

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	16MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p87c51rb-4a-512

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

DESCRIPTION

Three different Single-Chip 8-Bit Microcontroller families are presented in this datasheet:

- 8XC54/8XC58
- 80C51FA/8XC51FA/8XC51FB/8XC51FC
- 80C51RA+/8XC51RA+/8XC51RB+/8XC51RC+/8XC51RD+

For applications requiring 4K ROM/EPROM, see the 8XC51/80C31 8-bit CMOS (low voltage, low power, and high speed) microcontroller families datasheet.

All the families are Single-Chip 8-Bit Microcontrollers manufactured in advanced CMOS process and are derivatives of the 80C51 microcontroller family. All the devices have the same instruction set as the 80C51.

These devices provide architectural enhancements that make them applicable in a variety of applications for general control systems.

ROM/EPROM Memory Size (X by 8)	RAM Size (X by 8)	Programmable Timer Counter (PCA)	Hardware Watch Dog Timer
80C31/8XC51			
0K/4K	128	No	No
8XC54/58			
0K/8K/16K/32K	256	No	No
80C51FA/8XC51	FA/FB/FC		
0K/8K/16K/32K	256	Yes	No
80C51RA+/8XC5	51RA+/RB+/RC+	÷	
0K/8K/16K/32K	512	Yes	Yes
8XC51RD+			
64K	1024	Yes	Yes

The ROMless devices, 80C51FA, and 80C51RA+ can address up to 64K of external memory. All the devices have four 8-bit I/O ports, three 16-bit timer/event counters, a multi-source, four-priority-level, nested interrupt structure, an enhanced UART and on-chip oscillator and timing circuits. For systems that require extra memory capability up to 64k bytes, each can be expanded using standard TTL-compatible memories and logic.

Its added features make it an even more powerful microcontroller for applications that require pulse width modulation, high-speed I/O and up/down counting capabilities such as motor control. It also has a more versatile serial channel that facilitates multiprocessor communications.

FEATURES

- 80C51 Central Processing Unit
- Speed up to 33 MHz
- Full static operation
- Operating voltage range: 2.7 V to 5.5 V @ 16 MHz
- Security bits:
 - ROM 2 bits
 - OTP-EPROM 3 bits
- Encryption array 64 bytes
- RAM expandable to 64K bytes
- 4 level priority interrupt
- 6 or7 interrupt sources, depending on device
- Four 8-bit I/O ports
- Full-duplex enhanced UART
 - Framing error detection
 - Automatic address recognition
- Power control modes
 - Clock can be stopped and resumed
 - Idle mode
 - Power down mode
- Programmable clock out
- Second DPTR register
- Asynchronous port reset
- Low EMI (inhibit ALE)

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

BLOCK DIAGRAM

Philips Semiconductors

80C51 8-bit microcontroller family 8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V), low power, high speed (33MHz)

