# E·XFL



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                                       |
|----------------------------|----------------------------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M4                                                                              |
| Core Size                  | 32-Bit Single-Core                                                                           |
| Speed                      | 100MHz                                                                                       |
| Connectivity               | CANbus, EBI/EMI, I <sup>2</sup> C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB OTG |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, LCD, POR, PWM, WDT                            |
| Number of I/O              | 81                                                                                           |
| Program Memory Size        | 1MB (1M × 8)                                                                                 |
| Program Memory Type        | FLASH                                                                                        |
| EEPROM Size                | -                                                                                            |
| RAM Size                   | 256K x 8                                                                                     |
| Voltage - Supply (Vcc/Vdd) | 1.7V ~ 3.6V                                                                                  |
| Data Converters            | A/D 16x12b                                                                                   |
| Oscillator Type            | Internal                                                                                     |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                            |
| Mounting Type              | Surface Mount                                                                                |
| Package / Case             | 100-LQFP                                                                                     |
| Supplier Device Package    | 100-LQFP (14x14)                                                                             |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f412vgt6                        |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Figure 2. Compatible board design for LQFP64 package

#### Figure 3. Compatible board design for LQFP144 package





DocID028087 Rev 4

### 3.33 Random number generator (RNG)

All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit.

### 3.34 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

Fast I/O handling allowing maximum I/O toggling up to 100 MHz.

### 3.35 Analog-to-digital converter (ADC)

One 12-bit analog-to-digital converter is embedded and shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4 or TIM5 timer.

### 3.36 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the ADC\_IN18 input channel which is used to convert the sensor output voltage into a digital value. Refer to the reference manual for additional information.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

### 3.37 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.



DocID028087 Rev 4

### Pinouts and pin description



Figure 15. STM32F412xE/G LQFP144 pinout

1. The above figure shows the package top view.



| AE15   |  | ΤM       |
|--------|--|----------|
| АГІЭ   |  | 32       |
| YS_AF  |  | F412xE/G |
| ENTOUT |  |          |
|        |  |          |

Pinouts and pin description

### Table 10. STM32F412xE/G alternate functions (continued)

|    |      | AF0          | AF1           | AF2                    | AF3                               | AF4                                | AF5                                                 | AF6                                                        | AF7                                        | AF8                                   | AF9                                                                       | AF10                                    | AF12                   | AF15     |
|----|------|--------------|---------------|------------------------|-----------------------------------|------------------------------------|-----------------------------------------------------|------------------------------------------------------------|--------------------------------------------|---------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|------------------------|----------|
|    | Port | SYS_AF       | TIM1/<br>TIM2 | TIM3/<br>TIM4/<br>TIM5 | TIM8/<br>TIM9/<br>TIM10/<br>TIM11 | I2C1/<br>I2C2/<br>I2C3/<br>I2CFMP1 | SPI1/I2S1/<br>SPI2/I2S2/<br>SPI3/I2S3/<br>SPI4/I2S4 | SPI2/I2S2/SPI3<br>/I2S3/SPI4/<br>I2S4/SPI5/I2S5<br>/DFSDM1 | SPI3/I2S3/<br>USART1/<br>USART2/<br>USART3 | DFSDM1/<br>USART3/<br>USART6/<br>CAN1 | I2C2/I2C3/<br>I2CFMP1/<br>CAN1/CAN2<br>/TIM12/<br>TIM13/TIM14<br>/QUADSPI | DFSDM1/<br>QUADSPI/<br>FSMC<br>/OTG1_FS | FSMC /SDIO             | SYS_AF   |
|    | PE0  | -            | -             | TIM4_ETR               | -                                 | -                                  | -                                                   | -                                                          | -                                          | -                                     | -                                                                         | -                                       | FSMC_NBL0              | EVENTOUT |
|    | PE1  | -            | -             | -                      | -                                 | -                                  | -                                                   | -                                                          | -                                          | -                                     | -                                                                         | -                                       | FSMC_NBL1              | EVENTOUT |
|    | PE2  | TRACECL<br>K | -             | -                      | -                                 | -                                  | SPI4_SCK/<br>I2S4_CK                                | SPI5_SCK/<br>I2S5_CK                                       | -                                          | -                                     | QUADSPI_<br>BK1_IO2                                                       | -                                       | FSMC_A23               | EVENTOUT |
|    | PE3  | TRACED0      | -             | -                      | -                                 | -                                  | -                                                   | -                                                          | -                                          | -                                     | -                                                                         | -                                       | FSMC_A19               | EVENTOUT |
|    | PE4  | TRACED1      | -             | -                      | -                                 | -                                  | SPI4_NSS/<br>I2S4_WS                                | SPI5_NSS/<br>I2S5_WS                                       | -                                          | DFSDM1_<br>DATIN3                     | -                                                                         | -                                       | FSMC_A20               | EVENTOUT |
|    | PE5  | TRACED2      | -             | -                      | TIM9_CH1                          | -                                  | SPI4_MISO                                           | SPI5_MISO                                                  | -                                          | DFSDM1_<br>CKIN3                      | -                                                                         | -                                       | FSMC_A21               | EVENTOUT |
|    | PE6  | TRACED3      | -             | -                      | TIM9_CH2                          | -                                  | SPI4_MOSI/I<br>2S4_SD                               | SPI5_MOSI/<br>I2S5_SD                                      | -                                          | -                                     | -                                                                         | -                                       | FSMC_A22               | EVENTOUT |
|    | PE7  | -            | TIM1_ETR      | -                      | -                                 | -                                  | -                                                   | DFSDM1_<br>DATIN2                                          | -                                          | -                                     | -                                                                         | QUADSPI_<br>BK2_IO0                     | FSMC_D4/<br>FSMC_DA4   | EVENTOUT |
| ш  | PE8  | -            | TIM1_CH1N     | -                      | -                                 | -                                  | -                                                   | DFSDM1_<br>CKIN2                                           | -                                          | -                                     | -                                                                         | QUADSPI_<br>BK2_IO1                     | FSMC_D5/<br>FSMC_DA5   | EVENTOUT |
| Po | PE9  | -            | TIM1_CH1      | -                      | -                                 | -                                  | -                                                   | DFSDM1_<br>CKOUT                                           | -                                          | -                                     | -                                                                         | QUADSPI_<br>BK2_IO2                     | FSMC_D6/<br>FSMC_DA6   | EVENTOUT |
|    | PE10 | -            | TIM1_CH2N     | -                      | -                                 | -                                  | -                                                   | -                                                          | -                                          | -                                     | -                                                                         | QUADSPI_<br>BK2_IO3                     | FSMC_D7/<br>FSMC_DA7   | EVENTOUT |
|    | PE11 | -            | TIM1_CH2      | -                      | -                                 | -                                  | SPI4_NSS/<br>I2S4_WS                                | SPI5_NSS/<br>I2S5_WS                                       | -                                          | -                                     | -                                                                         |                                         | FSMC_D8/<br>FSMC_DA8   | EVENTOUT |
|    | PE12 | -            | TIM1_CH3N     | -                      | -                                 | -                                  | SPI4_SCK/<br>I2S4_CK                                | SPI5_SCK/<br>I2S5_CK                                       | -                                          | -                                     | -                                                                         | -                                       | FSMC_D9/<br>FSMC_DA9   | EVENTOUT |
|    | PE13 | -            | TIM1_CH3      | -                      | -                                 | -                                  | SPI4_MISO                                           | SPI5_MISO                                                  | -                                          | -                                     | -                                                                         | -                                       | FSMC_D10/<br>FSMC_DA10 | EVENTOUT |
|    | PE14 | -            | TIM1_CH4      | -                      | -                                 | -                                  | SPI4_MOSI/I<br>2S4_SD                               | SPI5_MOSI/<br>I2S5_SD                                      | -                                          | -                                     | -                                                                         | -                                       | FSMC_D11/<br>FSMC_DA11 | EVENTOUT |
|    | PE15 | -            | TIM1_BKIN     | -                      | -                                 | -                                  | -                                                   | -                                                          | -                                          | -                                     | -                                                                         | -                                       | FSMC_D12/<br>FSMC_DA12 | EVENTOUT |

