

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	81
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA
Supplier Device Package	100-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f412veh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pe	ripherals		STM3	2F412xE			STM32F412xG			
Flash men	nory (Kbyte)			512				1024		
SRAM (Kbyte)	System				25	6				
FSMC me	mory controller		- 1				-		1	
Quad-SPI interface	memory	-	1			-		1		
	General- purpose				10)				
Timers	Advanced- control		2							
	Basic				2					
Random n	umber generator				1					
	SPI/ I ² S				5/5 (2 full	duplex)				
	l ² C				3					
	I ² CFMP		1							
Comm.	USART	3		4		3		4		
interfaces	SDIO/MMC				1					
	USB/OTG FS		1		1		1		1	
	Dual power rail	No			Yes		No		Yes	
	CAN		•		2	i				
Number of Sigma-del	digital Filters for ta modulator	2		2		2 2				
Number of	channels	3		4		3		4		
LCD paral Data bus s	lel interface size	-	8	1	6	-	8	1	6	
GPIOs		36	50	81	114	36	50	81	114	
12-bit ADC	>				1					
Number of	channels	10		16		10		16		
Maximum	CPU frequency				100 N	ЛНz				
Operating	voltage				1.7 to	3.6 V				
.			Am	bient tempe	ratures: -40	to +85 °	C/-40 to +1	05 °C		
Operating	temperatures			Junctior	n temperatur	e: -40 to	+ 125 °C			
Package		UFQ FPN48	LQFP64 WLCSP64	UFBGA 100 LQFP100	UFBGA 144 LQFP144	UFQ FPN48	LQFP64 WLCSP 64	UFBGA 100 LQFP100	UFBGA 144 LQFP144	

Table 2. STM32F412xE/G features and peripheral counts

2.1 Compatibility with STM32F4 series

The STM32F412xE/G are fully software and feature compatible with the STM32F4 series (STM32F42x, STM32F401, STM32F43x, STM32F41x, STM32F405 and STM32F407)

The STM32F412xE/G can be used as drop-in replacement of the other STM32F4 products but some slight changes have to be done on the PCB board.

Figure 1. Compatible board design for LQFP100 package

Figure 4. STM32F412xE/G block diagram

1. The timers connected to APB2 are clocked from TIMxCLK up to 100 MHz, while the timers connected to APB1 are clocked from TIMxCLK up to 50 MHz.

3 Functional overview

3.1 ARM[®] Cortex[®]-M4 with FPU core with embedded Flash and SRAM

The ARM[®] Cortex[®]-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM[®] Cortex[®]-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

The STM32F412xE/G devices are compatible with all ARM tools and software.

Figure 4 shows the general block diagram of the STM32F412xE/G.

Note: Cortex[®]-M4 with FPU is binary compatible with Cortex[®]-M3.

3.2 Adaptive real-time memory accelerator (ART Accelerator[™])

The ART Accelerator[™] is a memory accelerator which is optimized for STM32 industrystandard ARM[®] Cortex[®]-M4 with FPU processors. It balances the inherent performance advantage of the ARM[®] Cortex[®]-M4 with FPU over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor full 125 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 100 MHz.

3.3 Batch Acquisition mode (BAM)

The Batch acquisition mode allows enhanced power efficiency during data batching. It enables data acquisition through any communication peripherals directly to memory using the DMA in reduced power consumption as well as data processing while the rest of the system is in low-power mode (including the flash and ART). For example in an audio system, a smart combination of PDM audio sample acquisition and processing from the DFSDM directly to RAM (flash and ARTTM stopped) with the DMA using BAM followed by some very short processing from flash allows to drastically reduce the power consumption of the application. A dedicated application note (AN4515) describes how to implement the STM32F412xE/G BAM to allow the best power efficiency.

DocID028087 Rev 4

There are three power modes configured by software when the regulator is ON:

- MR is used in the nominal regulation mode (With different voltage scaling in Run mode) In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption.
- LPR is used in the Stop mode

The LP regulator mode is configured by software when entering Stop mode.

• Power-down is used in Standby mode.

The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Depending on the package, one or two external ceramic capacitors should be connected on the VCAP_1 and VCAP_2 pins. The VCAP_2 pin is only available for the 100 pins and 144 pins packages.

All packages have the regulator ON feature.

3.19.2 Regulator OFF

This feature is available only on UFBGA100 and UFBGA144 packages, which feature the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V₁₂ voltage source through V_{CAP_1} and V_{CAP_2} pins.

Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency.

The two 2.2 μF ceramic capacitors should be replaced by two 100 nF decoupling capacitors.