Product specification

	MEMORY SIZE 8K × 8	MEMORY SIZE 16K × 8	MEMORY SIZE 32K × 8	MEMORY SIZE 64K × 8	ROMIess	TEMPERATURE RANGE °C AND PACKAGE	VOLTAGE RANGE	FREQ. (MHz)	DWG. #
ROM	P83C51RA+4N	P83C51RB+4N	P83C51RC+4N	P83C51RD+4N		0 to +70,	2 7\/ to 5 5\/	0 to 16	SOT120-1
OTP	P87C51RA+4N	P87C51RB+4N	P87C51RC+4N	P87C51RD+4N	P80C51RA+4N	40-Pin Plastic Dual In-line Pkg.	2.7 V 10 5.5 V	01010	301129-1
ROM	P83C51RA+4A	P83C51RB+4A	P83C51RC+4A	P83C51RD+4A		0 to +70,	2 7\/ to 5 5\/	0 to 16	SOT 197 2
OTP	P87C51RA+4A	P87C51RB+4A	P87C51RC+4A	P87C51RD+4A	P60C51KA+4A	44-Pin Plastic Leaded Chip Carrier	2.7 V 10 5.5 V	01010	301107-2
ROM	P83C51RA+4B	P83C51RB+4B	P83C51RC+4B	P83C51RD+4B		0 to +70,	2 7\/ to 5 5\/	0 to 16	SOT207 2
OTP	P87C51RA+4B	P87C51RB+4B	P87C51RC+4B	P87C51RD+4B	POUCSTRA+4B	44-Pin Plastic Quad Flat Pack	2.7 V 10 5.5 V	0 10 16	501307-2
ROM	P83C51RA+5N	P83C51RB+5N	P83C51RC+5N	P83C51RD+5N		-40 to +85,		0 to 16	COT420.4
OTP	P87C51RA+5N	P87C51RB+5N	P87C51RC+5N	P87C51RD+5N	POUCSTRA+SIN	40-Pin Plastic Dual In-line Pkg.	2.7 V 10 5.5 V	0 10 16	501129-1
ROM	P83C51RA+5A	P83C51RB+5A	P83C51RC+5A	P83C51RD+5A		-40 to +85,		0 to 10	COT407 0
OTP	P87C51RA+5A	P87C51RB+5A	P87C51RC+5A	P87C51RD+5A	P80C5TRA+5A	44-Pin Plastic Leaded Chip Carrier	2.7 V 10 5.5 V	0 10 16	501167-2
ROM	P83C51RA+5B	P83C51RB+5B	P83C51RC+5B	P83C51RD+5B		-40 to +85,		0 to 16	COT207 0
OTP	P87C51RA+5B	P87C51RB+5B	P87C51RC+5B	P87C51RD+5B	POUCSTRA+5B	44-Pin Plastic Quad Flat Pack	2.7 V 10 5.5 V	0 10 16	501307-2
ROM	P83C51RA+IN	P83C51RB+IN	P83C51RC+IN	P83C51RD+IN		0 to +70,	E\/	0 to 22	SOT120 1
OTP	P87C51RA+IN	P87C51RB+IN	P87C51RC+IN	P87C51RD+IN	POUCSTRATIN	40-Pin Plastic Dual In-line Pkg.	57	0 10 33	301129-1
ROM	P83C51RA+IA	P83C51RB+IA	P83C51RC+IA	P83C51RD+IA		0 to +70,	5\/	0 to 33	SOT187-2
OTP	P87C51RA+IA	P87C51RB+IA	P87C51RC+IA	P87C51RD+IA	1 0003 IRAHA	44-Pin Plastic Leaded Chip Carrier	50	01000	001107-2
ROM	P83C51RA+IB	P83C51RB+IB	P83C51RC+IB	P83C51RD+IB		0 to +70,	5\/	0 to 33	SOT307-2
OTP	P87C51RA+IB	P87C51RB+IB	P87C51RC+IB	P87C51RD+IB	1 00C3 IRAHB	44-Pin Plastic Quad Flat Pack	50	0 10 33	301307-2
ROM	P83C51RA+JN	P83C51RB+JN	P83C51RC+JN	P83C51RD+JN		-40 to +85,	5\/	0 to 22	SOT120 1
OTP	P87C51RA+JN	P87C51RB+JN	P87C51RC+JN	P87C51RD+JN	FOUCSTRATIN	40-Pin Plastic Dual In-line Pkg.	50	0 10 33	301129-1
ROM	P83C51RA+JA	P83C51RB+JA	P83C51RC+JA	P83C51RD+JA		-40 to +85,	E)/	0 to 22	SOT197 2
OTP	P87C51RA+JA	P87C51RB+JA	P87C51RC+JA	P87C51RD+JA	FOUCSTRATJA	44-Pin Plastic Leaded Chip Carrier	50	0 10 33	301107-2
ROM	P83C51RA+JB	P83C51RB+JB	P83C51RC+JB	P83C51RD+JB	P80C51RA+ IB	-40 to +85,	5\/	0 to 33	SOT307-2
OTP	P87C51RA+JB	P87C51RB+JB	P87C51RC+JB	P87C51RD+JB		44-Pin Plastic Quad Flat Pack		0.000	001007-2

Note: For Multi Time Programmable devices, See P89C51RX+ Flash datasheet.

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

Table 2. 8XC51FA/FB/FC, 8XC51RA+/RB+/RC+/RD+ Special Function Registers (Continued)

SYMBOL	DESCRIPTION	DIRECT ADDRESS	BIT A MSB	ADDRESS	, SYMBO	L, OR AL	TERNATIV	E PORT	FUNCTIC	N LSB	RESET VALUE
			D7	D6	D5	D4	D3	D2	D1	D0	
PSW*	Program Status Word	D0H	CY	AC	F0	RS1	RS0	OV	-	Р	000000x0B
RACAP2H#	Timer 2 Capture High	СВН									00H
RACAP2L#	Timer 2 Capture Low	CAH									00H
SADDB#	Slove Address										00
SADDR#	Slave Address Mask	B9H									00H 00H
		2011									
SBUF	Serial Data Buffer	99H									xxxxxxxB
			9F	9E	9D	9C	9B	9A	99	98	
SCON*	Serial Control	98H	SM0/FE	SM1	SM2	REN	TB8	RB8	ТІ	RI	00H
SP	Stack Pointer	81H									07H
			8F	8E	8D	8C	8B	8A	89	88	
TCON*	Timer Control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00H
									_	_	
			CF	CE	CD	CC	СВ	CA	C9	C8	
T2CON*	Timer 2 Control	C8H	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00H
T2MOD#	Timer 2 Mode Control	C9H	_	-	-	-	-	-	T2OE	DCEN	xxxxxx00B
тно	Timer High 0	8CH									00H
TH1	Timer High 1	8DH									00H
TH2#	Timer High 2	CDH									00H
TLO	Timer Low 0	8AH									00H
TL1	Timer Low 1	8BH									00H
TL2#	Timer Low 2	ССН									00H
тмор	Timer Mode	89H	GATE	C/T	M1	M0	GATE	C/T	M1	MO	00H
WDTRST	HDW Watchdog Timer Reset (RX+ only)	0A6H									

* SFRs are bit addressable.

SFRs are modified from or added to the 80C51 SFRs.

Reserved bits.

OSCILLATOR CHARACTERISTICS

XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator.

To drive the device from an external clock source, XTAL1 should be driven while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, because the input to the internal clock circuitry is through a divide-by-two flip-flop. However, minimum and maximum high and low times specified in the data sheet must be observed.