DocID028087 Rev 4

577

65/193

ပ

66/193

DocID028087 Rev 4

|        |      | AF0     | AF1           | AF2                    | AF3                               | AF4                                | AF5                                                 | AF6                                                        | AF7                                        | AF8                                   | AF9                                                                       | AF10                                    | AF12       | AF15     |
|--------|------|---------|---------------|------------------------|-----------------------------------|------------------------------------|-----------------------------------------------------|------------------------------------------------------------|--------------------------------------------|---------------------------------------|---------------------------------------------------------------------------|-----------------------------------------|------------|----------|
| F      | Port | SYS_AF  | TIM1/<br>TIM2 | TIM3/<br>TIM4/<br>TIM5 | TIM8/<br>TIM9/<br>TIM10/<br>TIM11 | I2C1/<br>I2C2/<br>I2C3/<br>I2CFMP1 | SPI1/I2S1/<br>SPI2/I2S2/<br>SPI3/I2S3/<br>SPI4/I2S4 | SPI2/I2S2/SPI3<br>/I2S3/SPI4/<br>I2S4/SPI5/I2S5<br>/DFSDM1 | SPI3/I2S3/<br>USART1/<br>USART2/<br>USART3 | DFSDM1/<br>USART3/<br>USART6/<br>CAN1 | I2C2/I2C3/<br>I2CFMP1/<br>CAN1/CAN2<br>/TIM12/<br>TIM13/TIM14<br>/QUADSPI | DFSDM1/<br>QUADSPI/<br>FSMC<br>/OTG1_FS | FSMC /SDIO | SYS_AF   |
|        | PF0  | -       | -             | -                      | -                                 | I2C2_SDA                           | -                                                   | -                                                          | -                                          | -                                     | -                                                                         | -                                       | FSMC_A0    | EVENTOUT |
|        | PF1  | -       | -             | -                      | -                                 | I2C2_SCL                           | -                                                   | -                                                          | -                                          | -                                     | -                                                                         | -                                       | FSMC_A1    | EVENTOUT |
|        | PF2  | -       | -             | -                      | -                                 | I2C2_SMBA                          | -                                                   | -                                                          | -                                          | -                                     | -                                                                         | -                                       | FSMC_A2    | EVENTOUT |
|        | PF3  | -       | -             | TIM5_CH1               | -                                 | -                                  | -                                                   | -                                                          | -                                          | -                                     | -                                                                         | -                                       | FSMC_A3    | EVENTOUT |
|        | PF4  | -       | -             | TIM5_CH2               | -                                 | -                                  | -                                                   | -                                                          | -                                          | -                                     | -                                                                         | -                                       | FSMC_A4    | EVENTOUT |
| P      | PF5  | -       | -             | TIM5_CH3               | -                                 | -                                  | -                                                   | -                                                          | -                                          | -                                     | -                                                                         | -                                       | FSMC_A5    | EVENTOUT |
|        | PF6  | TRACED0 | -             | -                      | TIM10_CH1                         | -                                  | -                                                   | -                                                          | -                                          | -                                     | QUADSPI_<br>BK1_IO3                                                       | -                                       | -          | EVENTOUT |
|        | PF7  | TRACED1 | -             | -                      | TIM11_CH1                         | -                                  | -                                                   | -                                                          | -                                          | -                                     | QUADSPI_<br>BK1_IO2                                                       | -                                       | -          | EVENTOUT |
| Port F | PF8  | -       | -             | -                      | -                                 | -                                  | -                                                   | -                                                          | -                                          | -                                     | TIM13_CH1                                                                 | QUADSPI_<br>BK1_IO0                     | -          | EVENTOUT |
|        | PF9  | -       | -             | -                      | -                                 | -                                  | -                                                   | -                                                          | -                                          | -                                     | TIM14_CH1                                                                 | QUADSPI_<br>BK1_IO1                     | -          | EVENTOUT |
|        | PF10 | -       | TIM1_ETR      | TIM5_CH4               | -                                 | -                                  | -                                                   | -                                                          | -                                          | -                                     | -                                                                         | -                                       | -          | EVENTOUT |
|        | PF11 | -       | -             | -                      | TIM8_ETR                          | -                                  | -                                                   | -                                                          | -                                          | -                                     | -                                                                         | -                                       | -          | EVENTOUT |
|        | PF12 | -       | -             | -                      | TIM8_BKIN                         | -                                  | -                                                   | -                                                          | -                                          | -                                     | -                                                                         | -                                       | FSMC_A6    | EVENTOUT |
|        | PF13 | -       | -             | -                      | -                                 | I2CFMP1_<br>SMBA                   | -                                                   | -                                                          | -                                          | -                                     | -                                                                         | -                                       | FSMC_A7    | EVENTOUT |
|        | PF14 | -       | -             | -                      | -                                 | I2CFMP1_<br>SCL                    | -                                                   | -                                                          | -                                          | -                                     | -                                                                         | -                                       | FSMC_A8    | EVENTOUT |
|        | PF15 | -       | -             | -                      | -                                 | I2CFMP1_<br>SDA                    | -                                                   | -                                                          | -                                          | -                                     | -                                                                         | -                                       | FSMC_A9    | EVENTOUT |