When the regulator is OFF, there is no more internal monitoring on V_{12} . An external power supply supervisor should be used to monitor the V_{12} of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V_{12} power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V₁₂ logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.

3.30 Secure digital input/output interface (SDIO)

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 50 MHz, and is compliant with the SD Memory Card Specification Version 2.0.

The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC/eMMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1.

3.31 Controller area network (bxCAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 byte of SRAM are allocated for each CAN.

3.32 Universal serial bus on-the-go full-speed (USB_OTG_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The Battery Charging Detection (BCD) can detect and identify the type of port, it is connected to (standard USB or charger). The type of charging is also detected: Dedicated Charging Port (DCP), Charging Downstream Port (CDP) and Standard Downstream Port (SDP). Some packages provide a dedicated USB power rail allowing a different supply for the USB and for the rest of the chip. For instance the chip can be powered with the minimum specified supply and the USB running at the level defined by the standard. The major features are:

- Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 6 bidirectional endpoints
- 12 host channels with periodic OUT support
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected
- Link Power Management (LPM)
- Battery Charging Detection (BCD) supporting DCP, CDP and SDP

		Pir	n Nu	mber								
UFQFPN48	LQFP64	WLCSP64	LQFP100	UFBGA100	UFBGA144	LQFP144	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	40	E2	66	D12	E11	99	PC9	I/O	FT	-	MCO_2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S2_CKIN, QUADSPI_BK1_IO0, SDIO_D1, EVENTOUT	-
29	41	E3	67	D11	E12	100	PA8	I/O	FT	-	MCO_1, TIM1_CH1, I2C3_SCL, USART1_CK, USB_FS_SOF, SDIO_D1, EVENTOUT	-
30	42	D1	68	D10	D12	101	PA9	I/O	FT	-	TIM1_CH2, I2C3_SMBA, USART1_TX, USB_FS_VBUS, SDIO_D2, EVENTOUT	-
31	43	D2	69	C12	D11	102	PA10	I/O	FT	-	TIM1_CH3, SPI5_MOSI/I2S5_SD, USART1_RX, USB_FS_ID, EVENTOUT	-
32	44	D3	70	B12	C12	103	PA11	I/O	FT	-	TIM1_CH4, SPI4_MISO, USART1_CTS, USART6_TX, CAN1_RX, USB_FS_DM, EVENTOUT	-
33	45	C1	71	A12	B12	104	PA12	I/O	FT	-	TIM1_ETR, SPI5_MISO, USART1_RTS, USART6_RX, CAN1_TX, USB_FS_DP, EVENTOUT	-
34	46	C2	72	A11	A12	105	PA13	I/O	FT	-	JTMS-SWDIO, EVENTOUT	-
-	-	-	73	C11	G9	106	VCAP_2	S	-	-	-	-
35	47	B1	74	F11	G10	107	VSS	S	-	-	-	-
36	48	-	75	G11	-	-	VDD	S	-	-	-	-
-	-	A1	-	-	F9	108	VDD	S	-	-	-	-
37	49	B2	76	A10	A11	109	PA14	I/O	FT	-	JTCK-SWCLK, EVENTOUT	-
38	50	A2	77	A9	A10	110	PA15	I/O	FT	-	JTDI, TIM2_CH1/TIM2_ETR, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART1_TX, EVENTOUT	-

Table 9. STM32F412xE/G pin definition (continued)