RESET

A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods), while the oscillator is running. To insure a good power-on reset, the RST pin must be high long enough to allow the oscillator time to start up (normally a few milliseconds) plus two machine cycles. At power-on, the voltage on V_{CC} and RST must come up at the same time for a proper start-up. Ports 1, 2, and 3 will asynchronously be driven to their reset condition when a voltage above V_{IH1} (min.) is applied to RESET.

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

TIMER 2 OPERATION

Timer 2

Timer 2 is a 16-bit Timer/Counter which can operate as either an event timer or an event counter, as selected by $C/T2^*$ in the special function register T2CON (see Figure 1). Timer 2 has three operating modes: Capture, Auto-reload (up or down counting), and Baud Rate Generator, which are selected by bits in the T2CON as shown in Table 4.

Capture Mode

In the capture mode there are two options which are selected by bit EXEN2 in T2CON. If EXEN2=0, then timer 2 is a 16-bit timer or counter (as selected by C/T2* in T2CON) which, upon overflowing sets bit TF2, the timer 2 overflow bit. This bit can be used to generate an interrupt (by enabling the Timer 2 interrupt bit in the IE register). If EXEN2= 1, Timer 2 operates as described above, but with the added feature that a 1-to-0 transition at external input T2EX causes the current value in the Timer 2 registers, TL2 and TH2, to be captured into registers RCAP2L and RCAP2H, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set, and EXF2 like TF2 can generate an interrupt (which vectors to the same location as Timer 2 overflow interrupt. The Timer 2 interrupt service routine can interrogate TF2 and EXF2 to determine which event caused the interrupt). The capture mode is illustrated in Figure 2. (There is no reload value for TL2 and TH2 in this mode. Even when a capture event occurs from T2EX, the counter keeps on counting T2EX pin transitions or osc/12 pulses.)

Auto-Reload Mode (Up or Down Counter)

In the 16-bit auto-reload mode, Timer 2 can be configured (as either a timer or counter [C/T2* in T2CON]) then programmed to count up or down. The counting direction is determined by bit DCEN (Down Counter Enable) which is located in the T2MOD register (see

Figure 3). When reset is applied the DCEN=0 which means Timer 2 will default to counting up. If DCEN bit is set, Timer 2 can count up or down depending on the value of the T2EX pin.

Figure 4 shows Timer 2 which will count up automatically since DCEN=0. In this mode there are two options selected by bit EXEN2 in T2CON register. If EXEN2=0, then Timer 2 counts up to 0FFFH and sets the TF2 (Overflow Flag) bit upon overflow. This causes the Timer 2 registers to be reloaded with the 16-bit value in RCAP2L and RCAP2H. The values in RCAP2L and RCAP2H are preset by software means.

If EXEN2=1, then a 16-bit reload can be triggered either by an overflow or by a 1-to-0 transition at input T2EX. This transition also sets the EXF2 bit. The Timer 2 interrupt, if enabled, can be generated when either TF2 or EXF2 are 1.

In Figure 5 DCEN=1, which enables Timer 2 to count up or down. This mode allows pin T2EX to control the direction of count. When a logic 1 is applied at pin T2EX Timer 2 will count up. Timer 2 will overflow at 0FFFFH and set the TF2 flag, which can then generate an interrupt, if the interrupt is enabled. This timer overflow also causes the 16-bit value in RCAP2L and RCAP2H to be reloaded into the timer registers TL2 and TH2.

When a logic 0 is applied at pin T2EX this causes Timer 2 to count down. The timer will underflow when TL2 and TH2 become equal to the value stored in RCAP2L and RCAP2H. Timer 2 underflow sets the TF2 flag and causes 0FFFFH to be reloaded into the timer registers TL2 and TH2.

The external flag EXF2 toggles when Timer 2 underflows or overflows. This EXF2 bit can be used as a 17th bit of resolution if needed. The EXF2 flag does not generate an interrupt in this mode of operation.

	(MSB)						(LSB)	
	TF	F2 EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	
Symbol	Position	Name and Sig	nificance						
TF2	T2CON.7	Timer 2 overflow	w flag set b CLK or TCLł	y a Timer 2 K = 1.	overflow and	d must be c	leared by so	oftware. TF2 wi	ill not be set
EXF2	T2CON.6	Timer 2 extern EXEN2 = 1. W interrupt routin counter mode	al flag set w hen Timer 2 e. EXF2 mu (DCEN = 1).	hen either a interrupt is st be cleare	capture or r enabled, EX d by softwar	reload is ca (F2 = 1 will re. EXF2 do	used by a ne cause the C es not caus	egative transition PU to vector to e an interrupt in	on on T2EX and o the Timer 2 n up/down
RCLK	T2CON.5	Receive clock in modes 1 and	flag. When s d 3. RCLK =	set, causes 0 causes T	the serial po imer 1 overf	ort to use Tir low to be us	mer 2 overfle sed for the r	ow pulses for it eceive clock.	s receive clock
TCLK	T2CON.4	Transmit clock in modes 1 and	flag. When d 3. TCLK =	set, causes 0 causes Ti	the serial po mer 1 overfl	ort to use Ti lows to be u	mer 2 overfl ised for the	low pulses for i transmit clock.	ts transmit cloc
EXEN2	T2CON.3	Timer 2 extern transition on Ta ignore events a	al enable fla 2EX if Timer at T2EX.	g. When se 2 is not bei	t, allows a cannot a Cannot a cannot	apture or re clock the se	load to occu rial port. EX	ur as a result of EN2 = 0 cause	a negative s Timer 2 to
TR2	T2CON.2	Start/stop cont	rol for Timer	2. A logic 1	starts the ti	mer.			
C/T2	T2CON.1	Timer or count 0 = I 1 = E	er select. (T nternal time External eve	imer 2) r (OSC/12) nt counter (f	falling edge	triggered).			
CP/RL2	T2CON.0	Capture/Reloa cleared, auto-r EXEN2 = 1. W on Timer 2 ove	d flag. Wher eloads will c hen either R rflow.	n set, captur occur either CLK = 1 or	res will occu with Timer 2 TCLK = 1, th	r on negativ overflows on his bit is ign	re transitions or negative to ored and the	s at T2EX if EX transitions at T e timer is force	EN2 = 1. When 2EX when d to auto-reload