Table 10. STM32F412xE/G alternate functions (continued)

Pinouts and pin description

5

| Bus  | Boundary address          | Peripheral |
|------|---------------------------|------------|
|      | 0x4001 6400- 0x4001 FFFF  | Reserved   |
|      | 0x4001 6000 - 0x4001 63FF | DFSDM1     |
|      | 0x4001 5400 - 0x4001 5FFF | Reserved   |
|      | 0x4001 5000 - 0x4001 53FF | SPI5/I2S5  |
|      | 0x4001 4800 - 0x4001 4BFF | TIM11      |
|      | 0x4001 4400 - 0x4001 47FF | TIM10      |
|      | 0x4001 4000 - 0x4001 43FF | TIM9       |
|      | 0x4001 3C00 - 0x4001 3FFF | EXTI       |
|      | 0x4001 3800 - 0x4001 3BFF | SYSCFG     |
|      | 0x4001 3400 - 0x4001 37FF | SPI4/I2S4  |
| APB2 | 0x4001 3000 - 0x4001 33FF | SPI1/I2S1  |
|      | 0x4001 2C00 - 0x4001 2FFF | SDIO       |
|      | 0x4001 2400 - 0x4001 2BFF | Reserved   |
|      | 0x4001 2000 - 0x4001 23FF | ADC1       |
|      | 0x4001 1800 - 0x4001 1FFF | Reserved   |
|      | 0x4001 1400 - 0x4001 17FF | USART6     |
|      | 0x4001 1000 - 0x4001 13FF | USART1     |
|      | 0x4001 0800 - 0x4001 0FFF | Reserved   |
|      | 0x4001 0400 - 0x4001 07FF | TIM8       |
|      | 0x4001 0000 - 0x4001 03FF | TIM1       |
|      | 0x4000 7400 - 0x4000 FFFF | Reserved   |

### Table 11. STM32F412xE/G register boundary addresses (continued)



| Symbol                    | Ratings                                                                         | Max.  | Unit |
|---------------------------|---------------------------------------------------------------------------------|-------|------|
| $\Sigma I_{VDD}$          | Total current into sum of all $V_{DD_x}$ power lines (source) <sup>(1)</sup>    | 160   |      |
| $\Sigma I_{VSS}$          | Total current out of sum of all $V_{SS_x}$ ground lines (sink) <sup>(1)</sup>   | -160  |      |
| $\Sigma I_{VDDUSB}$       | Total current into V <sub>DDUSB</sub> power lines (source)                      | 25    |      |
| I <sub>VDD</sub>          | Maximum current into each $V_{DD_x}$ power line (source) <sup>(1)</sup>         | 100   |      |
| I <sub>VSS</sub>          | Maximum current out of each $V_{SS_x}$ ground line (sink) <sup>(1)</sup>        | -100  |      |
|                           | Output current sunk by any I/O and control pin                                  | 25    |      |
| IO                        | Output current sourced by any I/O and control pin                               | -25   | mA   |
|                           | Total output current sunk by sum of all I/O and control pins <sup>(2)</sup>     | 120   |      |
| Σl <sub>IO</sub>          | Total output current sunk by sum of all USB I/Os                                | 25    |      |
|                           | Total output current sourced by sum of all I/Os and control pins <sup>(2)</sup> | -120  |      |
| . (3)                     | Injected current on FT and TC pins (4)                                          | 5/10  |      |
| I <sub>INJ(PIN)</sub> (3) | Injected current on NRST and B pins <sup>(4)</sup>                              | _5/+0 |      |
| $\Sigma I_{INJ(PIN)}$     | Total injected current (sum of all I/O and control pins) <sup>(5)</sup>         | ±25   | 1    |

#### Table 13. Current characteristics

1. All main power (V<sub>DD</sub>, V<sub>DDA</sub>, V<sub>DDUSB</sub>) and ground (V<sub>SS</sub>, V<sub>SSA</sub>) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins.

