disable security

Security Bit 1: When programmed, this bit has two effects on masked ROM parts:

1. External MOVC is disabled, and

2. EA is latched on Reset.

Security Bit 2: When programmed, this bit inhibits Verify User ROM.

NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled.

If the ROM Code file does not include the options, the following information must be included with the ROM code.

For each of the following, check the appropriate box, and send to Philips along with the code:

Security Bit #1:	Enabled	□ Disabled	
Security Bit #2:	Enabled	Disabled	

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

ROM CODE SUBMISSION FOR 64K ROM DEVICE (83C51RD+)

When submitting ROM code for the 64K ROM devices, the following must be specified:

- 1. 64k byte user ROM data
- 2. 64 byte ROM encryption key
- 3. ROM security bits.

ADDRESS	CONTENT	BIT(S)	COMMENT
0000H to FFFFH	DATA	7:0	User ROM Data
10000H to 1003FH	KEY	7:0	ROM Encryption Key FFH = no encryption
10040H	SEC	0	ROM Security Bit 1 0 = enable security 1 = disable security
10040H	SEC	1	ROM Security Bit 2 0 = enable security 1 = disable security

Security Bit 1: When programmed, this bit has two effects on masked ROM parts:

1. External MOVC is disabled, and

2. \overline{EA} is latched on Reset.

Security Bit 2: When programmed, this bit inhibits Verify User ROM.

NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled.

If the ROM Code file does not include the options, the following information must be included with the ROM code.

For each of the following, check the appropriate box, and send to Philips along with the code:

Security Bit #1:	□ Enabled	□ Disabled	

Encryption: 🗆 No

□ Yes If Yes, must send

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