Figure 1. Timer/Counter 2 (T2CON) Control Register

8XC51FA/FB/FC/80C51FA

8XC51RA+/RB+/RC+/RD+/80C51RA+

80C51 8-bit microcontroller family 8K–64K/256–1K OTP/ROM/ROMless, low voltage (2.7V–5.5V), low power, high speed (33MHz)

Figure 6. Timer 2 in Baud Rate Generator Mode

Table 5.	Timer 2 Generated Commonly Used
	Baud Rates

Roud Poto		Time	er 2
Baud Kale	Osc Freq	RCAP2H	RCAP2L
375K	12MHz	FF	FF
9.6K	12MHz	FF	D9
2.8K	12MHz	FF	B2
2.4K	12MHz	FF	64
1.2K	12MHz	FE	C8
300	12MHz	FB	1E
110	12MHz	F2	AF
300	6MHz	FD	8F
110	6MHz	F9	57

Baud Rate Generator Mode

Bits TCLK and/or RCLK in T2CON (Table 5) allow the serial port transmit and receive baud rates to be derived from either Timer 1 or Timer 2. When TCLK= 0, Timer 1 is used as the serial port transmit baud rate generator. When TCLK= 1, Timer 2 is used as the serial port transmit baud rate generator. RCLK has the same effect for the serial port receive baud rate. With these two bits, the serial port can have different receive and transmit baud rates – one generated by Timer 1, the other by Timer 2.

Figure 6 shows the Timer 2 in baud rate generation mode. The baud rate generation mode is like the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

The baud rates in modes 1 and 3 are determined by Timer 2's overflow rate given below:

Modes 1 and 3 Baud Rates =
$$\frac{\text{Timer 2 Overflow Rate}}{16}$$

The timer can be configured for either "timer" or "counter" operation. In many applications, it is configured for "timer" operation ($C\overline{/T}2^*=0$). Timer operation is different for Timer 2 when it is being used as a baud rate generator.

Usually, as a timer it would increment every machine cycle (i.e., 1/12 the oscillator frequency). As a baud rate generator, it increments every state time (i.e., 1/2 the oscillator frequency). Thus the baud rate formula is as follows:

Modes 1 and 3 Baud Rates =

$$\frac{\text{Oscillator Frequency}}{[32 \times [65536 - (RCAP2H, RCAP2L)]]}$$

Where: (RCAP2H, RCAP2L)= The content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

The Timer 2 as a baud rate generator mode shown in Figure 6, is valid only if RCLK and/or TCLK = 1 in T2CON register. Note that a rollover in TH2 does not set TF2, and will not generate an interrupt. Thus, the Timer 2 interrupt does not have to be disabled when Timer 2 is in the baud rate generator mode. Also if the EXEN2 (T2 external enable flag) is set, a 1-to-0 transition in T2EX (Timer/counter 2 trigger input) will set EXF2 (T2 external flag) but will not cause a reload from (RCAP2H, RCAP2L) to (TH2,TL2). Therefore when Timer 2 is in use as a baud rate generator, T2EX can be used as an additional external interrupt, if needed.

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

Interrupt Priority Structure

The 8XC51FA/FB/FC and 8XC51RA+/RB+/RC+/RD+ have a 7-source four-level interrupt structure (see Table 8). The 80C54/58 have a 6-source four-level interrupt structure because these devices do not have a PCA.

There are 3 SFRs associated with the four-level interrupt. They are the IE, IP, and IPH. (See Figures 10, 11, and 12.) The IPH (Interrupt Priority High) register makes the four-level interrupt structure possible. The IPH is located at SFR address B7H. The structure of the IPH register and a description of its bits is shown in Figure 12.

The function of the IPH SFR is simple and when combined with the IP SFR determines the priority of each interrupt. The priority of each interrupt is determined as shown in the following table:

PRIORI	TY BITS	
IPH.x	IP.x	
0	0	Level 0 (lowest priority)
0	1	Level 1
1	0	Level 2
1	1	Level 3 (highest priority)

The priority scheme for servicing the interrupts is the same as that for the 80C51, except there are four interrupt levels rather than two as on the 80C51. An interrupt will be serviced as long as an interrupt of equal or higher priority is not already being serviced. If an interrupt of equal or higher level priority is being serviced, the new interrupt will wait until it is finished before being serviced. If a lower priority level interrupt is being serviced, it will be stopped and the new interrupt serviced. When the new interrupt is finished, the lower priority level interrupt that was stopped will be completed.