3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics.

4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

5. When several inputs are submitted to a current injection, the maximum  $\Sigma I_{INJ(PIN)}$  is the absolute sum of the positive and negative injected currents (instantaneous values).

| Symbol            | Ratings                                                                                           | Value                   | Unit |
|-------------------|---------------------------------------------------------------------------------------------------|-------------------------|------|
| T <sub>STG</sub>  | Storage temperature range                                                                         | –65 to +150             |      |
| TJ                | Maximum junction temperature                                                                      | 125                     |      |
| T <sub>LEAD</sub> | Maximum lead temperature during soldering<br>(WLCSP64, LQFP64/100/144, UFQFPN48,<br>UFBGA100/144) | see note <sup>(1)</sup> | °C   |

#### Table 14. Thermal characteristics

 Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK<sup>®</sup> 7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS directive 2011/65/EU, July 2011).



### 6.3.4 Operating conditions at power-up / power-down (regulator OFF)

| Syı               | mbol                                         | Parameter                                    | Conditions | Min | Max | Unit  |  |  |  |  |  |  |
|-------------------|----------------------------------------------|----------------------------------------------|------------|-----|-----|-------|--|--|--|--|--|--|
| t                 |                                              | V <sub>DD</sub> rise time rate               | Power-up   | 20  | 8   |       |  |  |  |  |  |  |
| ι,                | <sup>L</sup> VDD                             | V <sub>DD</sub> fall time rate               | Power-down | 20  | 8   | ue/\/ |  |  |  |  |  |  |
| +                 |                                              | $V_{CAP\_1}$ and $V_{CAP\_2}$ rise time rate | Power-up   | 20  | 8   | μ5/ ν |  |  |  |  |  |  |
| t <sub>VCAP</sub> | $V_{CAP\_1}$ and $V_{CAP\_2}$ fall time rate | Power-down                                   | 20         | 8   |     |       |  |  |  |  |  |  |

Subject to general operating conditions for T<sub>A</sub>.

| Table 19. Operating conditions at power- | up / power-down (regulator OFF) <sup>(1)</sup> |
|------------------------------------------|------------------------------------------------|
|------------------------------------------|------------------------------------------------|

1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when  $V_{\text{DD}}$  reach below 1.08 V.

#### Note: This feature is only available for UFBGA100 and UFBGA144 packages.

### 6.3.5 Embedded reset and power control block characteristics

The parameters given in *Table 20* are derived from tests performed under ambient temperature and  $V_{DD}$  supply voltage @ 3.3V.

| Symbol                              | Parameter                                     | Conditions                  | Min                 | Тур  | Max  | Unit |  |
|-------------------------------------|-----------------------------------------------|-----------------------------|---------------------|------|------|------|--|
|                                     |                                               | PLS[2:0]=000 (rising edge)  | 2.09                | 2.14 | 2.19 |      |  |
|                                     |                                               | PLS[2:0]=000 (falling edge) | 1.98                | 2.04 | 2.08 |      |  |
|                                     |                                               | PLS[2:0]=001 (rising edge)  | 2.23                | 2.30 | 2.37 |      |  |
|                                     |                                               | PLS[2:0]=001 (falling edge) | 2.13                | 2.19 | 2.25 |      |  |
|                                     |                                               | PLS[2:0]=010 (rising edge)  | 2.39                | 2.45 | 2.51 |      |  |
|                                     |                                               | PLS[2:0]=010 (falling edge) | 2.29                | 2.35 | 2.39 |      |  |
|                                     |                                               | PLS[2:0]=011 (rising edge)  | 2.54                | 2.60 | 2.65 |      |  |
| V <sub>PVD</sub>                    | Programmable voltage detector level selection | PLS[2:0]=011 (falling edge) | 2.44                | 2.51 | 2.56 | V    |  |
|                                     |                                               | PLS[2:0]=100 (rising edge)  | 2.70                | 2.76 | 2.82 |      |  |
|                                     |                                               | PLS[2:0]=100 (falling edge) | 2.59                | 2.66 | 2.71 |      |  |
|                                     |                                               | PLS[2:0]=101 (rising edge)  | 2.86                | 2.93 | 2.99 | )    |  |
|                                     |                                               | PLS[2:0]=101 (falling edge) | 2.65                | 2.84 | 3.02 |      |  |
|                                     |                                               | PLS[2:0]=110 (rising edge)  | 2.96                | 3.03 | 3.10 |      |  |
|                                     |                                               | PLS[2:0]=110 (falling edge) | 2.85                | 2.93 | 2.99 |      |  |
|                                     |                                               | PLS[2:0]=111 (rising edge)  | 3.07                | 3.14 | 3.21 |      |  |
|                                     |                                               | PLS[2:0]=111 (falling edge) | 2.95                | 3.03 | 3.09 |      |  |
| V <sub>PVDhyst</sub> <sup>(2)</sup> | PVD hysteresis                                | -                           | -                   | 100  | -    | mV   |  |
| VDOD/DDD                            | Power-on/power-down                           | Falling edge                | 1.60 <sup>(1)</sup> | 1.68 | 1.76 | V    |  |
| VPOR/PDR                            | reset threshold                               | Rising edge                 | 1.64                | 1.72 | 1.80 | v    |  |

