

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD/SDIO, QSPI, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.7V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-UFBGA
Supplier Device Package	144-UFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f412zej3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The DMA can be used with the main peripherals:

- SPI and I²S
- I²C and I²CFMP
- USART
- General-purpose, basic and advanced-control timers TIMx
- SD/SDIO/MMC/eMMC host interface
- Quad-SPI
- ADC
- Digital Filter for sigma-delta modulator (DFSDM) with a separate stream for each filter.

3.11 Flexible static memory controller (FSMC)

The Flexible static memory controller (FSMC) includes a NOR/PSRAM memory controller. It features four Chip Select outputs supporting the following modes: SRAM, PSRAM and NOR Flash memory.

The main functions are:

- 8-,16-bit data bus width
- Write FIFO
- Maximum FSMC_CLK frequency for synchronous accesses is 90 MHz.

LCD parallel interface

The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

3.12 Quad-SPI memory interface (QUAD-SPI)

All devices embed a Quad-SPI memory interface, which is a specialized communication interface targeting single, dual or quad-SPI Flash memories. It can work in direct mode through registers, external Flash status register polling mode and memory mapped mode. Up to 256 Mbyte of external Flash memory are mapped. They can be accessed in 8, 16 or 32-bit mode. Code execution is also supported. The opcode and the frame format are fully programmable. Communication can be performed either in single data rate or dual data rate.

3.13 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 81 maskable interrupt channels plus the 16 interrupt lines of the $Cortex^{\$}$ -M4 with FPU.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

3.14 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 21 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 114 GPIOs can be connected to the 16 external interrupt lines.

3.15 Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 100 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

Several prescalers allow the configuration of the three AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB buses and high-speed APB domains is 100 MHz. The maximum allowed frequency of the low-speed APB domain is 50 MHz.

The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class performance. In this case, the I²S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.

		Piı	n Nu	mber								
UFQFPN48	LQFP64	WLCSP64	LQFP100	UFBGA100	UFBGA144	LQFP144	Pin name (function after reset) ⁽¹⁾	Pin type	I/O structure	Notes	Alternate functions	Additional functions
-	-	-	44	M1 0	K8	66	PE13	I/O	FT	-	TIM1_CH3, SPI4_MISO, SPI5_MISO, FSMC_D10/FSMC_DA10, EVENTOUT	-
-	-	-	45	M11	L8	67	PE14	I/O	FT	-	TIM1_CH4, SPI4_MOSI/I2S4_SD, SPI5_MOSI/I2S5_SD, FSMC_D11/FSMC_DA11, EVENTOUT	-
-	-	-	46	M1 2	M8	68	PE15	I/O	FT	-	TIM1_BKIN, FSMC_D12/FSMC_DA12, EVENTOUT	-
21	29	H4	47	L10	M9	69	PB10	I/O	FT	-	TIM2_CH3, I2C2_SCL, SPI2_SCK/I2S2_CK, I2S3_MCK, USART3_TX, I2CFMP1_SCL, SDIO_D7, EVENTOUT	-
-	-	-	-	K9	M1 0	70	PB11	I/O	FT	-	TIM2_CH4, I2C2_SDA, I2S2_CKIN, USART3_RX, EVENTOUT	-
22	30	H3	48	L11	H7	71	VCAP_1	S	-	-	-	-
23	31	H2	49	F12	H6	-	VSS	S	-	-	-	-
24	32	H1	50	G1 2	G7	72	VDD	s	-	-	-	-
25	33	G3	51	L12	M11	73	PB12	I/O	FT	-	TIM1_BKIN, I2C2_SMBA, SPI2_NSS/I2S2_WS, SPI4_NSS/I2S4_WS, SPI3_SCK/I2S3_CK, USART3_CK, CAN2_RX, DFSDM1_DATIN1, FSMC_D13/FSMC_DA13, EVENTOUT	-
26	34	G2	52	K12	M1 2	74	PB13	I/O	FT	-	TIM1_CH1N, I2CFMP1_SMBA, SPI2_SCK/I2S2_CK, SPI4_SCK/I2S4_CK, USART3_CTS, CAN2_TX, DFSDM1_CKIN1, EVENTOUT	-