DocID028087 Rev 4

61/193

	Table 10. STM32F412xE/G alternate functions													
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF12	AF15
F	Port	SYS_AF	TIM1/ TIM2	TIM3/ TIM4/ TIM5	TIM8/ TIM9/ TIM10/ TIM11	12C1/ 12C2/ 12C3/ 12CFMP1	SPI1/I2S1/ SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4	SPI2/I2S2/SPI3 /I2S3/SPI4/ I2S4/SPI5/I2S5 /DFSDM1	SPI3/I2S3/ USART1/ USART2/ USART3	DFSDM1/ USART3/ USART6/ CAN1	I2C2/I2C3/ I2CFMP1/ CAN1/CAN2 /TIM12/ TIM13/TIM14 /QUADSPI	DFSDM1/ QUADSPI/ FSMC /OTG1_FS	FSMC /SDIO	SYS_AF
	PA0	-	TIM2_CH1/ TIM2_ETR	TIM5_CH1	TIM8_ETR	-	-	-	USART2_CTS	-	-	-	-	EVENTOUT
	PA1	-	TIM2_CH2	TIM5_CH2	-	-	SPI4_MOSI/I 2S4_SD	-	USART2_RTS	-	QUADSPI_ BK1_IO3	-	-	EVENTOUT
	PA2	-	TIM2_CH3	TIM5_CH3	TIM9_CH1	-	I2S2_CKIN	-	USART2_TX	-	-	-	FSMC_D4	EVENTOUT
	PA3	-	TIM2_CH4	TIM5_CH4	TIM9_CH2	-	I2S2_MCK	-	USART2_RX	-	-	-	FSMC_D5	EVENTOUT
	PA4	-	-	-	-	-	SPI1_NSS/I2 S1_WS	SPI3_NSS/ I2S3_WS	USART2_CK	DFSDM1_ DATIN1	-	-	FSMC_D6	EVENTOUT
	PA5	-	TIM2_CH1/ TIM2_ETR	-	TIM8_CH1N	-	SPI1_SCK/ I2S1_CK	-	-	DFSDM1_ CKIN1	-	-	FSMC_D7	EVENTOUT
	PA6	-	TIM1_BKIN	TIM3_CH1	TIM8_BKIN	-	SPI1_MISO	I2S2_MCK	-	-	TIM13_ CH1	QUADSPI_ BK2_IO0	SDIO_CMD	EVENTOUT
∢	PA7	-	TIM1_CH1N	TIM3_CH2	TIM8_CH1N	-	SPI1_MOSI/I 2S1_SD	-	-	-	TIM14_ CH1	QUADSPI_ BK2_IO1	-	EVENTOUT
LOL	PA8	MCO_1	TIM1_CH1	-	-	I2C3_SCL	-	-	USART1_CK	-	-	USB_FS_ SOF	SDIO_D1	EVENTOUT
	PA9	-	TIM1_CH2	-	-	I2C3_ SMBA	-	-	USART1_TX	-	-	USB_FS_ VBUS	SDIO_D2	EVENTOUT
	PA10	-	TIM1_CH3	-	-	-	-	SPI5_MOSI/ I2S5_SD	USART1_RX	-	-	USB_FS_ID	-	EVENTOUT
	PA11	-	TIM1_CH4	-	-	-	-	SPI4_MISO	USART1_CTS	USART6_ TX	CAN1_RX	USB_FS_DM	-	EVENTOUT
	PA12	-	TIM1_ETR	-	-	-	-	SPI5_MISO	USART1_RTS	USART6_ RX	CAN1_TX	USB_FS_DP	-	EVENTOUT
	PA13	JTMS- SWDIO	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PA14	JTCK- SWCLK	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PA15	JTDI	TIM2_CH1/ TIM2_ETR	-	-	-	SPI1_NSS/ I2S1_WS	SPI3_NSS/ I2S3_WS	USART1_TX	-	-	-	-	EVENTOUT

STM32F412xE/G

Pinouts and pin description

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3 \sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.3 V (for the 1.7 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2 \sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 19*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 20*.

DocID028087 Rev 4

Figure 25. Typical V_{BAT} current consumption (LSE and RTC ON/LSE oscillator "high drive" mode selection)

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 56: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 36: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O

Symbol	Parameter	Conditions ⁽¹⁾	I/O toggling frequency (f _{SW})	Тур	Unit
			2 MHz	0.05	
			8 MHz	0.15	
			25 MHz	0.45	
		$V_{DD} = 3.3 V$ C = CINT	50 MHz	0.85	
			60 MHz	1.00	
			84 MHz	1.40	
			90 MHz	1.67	
			2 MHz	0.10	
			8 MHz	0.35	
		V _{DD} = 3.3 V	25 MHz	1.05	
	I/O switching	C _{EXT} = 0 pF	50 MHz	2.20	
		$C = C_{INT} + C_{EXT} + C_{S}$	60 MHz	2.40	mA
			84 MHz	3.55	
			90 MHz	4.23	
סוססו			2 MHz	0.20	
	current		8 MHz	0.65	
		V _{DD} = 3.3 V	25 MHz	1.85	
		C _{EXT} =10 pF	50 MHz	2.45	
		$C = C_{INT} + C_{EXT} + C_S$	60 MHz	4.70	
			84 MHz	8.80	1
			90 MHz	10.47	
			2 MHz	0.25	
		V _{DD} = 3.3 V	8 MHz	1.00	
		C _{EXT} = 22 pF	25 MHz	3.45	
		$C = C_{INT} + C_{EXT} + C_{S}$	50 MHz	7.15	
			60 MHz	11.55	
			2 MHz	0.32	
		$V_{DD} = 3.3 V$	8 MHz	1.27	1
		$C = C_{INT} + C_{FXT} + C_{S}$	25 MHz	3.88	
			50 MHz	12.34	

Table 35. Switching output I/O current consumption

1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).

possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

The LSE high-power mode allows to cover a wider range of possible crystals but with a cost of higher power consumption.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
R _F	Feedback resistor	-	-	18.4	-	MΩ	
I _{DD}	LSE current consumption	Low-power mode (default)	-	-	1	μA	
		High-drive mode	High-drive mode		3		
ACC _{LSE} ⁽²⁾	LSE accuracy	-	-500	-	500	ppm	
G crit may	Maximum critical crystal d	Startup, low-power mode	-	-	0.56		
G _m _crit_max		Startup, high-drive mode	-	-	1.50	μΑνν	
t _{SU(LSE)} ⁽³⁾	startup time	V_{DD} is stabilized	-	2	-	S	

Table 41. LSE oscillator characteristics (f_{LSE} = 32.768 kHz) ⁽¹⁾

1. Guaranteed by design, not tested in production.

2. This parameter depends on the crystal used in the application. Refer to the application note AN2867.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is guaranteed by characterization and not tested in production. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

For information about the LSE high-power mode, refer to the reference manual RM0383.

Figure 30. Typical application with a 32.768 kHz crystal

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
t _{prog}	Double word programming		-	16	100 ⁽²⁾	μs
t _{ERASE16KB}	Sector (16 KB) erase time	T _A = 0 to +40 °C	-	230	-	
t _{ERASE64KB}	Sector (64 KB) erase time	V _{DD} = 3.3 V	-	490	-	ms
t _{ERASE128KB}	Sector (128 KB) erase time	V _{PP} = 8.5 V	-	875	-	
t _{ME}	Mass erase time		-	6.9	-	S
V _{prog}	Programming voltage	-	2.7	-	3.6	V
V _{PP}	V _{PP} voltage range	-	7	-	9	V
I _{PP}	Minimum current sunk on the $V_{\rm PP}$ pin	-	10	-	-	mA
t _{VPP} ⁽³⁾	Cumulative time during which V_{PP} is applied	-	-	-	1	hour

Table 49. Flash memory programming with V_{PP} voltage

1. Guaranteed by design, not tested in production.

2. The maximum programming time is measured after 100K erase operations.

3. V_{PP} should only be connected during programming/erasing.

Symbol	Parameter	Conditions	Value Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Years
		10 kcycle ⁽²⁾ at T _A = 55 °C	20	

Table 50. Flash memory endurance and data retention

1. Guaranteed by characterization, not tested in production.

2. Cycling performed over the whole temperature range.

6.3.13 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with IEC61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. [f _{HSE} /f _{CPU}] 8/100 MHz	Unit
	Dacklaush		0.1 to 30 MHz	20	
c		V_{DD} = 3.6 V, T_A = 25 C, LQFP144 package, conforming to IEC 61967-2,	30 to 130 MHz	28	dBµV
SEMI	Feak level	EEMBC, ART ON, all peripheral clocks	130 MHz to 1 GHz	21	
		enabled, clock ditriening disabled.	EMI Level	3.5	-

Table 52. EMI characteristics for LQFP144

6.3.14 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25$ °C conforming to JESD22-A114	2	2000	
V _{ESD(CDM)}	Electrostatic	$T_{A} = +25 \text{ °C conforming to ANSI/ESD STM5.3.1,}$ UFBGA144, UFBGA100, LQFP100, LQFP64, UFQFPN48		500	V
	discharge voltage (charge device model)	$T_A = +25$ °C conforming to ANSI/ESD STM5.3.1, WLCSP64		400	
		$T_A = +25$ °C conforming to ANSI/ESD STM5.3.1, LQFP144	3	250	

Table 53. ESD absolute maximum ratings

1. Guaranteed by characterization, not tested in production.

Figure 36. I/O AC characteristics definition

6.3.17 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 56*).

Unless otherwise specified, the parameters given in *Table 59* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 15*. Refer to *Table 56: I/O static characteristics* for the values of VIH and VIL for NRST pin.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _{PU}	Weak pull-up equivalent resistor ⁽¹⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽²⁾	NRST Input filtered pulse	-	-	-	100	ns
V _{NF(NRST)} ⁽²⁾	NRST Input not filtered pulse	V _{DD} > 2.7 V	300	-	-	ns
T _{NRST_OUT}	Generated reset pulse duration	Internal Reset source	20	-	-	μs

Table 59. NRST pin characteristics

1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

2. Guaranteed by design, not tested in production.

FMPI²C characteristics

The following table presents FMPI²C characteristics.

Refer also to Section 6.3.16: I/O port characteristics for more details on the input/output function characteristics (SDA and SCL).