Table 20. Embedded reset and power control block characteristics



|        |                    | Parameter Conditions                                                 | £              | Тур                       |                           | Max <sup>(1)</sup>        |                            |      |
|--------|--------------------|----------------------------------------------------------------------|----------------|---------------------------|---------------------------|---------------------------|----------------------------|------|
| Symbol | Parameter          |                                                                      | 'HCLK<br>(MHz) | Т <sub>А</sub> =<br>25 °С | Т <sub>А</sub> =<br>25 °С | Т <sub>А</sub> =<br>85 °С | T <sub>A</sub> =<br>105 °C | Unit |
|        |                    |                                                                      | 100            | 28.4                      | 28.80 <sup>(3)</sup>      | 30.84                     | 32.39 <sup>(3)</sup>       |      |
|        |                    | External clock,<br>PLL ON,<br>all peripherals enabled <sup>(2)</sup> | 84             | 23.0                      | 24.09 <sup>(3)</sup>      | 25.20                     | 26.57 <sup>(3)</sup>       |      |
|        |                    |                                                                      | 64             | 16.0                      | 16.83 <sup>(3)</sup>      | 17.77                     | 19.12 <sup>(3)</sup>       |      |
|        |                    |                                                                      | 50             | 12.6                      | 13.46                     | 13.98                     | 14.68                      |      |
|        | Supply current     |                                                                      | 25             | 6.8                       | 7.63                      | 8.14                      | 8.61                       | - mA |
|        |                    |                                                                      | 20             | 5.8                       | 6.31                      | 6.74                      | 7.43                       |      |
|        |                    | HSI, PLL OFF <sup>(4)</sup> , all peripherals enabled <sup>(2)</sup> | 16             | 3.9                       | 4.65                      | 5.33                      | 6.11                       |      |
| 1      |                    |                                                                      | 1              | 0.6                       | 0.78                      | 1.34                      | 2.00                       |      |
| DD     | in <b>Run mode</b> |                                                                      | 100            | 14.3                      | 15.09 <sup>(3)</sup>      | 16.22                     | 17.90 <sup>(3)</sup>       |      |
|        |                    |                                                                      | 84             | 11.6                      | 12.28 <sup>(3)</sup>      | 13.36                     | 14.99 <sup>(3)</sup>       |      |
|        |                    | External clock,                                                      | 64             | 8.2                       | 8.75 <sup>(3)</sup>       | 9.68                      | 11.21 <sup>(3)</sup>       |      |
|        |                    | all peripherals disabled <sup>(2)</sup>                              | 50             | 6.5                       | 7.21                      | 7.69                      | 8.47                       |      |
|        |                    |                                                                      | 25             | 3.6                       | 4.22                      | 4.68                      | 5.29                       |      |
|        |                    |                                                                      | 20             | 3.2                       | 3.65                      | 4.18                      | 4.94                       |      |
|        |                    | HSI, PLL OFF, all peripherals disabled <sup>(2)</sup>                | 16             | 2.0                       | 2.48                      | 3.12                      | 3.94                       |      |
|        |                    |                                                                      | 1              | 0.5                       | 0.65                      | 1.26                      | 1.94                       |      |

# Table 22. Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM - $V_{DD}$ = 3.6 V

1. Based on characterization, not tested in production unless otherwise specified

2. When the ADC is ON (ADON bit set in the ADC\_CR2 register), add an additional power consumption of 1.6 mA for the analog part.

3. Tested in production

4. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be considered



#### **Electrical characteristics**

- 2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC\_CR2 register).
- 3. Tested in production.

|        |                                        | Parameter Conditions (                                                             | £              | Тур                       |                           |                           |                            |                |
|--------|----------------------------------------|------------------------------------------------------------------------------------|----------------|---------------------------|---------------------------|---------------------------|----------------------------|----------------|
| Symbol | Parameter                              |                                                                                    | 'HCLK<br>(MHz) | T <sub>A</sub> =<br>25 °C | T <sub>A</sub> =<br>25 °C | T <sub>A</sub> =<br>85 °C | T <sub>A</sub> =<br>105 °C | Unit           |
|        |                                        |                                                                                    | 100            | 17.3                      | 18.62                     | 19.90                     | 21.40                      |                |
|        |                                        | External clock                                                                     | 84             | 14.0                      | 15.08                     | 16.04                     | 17.16                      |                |
|        |                                        | PLL ON,                                                                            | 64             | 9.7                       | 10.41                     | 11.02                     | 11.80                      |                |
|        |                                        | Flash deep power down,                                                             | 50             | 7.6                       | 8.27                      | 8.89                      | 9.62                       |                |
|        | Supply current<br>in <b>Sleep mode</b> | all peripherals enabled <sup>(-)</sup>                                             | 25             | 4.2                       | 4.79                      | 5.35                      | 6.00                       | -<br>-<br>- mA |
|        |                                        |                                                                                    | 20             | 3.7                       | 4.11                      | 4.67                      | 5.31                       |                |
|        |                                        | HSI, PLL OFF <sup>(2)</sup> ,<br>Flash deep power down,<br>all peripherals enabled | 16             | 2.4                       | 2.81                      | 3.45                      | 4.20                       |                |
|        |                                        |                                                                                    | 1              | 0.5                       | 0.67                      | 1.27                      | 1.91                       |                |
| 'DD    |                                        |                                                                                    | 100            | 17.8                      | 19.08                     | 20.35                     | 21.90                      |                |
|        |                                        |                                                                                    | 84             | 14.4                      | 15.49                     | 16.42                     | 17.59                      |                |
|        |                                        | External clock, PLL ON <sup>(2)</sup>                                              | 64             | 10.0                      | 10.76                     | 11.43                     | 12.18                      |                |
|        |                                        | Flash ON                                                                           | 50             | 7.9                       | 8.58                      | 9.19                      | 9.94                       | -              |
|        |                                        |                                                                                    | 25             | 4.4                       | 4.99                      | 5.54                      | 6.21                       |                |
|        |                                        |                                                                                    | 20             | 4.0                       | 4.42                      | 4.95                      | 5.64                       |                |
|        |                                        | HSI, PLL OFF <sup>(2)</sup> , all peripherals enabled, Flash ON                    | 16             | 2.7                       | 3.09                      | 3.75                      | 4.49                       |                |
|        |                                        |                                                                                    | 1              | 0.8                       | 0.93                      | 1.52                      | 2.18                       |                |