Table 9. STM32F412xE/G pin definition (continued)

				Тур	Max ⁽¹⁾			
Symbol	Parameter	Conditions	f _{HCLK} (MHz)	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
			100	2.9	3.51	4.14	4.90	
		All peripherals disabled	84	2.4	2.83	3.46	4.16	
		External clock,	64	1.7	2.08	2.59	3.18	
		PLL ON ⁽²⁾ ,	50	1.4	1.77	2.23	2.84	
	Supply current in Sleep mode	Flash deep power down	25	1.0	1.37	1.88	2.50	mA
			20	1.3	1.37	1.88	2.50	
		All peripherals disabled, HSI, PLL OFF ⁽²⁾ , Flash deep power down	16	0.5	0.63	1.23	1.91	
חחן			1	0.4	0.52	1.13	1.81	
00			100	3.3	3.22	3.98	4.90	
			84	2.8	2.62	3.30	4.16	
		All peripherals disabled,	64	2.1	1.89	2.50	3.18	-
		Flash ON	50	1.7	1.58	2.16	2.84	
			25	1.2	1.28	1.82	2.50	
			20	1.3	1.28	1.82	2.50	
		All peripherals disabled,	16	0.8	0.88	1.36	1.91	
		HSI, PLL OFF ⁽²⁾ , Flash ON	1	0.7	0.77	1.26	1.81	

Table 29. Typical and maximum current	onsumption in Sleep mode - V _{DD} = 1.7 V (continued)
---------------------------------------	--

1. Based on characterization, not tested in production unless otherwise specified.

2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is ON (ADON bit is set in the ADC_CR2 register).

			Typ ⁽¹⁾	⁾ Max ⁽¹⁾			
Symbol	Conditions	Parameter	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
	Flash in Stop mode, all oscillators OFF, no independent watchdog	Main regulator usage	121.1	168.0	648.7	1213.0	
		Low power regulator usage	50.8	104.7	667.4	1328.0	
IDD STOP	Flash in Deep power	Main regulator usage	79.1	122.0	609.1	1181.0	μA
	down mode, all oscillators	Low power regulator usage	22.4	74.7	631.9	1286.0	
	WFF, no independent watchdog	Low power low voltage regulator usage	18.5	58.5	558.3	1145.0	

1. Based on characterization, not tested in production.

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration.
- All peripherals are disabled unless otherwise mentioned.
- The ART accelerator is ON.
- Voltage Scale 2 mode selected, internal digital voltage V12 = 1.26 V.
- HCLK is the system clock at 100 MHz. f_{PCLK1} = f_{HCLK}/2, and f_{PCLK2} = f_{HCLK}.
 The given value is calculated by measuring the difference of current consumption
 - with all peripherals clocked off,
 - with only one peripheral clocked on,
 - scale 1 with f_{HCLK} = 100 MHz,
 - scale 2 with f_{HCLK} = 84 MHz,
 - scale 3 with f_{HCLK} = 64 MHz.
- Ambient operating temperature is 25 °C and V_{DD}=3.3 V.

Table 36.	Peripheral	current	consumption
-----------	------------	---------	-------------

Poriphor		Unit			
renpilei	Scale 1	Scale 2	Scale 3	onic	
	GPIOA	1.84	1.75	1.55	
	GPIOB	1.90	1.80	1.61	
	GPIOC	1.77	1.67	1.50	
	GPIOD	1.67	1.58	1.42	
	GPIOE	1.75	1.67	1.48	
AHB1	GPIOF	1.65	1.56	1.39	
	GPIOG	1.65	1.56	1.39	
	GPIOH	0.62	0.57	0.53	µA/MHz
	CRC	0.26	0.25	0.22	
	DMA1 ⁽¹⁾	1,71N+2,98	1,62N+2,87	1,45N+2,58	
	DMA2 ⁽¹⁾	1,78N+2,62	1,70N+2.53	1,52N+2.26	
	RNG	0.77	0.74	0.66	
AIIDZ	USB_OTG_FS	19.68	18.73	16.78	
۸HB3	FSMC	5.36	5.11	4.56	
	QSPI	9.99	9.51	8.53	

Low-speed internal (LSI) RC oscillator

Table 43. LS	loscillator	characteristics	(1)
--------------	-------------	-----------------	-----

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽²⁾	Frequency	17	32	47	kHz
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	15	40	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	0.4	0.6	μA

1. V_{DD} = 3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by characterization, not tested in production.

3. Guaranteed by design, not tested in production.

Figure 32. ACC_{LSI} versus temperature

Figure 37. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

The user must ensure that the level on the NRST pin can go below the $V_{IL(NRST)}$ max level specified in *Table 59*. Otherwise the reset is not taken into account by the device. 2.