	Demonster	Standa	rd mode	Fast	mode	Fast+	mode	L los it
	Parameter	Min	Max	Min	Max	Min	Max	Unit
ffmpi2CC	FMPI2CCLK frequency	2	-	8	-	18	-	
tw(SCLL)	SCL clock low time	4.7	-	1.3	-	0.5	-	
tw(SCLH)	SCL clock high time	4.0	-	0.6	-	0.26	-	
tsu(SDA)	SDA setup time	0.25	-	0.10	-	0.05	-	
th(SDA)	SDA data hold time	0	-	0	-	0	-	
tv(SDA,ACK)	Data, ACK valid time	-	3.45	-	0.9	-	0.45	
tr(SDA) tr(SCL)	SDA and SCL rise time	-	1.0	-	0.30	-	0.12	
tf(SDA) tf(SCL)	SDA and SCL fall time	-	0.30	-	0.30	-	0.12	μs
th(STA)	Start condition hold time	4	-	0.6	-	0.26	-	
tsu(STA)	Repeated Start condition setup time	4.7	-	0.6	-	0.26	-	
tsu(STO)	Stop condition setup time	4	-	0.6	-	0.26	-	
tw(STO:STA)	Stop to Start condition time (bus free)	4.7	-	1.3	-	0.5	-	
tsp	Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode	-	-	0.05	0.1	0.05	0.1	
Cb	Capacitive load for each bus Line	-	400	-	400	-	550 ⁽²⁾	pF

Table 63. FMPI ² C characteristics ⁽¹

1. Based on characterization results, not tested in production.

2. Can be limited. Maximum supported value can be retrieved by referring to the following formulas: $t_{r(SDA/SCL)} = 0.8473 \times R_p \times C_{load} R_{p(min)} = (V_{DD} - V_{OL(max)}) / I_{OL(max)}$

- 2. The USB OTG FS functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics which are degraded in the 2.7-to-3.0 V $\rm V_{DD}$ voltage range.
- 3. Guaranteed by design, not tested in production.
- 4. $\mbox{ R}_{\rm L}$ is the load connected on the USB OTG FS drivers.

Note: When VBUS sensing feature is enabled, PA9 should be left at their default state (floating input), not as alternate function. A typical 200 µA current consumption of the embedded sensing block (current to voltage conversion to determine the different sessions) can be observed on PA9 when the feature is enabled.

Figure 45. USB OTG FS timings: definition of data signal rise and fall time

Table 70. USB OTG FS electrical characteristics⁽¹⁾

Driver characteristics							
Symbol	Parameter	Conditions	Min	Max	Unit		
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns		
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	20	ns		
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%		
V _{CRS}	Output signal crossover voltage		1.3	2.0	V		

1. Guaranteed by design, not tested in production.

 Measured from 10% to 90% of the data signal. For more detailed informations, refer to USB Specification -Chapter 7 (version 2.0).

CAN (controller area network) interface

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX).

- 1. C_L = 30 pF.
- 2. Based on characterization, not tested in production.

Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings $^{(1)(2)}$

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	8T _{HCLK} - 1	8T _{HCLK} + 0.5	
t _{w(NWE)}	FSMC_NWE low time	6T _{HCLK} + 0.5	6T _{HCLK} + 1	ne
t _{su(NWAIT_NE)}	FSMC_NWAIT valid before FSMC_NEx high	6T _{HCLK} + 0.5	-	115
t _{h(NE_NWAIT)}	FSMC_NEx hold time after FSMC_NWAIT invalid	4T _{HCLK} + 1	-	

1. C_L = 30 pF.

2. Based on characterization, not tested in production.

Figure 67. LQFP64 recommended footprint

1. Dimensions are in millimeters.

Device marking for LQFP64

The following figure gives an example of topside marking and pin 1 position identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

DocID028087 Rev 4

7.8 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 15: General operating conditions on page 76.*

The maximum chip-junction temperature, T_J max., in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (PD \max x \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in ° C/W,
- PD max is the sum of P_{INT} max and P_{I/O} max (PD max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $\mathsf{P}_{\mathsf{I}\!/\!\mathsf{O}}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
Θ _{JA}	Thermal resistance junction-ambient LQFP144 - 20 x 20 mm	35	
	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm	43	
	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm	47	°C/W
	Thermal resistance junction-ambient UFBGA144 - 10 x 10 mm / 0.8 mm pitch	48	
	Thermal resistance junction-ambient UFBGA100 - 7 x 7 mm	57	
	Thermal resistance junction-ambient WLCSP64 - 3.623 x 3.651 mm	51	
	Thermal resistance junction-ambient UFQFPN48 - 7 x 7 mm	32	

Table 108. Package thermal characteristics

7.8.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