Table 8.Interrupt Table

SOURCE	POLLING PRIORITY	REQUEST BITS	HARDWARE CLEAR?	VECTOR ADDRESS
X0	1	IEO	N (L) ¹ Y (T) ²	03H
ТО	2	TF0	Y	0B
X1	3	IE1	N (L) Y (T)	13
T1	4	TF1	Y	1B
PCA	5	CF, CCFn n = 0–4	Ν	33
SP	6	RI, TI	N	23
T2	7	TF2, EXF2	Ν	2B

NOTES:

L = Level activated

2. T = Transition activated

		7	6	5	4	3	2	1	0		
	IE (0A8H)	EA	EC	ET2	ES	ET1	EX1	ET0	EX0		
		Enable I Enable I	Bit = 1 en Bit = 0 dis	ables the i ables it.	nterrupt.						
BIT	SYMBOL	FUNC	TION								
IE.7	EA	Global enable	Global disable bit. If EA = 0, all interrupts are disabled. If EA = 1, each interrupt can be individually enabled or disabled by setting or clearing its enable bit.								
IE.6	EC	PCA ir	nterrupt ei	hable bit fo	or FX and	RX+ only	- otherwis	se it is no	t impleme	nted.	
IE.5	ET2	Timer	2 interrup	t enable b	it.						
IE.4	ES	Serial	Port inter	upt enabl	e bit.						
IE.3	ET1	Timer	1 interrup	t enable b	it.						
IE.2	EX1	Extern	al interrup	ot 1 enable	e bit.						
IE.1	ET0	Timer	0 interrup	t enable b	it.						
IE.0	EX0	Extern	al interrup	ot 0 enable	e bit.					SU00840	

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

		7	6	5	4	3	2	1	0
	IP (0B8H)	—	PPC	PT2	PS	PT1	PX1	PT0	PX0
		Priority Priority	3it = 1 ass 3it = 0 ass	igns high igns low p	priority priority				
BIT	SYMBOL	FUNC	TION						
IP.7	—	Not im	plemente	d, reserve	d for futur	e use.			
IP.6	PPC	PCA ir	nterrupt pr	iority bit fo	or FX and	RX+ only,	otherwise	e it is not i	mplemen
IP.5	PT2	Timer	2 interrup	priority b	it.				
IP.4	PS	Serial	Port interr	upt priorit	y bit.				
IP.3	PT1	Timer	1 interrup	priority b	it.				
IP.2	PX1	Extern	al interrup	ot 1 priority	y bit.				
IP.1	PT0	Timer	0 interrup	t priority b	it.				
IP.0	PX0	Extern	al interrup	ot 0 priority	y bit.				SU00841

Figure 11. IP Registers

		7	6	5	4	3	2	1	0
	IPH (B7H)	—	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
		Priority Priority	Bit = 1 ass Bit = 0 ass	igns high igns lowe	er priority r priority				
BIT	SYMBOL	FUNC	TION						
IPH.7	_	Not im	plemente	d, reserve	d for futur	e use.			
IPH.6	PPCH	PCA ir	nterrupt pr	iority bit h	igh for FX	and RX+	only, othe	erwise it is	not imple
IPH.5	PT2H	Timer	2 interrupt	priority b	it high.				
IPH.4	PSH	Serial	Port interr	upt priorit	y bit high.				
IPH.3	PT1H	Timer	1 interrupt	priority b	it high.				
IPH.2	PX1H	Extern	al interrup	t 1 priority	/ bit high.				
IPH.1	PT0H	Timer	0 interrup	priority b	it high.				
IPH.0	PX0H	Extern	al interrup	ot 0 priority	/ bit high.				SU008

Figure 12. IPH Registers

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

(8XC51FX and 8XC51RX+ ONLY)

CCAPMn /	Address	CCAF CCAF CCAF CCAF CCAF	2M0 0DA 2M1 0DE 2M2 0DC 2M3 0DE 2M3 0DE 2M4 0DE	AH 3H CH DH EH					R	eset Value = X000 0000B
	Not Bit	Addressa	ble			-				_
		-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	
	Bit:	7	6	5	4	3	2	1	0	<u> -</u>
Symbol	Funct	tion								
_	Not in	nplemente	d, reserved	for future u	se*.					
ECOMn	Enabl	le Compara	ator. ECOM	n = 1 enabl	es the com	parator fund	ction.			
CAPPn	Captu	ure Positive	e, CAPPn =	1 enables	positive edg	e capture.				
CAPNn	Captu	ure Negativ	e, CAPNn :	= 1 enables	negative e	dge capture).			
MATn	Match in CC	n. When M. ON to be s	ATn = 1, a r set, flagging	natch of the an interrup	e PCA coun ot.	ter with this	module's c	compare/ca	pture regist	er causes the CCFn bit
TOGn	Toggle pin to	e. When To toggle.	OGn = 1, a	match of th	e PCA cour	nter with this	s module's	compare/ca	apture regis	ter causes the CEXn
PWMn	Pulse	Width Mo	dulation Mo	de. PWMn	= 1 enables	the CEXn	pin to be us	sed as a pu	lse width m	odulated output.
ECCFn	Enabl	le CCF inte	errupt. Enab	les compai	e/capture fl	ag CCFn in	the CCON	register to	generate a	n interrupt.
NOTE: *User software bit will be 0, ar	should not id its active	write 1s to re value will be	served bits. The 1. The value rea	ese bits may be ad from a reser	used in future ved bit is indete	8051 family pro erminate.	oducts to invoke	e new features.	. In that case, th	he reset or inactive value of the new