6.3.18 **TIM timer characteristics**

The parameters given in Table 60 are guaranteed by design.

Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions ⁽³⁾	Min	Мах	Unit
		AHB/APBx prescaler=1	1	-	t _{TIMxCLK}
tres(TIM)	Timer resolution time	100 MHz	11.9	-	ns
165(110)		AHB/APBx prescaler>4,	1	-	t _{TIMxCLK}
		f _{TIMxCLK} = 100 MHz	11.9	-	ns
f _{EXT}	Timer external clock		0	f _{TIMxCLK} /2	MHz
	frequency on CH1 to CH4	f _{TIMxCLK} = 100 MHz	0	50	MHz
Res _{TIM}	Timer resolution		-	16/32	bit
^t COUNTER	16-bit counter clock period when internal clock is selected	f _{TIMxCLK} = 100 MHz	0.0119	780	μs
t _{MAX_COUNT}	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}
		f _{TIMxCLK} = 100 MHz	-	51.1	S

Table 60. TIMx characteristics⁽¹⁾⁽²⁾

1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers.

2. Guaranteed by design, not tested in production.

The maximum timer frequency on APB1 is 50 MHz and on APB2 is up to 100 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise 3. TIMxCLK >= $4\bar{x}$ PCLKx.

6.3.19 Communications interfaces

I²C interface characteristics

The I²C interface meets the requirements of the standard I²C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" opendrain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 61*. Refer also to *Section 6.3.16: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

The I^2C bus interface supports standard mode (up to 100 kHz) and fast mode (up to 400 kHz). The I^2C bus frequency can be increased up to 1 MHz. For more details about the complete solution, contact your local ST sales representative.

Symbol	Parameter	Standar I ² C ⁽	rd mode 1)(2)	Fast mode	Unit	
		Min	Max	Min	Max	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	110
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μο
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	0	3450 ⁽³⁾	0	900 ⁽⁴⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs
t _{SP}	Pulse width of the spikes that are suppressed by the analog filter for standard fast mode	-	-	50	120 ⁽⁵⁾	ns
Cb	Capacitive load for each bus line	-	400	-	400	pF

Table 61. I²C characteristics

1. Guaranteed by design, not tested in production.

 f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock.

3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

			,			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{a(SO})	Data output access time	Slave mode	7	-	21	ns
t _{dis(SO)}	Data output disable time	Slave mode	5	-	12	ns
+	Data output valid timo	Slave mode (after enable edge), 2.7 V < V_{DD} < 3.6 V	-	7.5	9	ns
^L v(SO)		Slave mode (after enable edge), 1.7 V < V_{DD} < 3.6 V	-	7.5	14	ns
t _{h(SO)}	Data output hold time	Slave mode (after enable edge), 1.7 V < V_{DD} < 3.6 V	5.5	-	-	ns
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	3	8	ns
t _{h(MO)}	Data output hold time	Master mode (after enable edge)	2	-	-	ns

Table 64	4. SPI d	ynamic	characteristics	s (1)	(continued))
----------	----------	--------	-----------------	--------------	-------------	---