### Table 29. Typical and maximum current consumption in Sleep mode - $V_{DD}$ = 1.7 V



pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 $I_{SW}$  is the current sunk by a switching I/O to charge/discharge the capacitive load  $V_{\text{DD}}$  is the MCU supply voltage

 $f_{SW}$  is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C =  $C_{INT}$ +  $C_{EXT}$ 

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.





#### Figure 26. Low-power mode wakeup

All timings are derived from tests performed under ambient temperature and  $V_{DD}$ =3.3 V.

Table 37. Low-power mode wakeup timings<sup>(1)</sup>

| Symbol                   | Parameter              | Conditions                              | Min <sup>(1)</sup> | Typ <sup>(1)</sup> | Max <sup>(1)</sup> | Unit          |
|--------------------------|------------------------|-----------------------------------------|--------------------|--------------------|--------------------|---------------|
| t <sub>WUSLEEP</sub>     | Wakeup from Sleep mode | -                                       | -                  | 4                  | 6                  | clk<br>cycles |
| t <sub>WUSLEEPFDSM</sub> |                        | Flash memory in Deep<br>power down mode | -                  | -                  | 50.0               | μs            |

### 6.3.10 PLL characteristics

The parameters given in *Table 44* and *Table 45* are derived from tests performed under temperature and  $V_{DD}$  supply voltage conditions summarized in *Table 15*.

| Symbol                               | Parameter                             | Conditions                               |                    | Min                 | Тур  | Max          | Unit |
|--------------------------------------|---------------------------------------|------------------------------------------|--------------------|---------------------|------|--------------|------|
| f <sub>PLL_IN</sub>                  | PLL input clock <sup>(1)</sup>        | -                                        |                    | 0.95 <sup>(2)</sup> | 1    | 2.10         | MHz  |
| f <sub>PLL_OUT</sub>                 | PLL multiplier output clock           | -                                        |                    | 24                  | -    | 100          | MHz  |
| f <sub>PLL48_OUT</sub>               | 48 MHz PLL multiplier output<br>clock | -                                        |                    | -                   | 48   | 75           | MHz  |
| f <sub>VCO_OUT</sub>                 | PLL VCO output                        | -                                        |                    | 100                 | -    | 432          | MHz  |
| +                                    | PLL lock time                         | VCO freq = 100 M                         | 1Hz                | 75                  | -    | 200          |      |
| LOCK                                 |                                       | VCO freq = 432 MHz                       |                    | 100                 | -    | 300          | μs   |
|                                      | Cycle-to-cycle jitter                 |                                          | RMS                | -                   | 25   | -            | -    |
|                                      |                                       | System clock                             | peak<br>to<br>peak | -                   | ±150 | -            |      |
| Jitter <sup>(3)</sup>                | Period Jitter                         | 100 MHz                                  | RMS                | -                   | 15   | -            | ps   |
| Jiller                               |                                       |                                          | peak<br>to<br>peak | -                   | ±200 | -            |      |
|                                      | Bit Time CAN jitter                   | Cycle to cycle at 1 MHz on 1000 samples. |                    | -                   | 330  | -            |      |
| I <sub>DD(PLL)</sub> <sup>(4)</sup>  | PLL power consumption on VDD          | VCO freq = 100 MHz<br>VCO freq = 432 MHz |                    | 0.15<br>0.45        | -    | 0.40<br>0.75 | mA   |
| I <sub>DDA(PLL)</sub> <sup>(4)</sup> | PLL power consumption on VDDA         | VCO freq = 100 M<br>VCO freq = 432 M     | 1Hz<br>1Hz         | 0.30<br>0.55        | -    | 0.40<br>0.85 | IIIA |

|  | Table | 44. | Main | PLL | characteristics |
|--|-------|-----|------|-----|-----------------|
|--|-------|-----|------|-----|-----------------|