Figure 19	CCAPMn [•] PCA	Modules Com	nare/Canture	Registers
rigure 13.	COAL MILL LOA	wouldes con	ipale/Gaptule	rivegiatera

-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	MODULE FUNCTION
Х	0	0	0	0	0	0	0	No operation
Х	Х	1	0	0	0	0	Х	16-bit capture by a positive-edge trigger on CEXn
Х	Х	0	1	0	0	0	Х	16-bit capture by a negative trigger on CEXn
Х	Х	1	1	0	0	0	Х	16-bit capture by a transition on CEXn
Х	1	0	0	1	0	0	Х	16-bit Software Timer
Х	1	0	0	1	1	0	Х	16-bit High Speed Output
Х	1	0	0	0	0	1	0	8-bit PWM
Х	1	0	0	1	Х	0	Х	Watchdog Timer

Figure 20. PCA Module Modes (CCAPMn Register)

PCA Capture Mode

To use one of the PCA modules in the capture mode either one or both of the CCAPM bits CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1) is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated. Refer to Figure 21.

16-bit Software Timer Mode

The PCA modules can be used as software timers by setting both the ECOM and MAT bits in the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set (see Figure 22).

High Speed Output Mode

In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the module's capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (see Figure 23).

Pulse Width Modulator Mode

All of the PCA modules can be used as PWM outputs. Figure 24 shows the PWM function. The frequency of the output depends on the source for the PCA timer. All of the modules will have the same frequency of output because they all share the PCA timer. The duty cycle of each module is independently variable using the module's capture register CCAPLn. When the value of the PCA CL SFR is less than the value in the module's CCAPLn SFR the output will be low, when it is equal to or greater than the output will be high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn. the allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

(8XC51FX and 8XC51RX+ ONLY)

Figure 21. PCA Capture Mode

Figure 22. PCA Compare Mode

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

(8XC51RX+ ONLY)

Figure 28. Internal and External Data Memory Address Space with EXTRAM = 0

HARDWARE WATCHDOG TIMER (ONE-TIME ENABLED WITH RESET-OUT FOR 89C51RC+/RD+)

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The WDT consists of a 14-bit counter and the WatchDog Timer reset (WDTRST) SFR. The WDT is disabled at reset. To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output reset HIGH pulse at the RST-pin.

Using the WDT

To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST. SFR location 0A6H. When WDT is enabled, the user needs to service it by writing to 01EH and 0E1H to WDTRST to avoid WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH) and this will reset the device. When using the WDT, a 1Kohm resistor must be inserted between RST of the device and the Power On Reset circuitry. When WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycles. To reset the WDT, the user must write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the reset pin. The RESET pulse duration is $98 \times T_{OSC}$, where $T_{OSC} = 1/f_{OSC}$. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

In applications using the Hardware Watchdog Timer of the P8xC51RD+, a series resistor (1K $\Omega \pm 20\%$) needs to be included between the reset pin and any external components. Without this resistor the watchdog timer will not function.

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

AC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0^{\circ}C$ to +70°C or -40°C to +85°C, $V_{CC} = +2.7V$ to +5.5V, $V_{SS} = 0V^{1, 2, 3}$

			16MHz	CLOCK	VARIABL	E CLOCK	
SYMBOL	FIGURE	PARAMETER	MIN	MAX	MIN	MAX	UNIT
1/t _{CLCL}	29	Oscillator frequency ⁵ Speed versions : 4; 5;S			3.5	16	MHz
t _{LHLL}	29	ALE pulse width	85		2t _{CLCL} -40		ns
t _{AVLL}	29	Address valid to ALE low	22		t _{CLCL} -40		ns
t _{LLAX}	29	Address hold after ALE low	32		t _{CLCL} -30		ns
t _{LLIV}	29	ALE low to valid instruction in		150		4t _{CLCL} -100	ns
t _{LLPL}	29	ALE low to PSEN low	32		t _{CLCL} -30		ns
t _{PLPH}	29	PSEN pulse width	142		3t _{CLCL} -45		ns
t _{PLIV}	29	PSEN low to valid instruction in		82		3t _{CLCL} -105	ns
t _{PXIX}	29	Input instruction hold after PSEN	0		0		ns
t _{PXIZ}	29	Input instruction float after PSEN		37		t _{CLCL} -25	ns
t _{AVIV} 5	29	Address to valid instruction in		207		5t _{CLCL} -105	ns
t _{PLAZ}	29	PSEN low to address float		10		10	ns
Data Memo	ory					•	
t _{RLRH}	30, 31	RD pulse width	275		6t _{CLCL} -100		ns
t _{WLWH}	30, 31	WR pulse width	275		6t _{CLCL} -100		ns
t _{RLDV}	30, 31	RD low to valid data in		147		5t _{CLCL} -165	ns
t _{RHDX}	30, 31	Data hold after RD	0		0		ns
t _{RHDZ}	30, 31	Data float after RD		65		2t _{CLCL} -60	ns
t _{LLDV}	30, 31	ALE low to valid data in		350		8t _{CLCL} -150	ns
t _{AVDV}	30, 31	Address to valid data in		397		9t _{CLCL} -165	ns
t _{LLWL}	30, 31	ALE low to RD or WR low	137	239	3t _{CLCL} -50	3t _{CLCL} +50	ns
t _{AVWL}	30, 31	Address valid to \overline{WR} low or \overline{RD} low	122		4t _{CLCL} -130		ns
t _{QVWX}	30, 31	Data valid to WR transition	13		t _{CLCL} -50		ns
t _{WHQX}	30, 31	Data hold after WR	13		t _{CLCL} -50		ns
t _{QVWH}	31	Data valid to WR high	287		7t _{CLCL} -150		ns
t _{RLAZ}	30, 31	RD low to address float		0		0	ns
t _{WHLH}	30, 31	RD or WR high to ALE high	23	103	t _{CLCL} -40	t _{CLCL} +40	ns
External Cl	ock		-			-	
t _{CHCX}	33	High time	20		20	tCLCL-tCLCX	ns
t _{CLCX}	33	Low time	20		20	t _{CLCL} -t _{CHCX}	ns
t _{CLCH}	33	Rise time		20		20	ns
t _{CHCL}	33	Fall time		20		20	ns
Shift Regis	ter						
t _{XLXL}	32	Serial port clock cycle time	750		12t _{CLCL}		ns
t _{QVXH}	32	Output data setup to clock rising edge	492		10t _{CLCL} -133		ns
t _{XHQX}	32	Output data hold after clock rising edge	8		2t _{CLCL} -117		ns
t _{XHDX}	32	Input data hold after clock rising edge	0		0		ns
t _{XHDV}	32	Clock rising edge to input data valid		492		10t _{CLCL} -133	ns