1. Guaranteed by characterization, not tested in production.

2. Maximum frequency in Slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty(SCK) = 50%

Figure 40. SPI timing diagram - slave mode and CPHA = 0

I²S interface characteristics

Unless otherwise specified, the parameters given in *Table 65* for the I²S interface are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 15*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{MCK}	I2S Main clock output	-	256x8K	256xFs ⁽²⁾	MHz
f	128 clock frequency	Master data: 32 bits	-	64xFs	
^I CK	123 Clock frequency	Slave data: 32 bits	-	64xFs	
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	-	5	
t _{h(WS)}	WS hold time	Master mode	0	-	
t _{su(WS)}	WS setup time	Slave mode	2	-	
t _{h(WS)}	WS hold time	Slave mode	0.5	-	
t _{su(SD_MR)}	Data input sotup timo	Master receiver	0	-	
t _{su(SD_SR)}		Slave receiver	2	-	ns
t _{h(SD_MR)}	Data input hold time	Master receiver	0	-	
t _{h(SD_SR)}	Data input noid time	Slave receiver	2.5	-	
t _{v(SD_ST)}	Data output valid timo	Slave transmitter (after enable edge)	-	15	
t _{v(SD_MT)}		Master transmitter (after enable edge)	-	2.5	
t _{h(SD_ST)}		Slave transmitter (after enable edge)	6	-	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	0	-	

Table 65. I ² 9	dvnamic	characteristics ⁽¹⁾
----------------------------	---------	--------------------------------

1. Guaranteed by characterization, not tested in production.

2. The maximum value of 256xFs is 50 MHz (APB1 maximum frequency).

Note: Refer to the I2S section of RM0383 reference manual for more details on the sampling frequency (F_S) .

 f_{MCK} , f_{CK} , and D_{CK} values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. D_{CK} depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F_S maximum value is supported for each mode/condition.

Figure 47. Typical connection diagram using the ADC

- 1. Refer to Table 71 for the values of R_{AIN} , R_{ADC} and C_{ADC} .
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high C_{parasitic} value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced.

Figure 49. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

1. V_{REF+} and V_{REF-} inputs are both available on UFBGA100. V_{REF+} is also available on LQFP100. When V_{REF+} and V_{REF-} are not available, they are internally connected to V_{DDA} and V_{SSA} .

6.3.21 Temperature sensor characteristics

	•				
Symbol	Parameter	Min	Тур	Max	Unit
TL ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	-	2.5	-	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	-	0.76	-	V
t _{START} ⁽²⁾	Startup time	-	6	10	μs
T _{S_temp} ⁽²⁾	ADC sampling time when reading the temperature (1 °C accuracy)	10	-	-	μs

Table 77. Temperature sensor characteristics

1. Guaranteed by characterization, not tested in production.

2. Guaranteed by design, not tested in production.

Table 78. Temperature sensor calibration values

Symbol	Parameter	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C, V_{DDA} = 3.3 V	0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2	TS ADC raw data acquired at temperature of 110 °C, V_{DDA} = 3.3 V	0x1FFF 7A2E - 0x1FFF 7A2F

6.3.24 **DFSDM** characteristics

Unless otherwise specified, the parameters given in *Table 82* for DFSDM are derived from tests performed under the ambient temperature, f_{APB2} frequency and V_{DD} supply voltage conditions summarized in *Table 15: General operating conditions*.

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x VDD

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (DFSDM_CKINy, DFSDM_DATINy, DFSDM_CKOUT for DFSDM).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{DFSDMCLK}	DFSDM clock	-	-	-	f _{SYSCLK}	
f _{CKIN} (1/T _{CKIN})	Input clock frequency	SPI mode (SITP[1:0] = 01)	-	-	20 (f _{DFSDMCLK} /4)	MHz
fскоит	Output clock frequency	-	-	-	20	MHz
DuCy _{CKOUT}	Output clock frequency duty cycle	-	30	50	75	%
^t wh(CKIN) ^t wl(CKIN)	Input clock high and low time	SPI mode (SITP[1:0] = 01), External clock mode (SPICKSEL[1:0] = 0)	Т _{СКIN} /2-0.5	T _{CKIN} /2	-	
t _{su}	Data input setup time	SPI mode (SITP[1:0]=01), External clock mode (SPICKSEL[1:0] = 0)	1	-	-	
t _h	Data input hold time	SPI mode (SITP[1:0]=01), External clock mode (SPICKSEL[1:0] = 0)	1	-	-	ns
T _{Manchester}	Manchester data period (recovered clock period)	Manchester mode (SITP[1:0] = 10 or 11), Internal clock mode (SPICKSEL[1:0] \neq 0)	(CKOUT DIV+1) x T _{DFSDMCLK}	-	(2 x CKOUTDIV) x T _{DFSDMCLK}	