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

2. Guaranteed by design, not tested in production.

3. The use of two PLLs in parallel could degraded the Jitter up to +30%.

4. Guaranteed by characterization, not tested in production.



| Symbol                                  | Parameter                             | Conditions                                                              |                    | Min                 | Тур  | Max          | Unit |
|-----------------------------------------|---------------------------------------|-------------------------------------------------------------------------|--------------------|---------------------|------|--------------|------|
| f <sub>PLLI2S_IN</sub>                  | PLLI2S input clock <sup>(1)</sup>     | -                                                                       |                    | 0.95 <sup>(2)</sup> | 1    | 2.10         |      |
| f <sub>PLLI2S_OUT</sub>                 | PLLI2S multiplier output clock        | -                                                                       | -                  |                     | -    | 216          | MHz  |
| f <sub>VCO_OUT</sub>                    | PLLI2S VCO output                     | -                                                                       |                    | 100                 | -    | 432          |      |
| t                                       | PLL 12S lock time                     | VCO freq = 100 MHz                                                      | 2                  | 75                  | -    | 200          |      |
| LOCK                                    |                                       | VCO freq = 432 MHz                                                      | 2                  | 100                 | -    | 300          | μο   |
| Jitter <sup>(3)</sup>                   | Master I2S clock jitter               | Cycle to cycle at                                                       | RMS                | -                   | 90   | -            |      |
|                                         |                                       | 12.288 MHz on<br>48 kHz period,<br>N=432, R=5                           | peak<br>to<br>peak | -                   | ±280 | -            |      |
|                                         |                                       | Average frequency of<br>12.288 MHz<br>N = 432, R = 5<br>on 1000 samples |                    | -                   | 90   | -            | ps   |
|                                         | WS I2S clock jitter                   | Cycle to cycle at 48 KHz<br>on 1000 samples                             |                    | -                   | 400  | -            |      |
| I <sub>DD(PLLI2S)</sub> <sup>(4)</sup>  | PLLI2S power consumption on $V_{DD}$  | VCO freq = 100 MHz<br>VCO freq = 432 MHz                                |                    | 0.15<br>0.45        | -    | 0.40<br>0.75 | m۸   |
| I <sub>DDA(PLLI2S)</sub> <sup>(4)</sup> | PLLI2S power consumption on $V_{DDA}$ | VCO freq = 100 MHz<br>VCO freq = 432 MHz                                | 2                  | 0.30<br>0.55        | -    | 0.40<br>0.85 |      |

Table 45. PLLI2S (audio PLL) characteristics

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design, not tested in production.

3. Value given with main PLL running.

4. Guaranteed by characterization, not tested in production.



The test results are given in *Table 52*. They are based on the EMS levels and classes defined in application note AN1709.

| Symbol            | Parameter                                                                                                                         | Conditions                                                                                                      | Level/<br>Class |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|
| V <sub>FESD</sub> | Voltage limits to be applied on any I/O pin to induce a functional disturbance                                                    | $V_{DD}$ = 3.3 V, LQFP144<br>T <sub>A</sub> = +25 °C, f <sub>HCLK</sub> = 100 MHz,<br>conforms to IEC 61000-4-2 | 2B              |
| V <sub>EFTB</sub> | Fast transient voltage burst limits to be applied through 100 pF on $V_{DD}$ and $V_{SS}$ pins to induce a functional disturbance | $V_{DD}$ = 3.3 V, LQFP144<br>T <sub>A</sub> = +25 °C, f <sub>HCLK</sub> = 100 MHz,<br>conforms to IEC 61000-4-4 | 4B              |

| Table 51. | EMS | characteristics | for LO | QFP144 | package |
|-----------|-----|-----------------|--------|--------|---------|
|           | _   |                 |        |        | paonago |

When the application is exposed to a noisy environment, it is recommended to avoid pin exposition to disturbances. The pins showing a middle range robustness are: PA0, PA1, PA2, on LQFP144 packages and PDR ON on WLCSP49.

As a consequence, it is recommended to add a serial resistor (1 k $\Omega$  maximum) located as close as possible to the MCU to the pins exposed to noise (connected to tracks longer than 50 mm on PCB).

#### Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

#### Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

#### Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).





Figure 53. Asynchronous multiplexed PSRAM/NOR write waveforms



| Symbol                       | Parameter                                        | Min                      | Max | Unit |
|------------------------------|--------------------------------------------------|--------------------------|-----|------|
| t <sub>w(CLK)</sub>          | FSMC_CLK period                                  | 2T <sub>HCLK</sub> - 0.5 | -   |      |
| t <sub>d(CLKL-NExL)</sub>    | FSMC_CLK low to FSMC_NEx low (x=02)              | -                        | 1   | 1    |
| t <sub>d(CLKH_NExH)</sub>    | FSMC_CLK high to FSMC_NEx high (x= 02)           | T <sub>HCLK</sub> + 0.5  | -   |      |
| t <sub>d(CLKL-NADVL)</sub>   | FSMC_CLK low to FSMC_NADV low                    | -                        | 1   |      |
| t <sub>d(CLKL-NADVH)</sub>   | FSMC_CLK low to FSMC_NADV high                   | 0                        | -   |      |
| t <sub>d(CLKL-AV)</sub>      | FSMC_CLK low to FSMC_Ax valid (x=1625)           | -                        | 2   |      |
| t <sub>d(CLKH-AIV)</sub>     | FSMC_CLK high to FSMC_Ax invalid (x=1625)        | T <sub>HCLK</sub>        | -   |      |
| t <sub>d(CLKL-NOEL)</sub>    | FSMC_CLK low to FSMC_NOE low                     | -                        | 1.5 | ns   |
| t <sub>d(CLKH-NOEH)</sub>    | FSMC_CLK high to FSMC_NOE high                   | T <sub>HCLK</sub>        | -   |      |
| t <sub>d(CLKL-ADV)</sub>     | FSMC_CLK low to FSMC_AD[15:0] valid              | -                        | 2.5 |      |
| t <sub>d(CLKL-ADIV)</sub>    | FSMC_CLK low to FSMC_AD[15:0] invalid            | 0                        | -   |      |
| t <sub>su(ADV-CLKH)</sub>    | FSMC_A/D[15:0] valid data before FSMC_CLK high   | 1                        | -   |      |
| t <sub>h(CLKH-ADV)</sub>     | FSMC_A/D[15:0] valid data after FSMC_CLK<br>high | 2                        | -   |      |
| t <sub>su(NWAIT-CL</sub> KH) | FSMC_NWAIT valid before FSMC_CLK high            | 2                        | -   | ]    |
| t <sub>h(CLKH-NWAIT)</sub>   | FSMC_NWAIT valid after FSMC_CLK high             | 2                        | -   |      |