NOTES:

 Parameters are valid over operating temperature range unless otherwise specified.
Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.
Interfacing the microcontroller to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0 drivers.

4. See application note AN457 for external memory interface.

5. Parts are guaranteed to operate down to 0Hz.

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

AC ELECTRICAL CHARACTERISTICS

 $T_{amb} = 0^{\circ}C$ to +70°C or -40°C to +85°C, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V^{1, 2, 3}$

			VARIABL	E CLOCK ⁴	33MHz		
SYMBOL	FIGURE	PARAMETER	MIN	MAX	MIN	MAX	UNIT
t _{LHLL}	29	ALE pulse width	2t _{CLCL} -40		21		ns
t _{AVLL}	29	Address valid to ALE low	t _{CLCL} -25		5		ns
t _{LLAX}	29	Address hold after ALE low	t _{CLCL} -25				ns
t _{LLIV}	29	ALE low to valid instruction in		4t _{CLCL} -65		55	ns
t _{LLPL}	29	ALE low to PSEN low	t _{CLCL} -25		5		ns
t _{PLPH}	29	PSEN pulse width	3t _{CLCL} -45		45		ns
t _{PLIV}	29	PSEN low to valid instruction in		3t _{CLCL} –60		30	ns
t _{PXIX}	29	Input instruction hold after PSEN	0		0		ns
t _{PXIZ}	29	Input instruction float after PSEN		t _{CLCL} -25		5	ns
t _{AVIV}	29	Address to valid instruction in		5t _{CLCL} -80		70	ns
t _{PLAZ}	29	PSEN low to address float		10		10	ns
Data Memor	у				-	-	-
t _{RLRH}	30, 31	RD pulse width	6t _{CLCL} -100		82		ns
t _{WLWH}	30, 31	WR pulse width	6t _{CLCL} -100		82		ns
t _{RLDV}	30, 31	RD low to valid data in		5t _{CLCL} –90		60	ns
t _{RHDX}	30, 31	Data hold after RD	0		0		ns
t _{RHDZ}	30, 31	Data float after RD		2t _{CLCL} –28		32	ns
t _{LLDV}	30, 31	ALE low to valid data in		8t _{CLCL} -150		90	ns
t _{AVDV}	30, 31	Address to valid data in		9t _{CLCL} -165		105	ns
t _{LLWL}	30, 31	ALE low to RD or WR low	3t _{CLCL} -50	3t _{CLCL} +50	40	140	ns
t _{AVWL}	30, 31	Address valid to \overline{WR} low or \overline{RD} low	4t _{CLCL} -75		45		ns
t _{QVWX}	30, 31	Data valid to WR transition	t _{CLCL} -30		0		ns
t _{WHQX}	30, 31	Data hold after WR	t _{CLCL} -25		5		ns
t _{QVWH}	31	Data valid to WR high	7t _{CLCL} -130		80		ns
t _{RLAZ}	30, 31	RD low to address float		0		0	ns
t _{WHLH}	30, 31	RD or WR high to ALE high	t _{CLCL} -25	t _{CLCL} +25	5	55	ns
External Clo	ock						
t _{CHCX}	33	High time	0.38t _{CLCL}	t _{CLCL} -t _{CLCX}			ns
t _{CLCX}	33	Low time	0.38t _{CLCL}	tCLCL-tCHCX			ns
t _{CLCH}	33	Rise time		5			ns
t _{CHCL}	33	Fall time		5			ns
Shift Regist	er						
t _{XLXL}	32	Serial port clock cycle time	12t _{CLCL}		360		ns
t _{QVXH}	32	Output data setup to clock rising edge	10t _{CLCL} -133		167		ns
t _{XHQX}	32	Output data hold after clock rising edge	2t _{CLCL} -80				ns
t _{XHDX}	32	Input data hold after clock rising edge	0		0		ns
t _{XHDV}	32	Clock rising edge to input data valid		10t _{CLCL} -133		167	ns

NOTES:

 Parameters are valid over operating temperature range unless otherwise specified.
Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.
Interfacing the microcontroller to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0 drivers.