Table 82. DFSDM characteristics⁽¹⁾

1. Data based on characterization results, not tested in production.

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	2T _{HCLK} – 1	2 T _{HCLK} + 0.5	
t _{v(NOE_NE)}	FSMC_NEx low to FSMC_NOE low	0	1	
t _{w(NOE)}	FSMC_NOE low time	2T _{HCLK} - 1.5	2T _{HCLK}	
t _{h(NE_NOE)}	FSMC_NOE high to FSMC_NE high hold time	0	-	
t _{v(A_NE)}	FSMC_NEx low to FSMC_A valid	-	1.5	
t _{h(A_NOE)}	Address hold time after FSMC_NOE high	0	-	
t _{v(BL_NE)}	FSMC_NEx low to FSMC_BL valid	-	0.5	ns
t _{h(BL_NOE)}	FSMC_BL hold time after FSMC_NOE high	0	-	
t _{su(Data_NE)}	Data to FSMC_NEx high setup time	T _{HCLK} - 1	-	
t _{su(Data_NOE)}	Data to FSMC_NOEx high setup time	T _{HCLK} - 1	-	
t _{h(Data_NOE)}	Data hold time after FSMC_NOE high	0	-	
t _{h(Data_NE)}	Data hold time after FSMC_NEx high	0	-	
t _{v(NADV_NE)}	FSMC_NEx low to FSMC_NADV low	-	0	
t _{w(NADV)}	FSMC_NADV low time	-	T _{HCLK} + 0.5	

Table 83. Asynchronous non-multiplexed SRAM/PSRAM/NOR - read timings $^{(1)(2)}$

1. C_L = 30 pF.

2. Based on characterization, not tested in production.

Table 84. Asynchronous non-multiplexed SRAM/PSRAM/NOR read -
NWAIT timings ⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	FSMC_NE low time	7T _{HCLK} - 1	7T _{HCLK} + 0.5	
t _{w(NOE)}	FSMC_NWE low time	5T _{HCLK} – 1.5	5T _{HCLK}	
t _{w(NWAIT)}	FSMC_NWAIT low time	T _{HCLK} – 0.5	-	ns
t _{su(NWAIT_NE)}	FSMC_NWAIT valid before FSMC_NEx high	5T _{HCLK} -1	-	
t _{h(NE_NWAIT)}	FSMC_NEx hold time after FSMC_NWAIT invalid	4T _{HCLK} + 1	-	

1. C_L = 30 pF.

2. Based on characterization, not tested in production.

- 1. C_L = 30 pF.
- 2. Based on characterization, not tested in production.

Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings $^{(1)(2)}$

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FSMC_NE low time	8T _{HCLK} - 1	8T _{HCLK} + 0.5	
t _{w(NWE)}	FSMC_NWE low time	6T _{HCLK} + 0.5	6T _{HCLK} + 1	ne
t _{su(NWAIT_NE)}	FSMC_NWAIT valid before FSMC_NEx high	6T _{HCLK} + 0.5	-	115
t _{h(NE_NWAIT)}	FSMC_NEx hold time after FSMC_NWAIT invalid	4T _{HCLK} + 1	-	

1. C_L = 30 pF.

2. Based on characterization, not tested in production.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com.* ECOPACK[®] is an ST trademark.

7.1 WLCSP64 package information

1. Drawing is not to scale.

7.2 UFQFPN48 package information

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

Table 100. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat							
package mechanical data							

Symbol	millimeters			inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
A	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
D	6.900	7.000	7.100	0.2717	0.2756	0.2795
E	6.900	7.000	7.100	0.2717	0.2756	0.2795
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244

Device marking for LQFP100

The following figure gives an example of topside marking and pin 1 position identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Appendix B Application block diagrams

B.1 USB OTG full speed (FS) interface solutions

Figure 81. USB controller configured as peripheral-only and used in Full speed mode

1. External voltage regulator only needed when building a V_{BUS} powered device.

1. External voltage regulator only needed when building a $\mathsf{V}_{\mathsf{BUS}}$ powered device.