1. C<sub>L</sub> = 30 pF.

2. Based on characterization, not tested in production.





Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings

| Table 93. Synchronous non-multiplexed NOR/PSRAW read unnings | Table 93. S | ynchronous | non-multip | olexed NOR/F | PSRAM rea | d timings <sup>(1)()</sup> |
|--------------------------------------------------------------|-------------|------------|------------|--------------|-----------|----------------------------|
|--------------------------------------------------------------|-------------|------------|------------|--------------|-----------|----------------------------|

| Symbol                      | Parameter                                    | Min                      | Max | Unit |
|-----------------------------|----------------------------------------------|--------------------------|-----|------|
| t <sub>w(CLK)</sub>         | FSMC_CLK period                              | 2T <sub>HCLK</sub> – 0.5 | -   |      |
| t <sub>(CLKL-NExL)</sub>    | FSMC_CLK low to FSMC_NEx low (x=02)          | -                        | 1   |      |
| t <sub>d(CLKH-NExH)</sub>   | FSMC_CLK high to FSMC_NEx high (x= 02)       | T <sub>HCLK</sub> +0.5   | -   |      |
| t <sub>d(CLKL-NADVL)</sub>  | FSMC_CLK low to FSMC_NADV low                | -                        | 1   |      |
| t <sub>d(CLKL-NADVH)</sub>  | FSMC_CLK low to FSMC_NADV high               | 0                        | -   |      |
| t <sub>d(CLKL-AV)</sub>     | FSMC_CLK low to FSMC_Ax valid (x=1625)       | -                        | 2   |      |
| t <sub>d(CLKH-AIV)</sub>    | FSMC_CLK high to FSMC_Ax invalid (x=1625)    | T <sub>HCLK</sub>        | -   | ns   |
| t <sub>d(CLKL-NOEL)</sub>   | FSMC_CLK low to FSMC_NOE low                 | -                        | 1.5 | . –  |
| t <sub>d(CLKH-NOEH)</sub>   | FSMC_CLK high to FSMC_NOE high               | T <sub>HCLK</sub>        | -   |      |
| t <sub>su(DV-CLKH)</sub>    | FSMC_D[15:0] valid data before FSMC_CLK high | 1                        | -   |      |
| t <sub>h(CLKH-DV)</sub>     | FSMC_D[15:0] valid data after FSMC_CLK high  | 2                        | -   |      |
| t <sub>su(NWAIT-CLKH)</sub> | FSMC_NWAIT valid before FSMC_CLK high        | 2                        | -   |      |
| t <sub>h(CLKH-NWAIT)</sub>  | FSMC_NWAIT valid after FSMC_CLK high         | 2                        | -   |      |





#### Figure 58. SDIO high-speed mode





| Table 95. Dyna | amic characteristics: | SD / MMC | characteristics <sup>(1)(2)</sup> |
|----------------|-----------------------|----------|-----------------------------------|
|----------------|-----------------------|----------|-----------------------------------|

| Symbol                                                  | Parameter                             | Conditions | Min | Тур  | Мах  | Unit |  |
|---------------------------------------------------------|---------------------------------------|------------|-----|------|------|------|--|
| f <sub>PP</sub>                                         | Clock frequency in data transfer mode | -          | 0   | -    | 50   | MHz  |  |
| -                                                       | SDIO_CK/fPCLK2 frequency ratio        | -          | -   | -    | 8/3  | -    |  |
| t <sub>W(CKL)</sub>                                     | Clock low time                        | fpp =50MHz | 9.5 | 10.5 | -    | 200  |  |
| t <sub>W(CKH)</sub>                                     | Clock high time                       | fpp =50MHz | 8.5 | 9.5  | -    | 115  |  |
| CMD, D inputs (referenced to CK) in MMC and SD HS mode  |                                       |            |     |      |      |      |  |
| t <sub>ISU</sub>                                        | Input setup time HS                   | fpp =50MHz | 4   | -    | -    | 200  |  |
| t <sub>IH</sub>                                         | Input hold time HS                    | fpp =50MHz | 2.5 | -    | -    | 115  |  |
| CMD, D outputs (referenced to CK) in MMC and SD HS mode |                                       |            |     |      |      |      |  |
| t <sub>OV</sub>                                         | Output valid time HS                  | fpp =50MHz | -   | 13   | 13.5 | 200  |  |
| t <sub>OH</sub>                                         | Output hold time HS                   | fpp =50MHz | 11  | -    | -    | 115  |  |



## B.3 Display application example



Figure 87. Display application example

Note:

16 bit displays interfaces can be addressed with 100 and 144 pins packages.