4. For frequencies equal or less than 16MHz, see 16MHz "AC Electrical Characteristics", page 38.

5. Parts are guaranteed to operate down to 0Hz.

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

EXPLANATION OF THE AC SYMBOLS

Each timing symbol has five characters. The first character is always 't' (= time). The other characters, depending on their positions, indicate the name of a signal or the logical status of that signal. The designations are:

- A Address
- $C \ Clock$
- D Input data
- H Logic level high
- I Instruction (program memory contents)
- L Logic level low, or ALE

- P PSEN
- Q Output data
- R RD signal
- t Time
- V Valid
- W- WR signal
- X No longer a valid logic level
- Z Float

Figure 29. External Program Memory Read Cycle

Figure 30. External Data Memory Read Cycle

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

Figure 40. I_{CC} Test Condition, Power Down Mode All other pins are disconnected. V_{CC} = 2V to 5.5V

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

Table 9. EPROM Programming Modes

MODE	RST	PSEN	ALE/PROG	EA/V _{PP}	P2.7	P2.6	P3.7	P3.6
Read signature	1	0	1	1	0	0	0	0
Program code data	1	0	0*	V _{PP}	1	0	1	1
Verify code data	1	0	1	1	0	0	1	1
Pgm encryption table	1	0	0*	V _{PP}	1	0	1	0
Pgm security bit 1	1	0	0*	V _{PP}	1	1	1	1
Pgm security bit 2	1	0	0*	V _{PP}	1	1	0	0
Pgm security bit 3	1	0	0*	V _{PP}	0	1	0	1

NOTES:

1. '0' =Valid low for that pin, '1' =valid high for that pin.

U = Valid low for that pin, T = Valid high for that pin.
V_{PP} = 12.75V ±0.25V.
V_{CC} = 5V±10% during programming and verification.
* ALE/PROG receives 5 programming pulses for code data (also for user array; 5 pulses for encryption or security bits) while V_{PP} is held at 12.75V. Each programming pulse is low for 100µs (±10µs) and high for a minimum of 10µs.

Table 10. Program Security Bits for EPROM Devices

PRO	OGRAM L	ОСК ВІТЯ	31, 2	
	SB1	SB2	SB3	PROTECTION DESCRIPTION
1	U	U	U	No Program Security features enabled. (Code verify will still be encrypted by the Encryption Array if programmed.)
2	Р	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, \overline{EA} is sampled and latched on Reset, and further programming of the EPROM is disabled.
3	Р	Р	U	Same as 2, also verify is disabled.
4	Р	Р	Р	Same as 3, external execution is disabled.

NOTES:

1. P - programmed. U - unprogrammed.

2. Any other combination of the security bits is not defined.

Figure 41. Programming Configuration

Figure 42. PROG Waveform

Figure 43. Program Verification

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

ROM CODE SUBMISSION FOR 16K ROM DEVICES (80C54, 83C51FB AND 83C51RB+)

When submitting ROM code for the 16K ROM devices, the following must be specified:

- 1. 16k byte user ROM data
- 2. 64 byte ROM encryption key
- 3. ROM security bits.

ADDRESS	CONTENT	BIT(S)	COMMENT
0000H to 3FFFH	DATA	7:0	User ROM Data
4000H to 403FH	KEY	7:0	ROM Encryption Key FFH = no encryption
4040H	SEC	0	ROM Security Bit 1 0 = enable security 1 = disable security
4040H	SEC	1	ROM Security Bit 2 0 = enable security 1 = disable security

Security Bit 1: When programmed, this bit has two effects on masked ROM parts:

1. External MOVC is disabled, and

2. EA is latched on Reset.

Security Bit 2: When programmed, this bit inhibits Verify User ROM.

NOTE: Security Bit 2 cannot be enabled unless Security Bit 1 is enabled.

If the ROM Code file does not include the options, the following information must be included with the ROM code.

For each of the following, check the appropriate box, and send to Philips along with the code:

Security Bit #1:	Enabled	□ Disabled	
Security Bit #2:	Enabled	Disabled	

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	с	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	МЕ	М _Н	w	max.
mm	4.7	0.51	4.0	1.70 1.14	0.53 0.38	0.36 0.23	52.50 51.50	14.1 13.7	2.54	15.24	3.60 3.05	15.80 15.24	17.42 15.90	0.254	2.25
inches	0.19	0.020	0.16	0.067 0.045	0.021 0.015	0.014 0.009	2.067 2.028	0.56 0.54	0.10	0.60	0.14 0.12	0.62 0.60	0.69 0.63	0.01	0.089

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN				
VERSION	IEC	JEDEC	EIAJ		PROJECTION	1550E DATE	
SOT129-1	051G08	MO-015	SC-511-40			-95-01-14 99-12-27	

8XC54/58 8XC51FA/FB/FC/80C51FA 8XC51RA+/RB+/RC+/RD+/80C51RA+

NOTES