

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Detalls	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	29
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-WFQFN Exposed Pad
Supplier Device Package	33-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/mini52tde

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LIST OF FIGURES

Figure 4.1-1 NuMicro Mini51™ Series Selection Code	13
Figure 4.3-1 NuMicro Mini51™ Series LQFP 48-pin Diagram	15
Figure 4.3-2 NuMicro Mini51™ Series QFN 33-pin Diagram	16
Figure 4.3-3 NuMicro Mini51™ Series TSSOP 20-pin Diagram	17
Figure 4.3-4 NuMicro Mini51™ Series TSSOP 20-pin Diagram	17
Figure 5.1-1 NuMicro Mini51™ Series Block Diagram	22
Figure 6.3-1 NuMicro Mini51™ Series Power Architecture Diagram	
Figure 6.4-1 Clock Generator Block Diagram	31
Figure 6.4-2 System Clock Block Diagram	
Figure 6.4-3 SysTick Clock Control Block Diagram	
Figure 6.4-4 AHB Clock Source for HCLK	
Figure 6.4-5 Peripherals Clock Source Selection for PCLK	33
Figure 6.4-6 Clock Source of Frequency Divider	35
Figure 6.4-7 Block Diagram of Frequency Divider	35
Figure 7.1-1 Functional Block Diagram	47
Figure 9-1Mini5xDE Typical Crystal Application Circuit	59
Figure 9-2Power-up Ramp Condition	64

LIST OF TABLES

Table 4.1-1 List of Abbreviations	12
Table 4.2-1NuMicro Mini51™ Series Product Selection Guide	14
Table 6.1-1 Address Space Assignments for On-Chip Modules	23
Table 6.2-1 Exception Model	25
Table 6.2-2 System Interrupt Map Vector Table	26
Table 6.2-3 Vector Table Format	26
Table 6.3-1 Memory Mapping Table	30
Table 6.4-1 Peripheral Clock Source Selection Table	34

- Full-duplex synchronous serial data transfer
- Provides 3-wire function
- Variable length of transfer data from 8 to 32 bits
- MSB or LSB first data transfer
- Rx latching data can be either at rising edge or at falling edge of serial clock
- Tx sending data can be either at rising edge or at falling edge of serial clock
- Supports Byte Suspend mode in 32-bit transmission
- 4-level depth FIFO buffer
- I²C
 - Supports Master/Slave mode
 - Bidirectional data transfer between masters and slaves
 - Multi-master bus (no central master)
 - Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
 - Serial clock synchronization allows devices with different bit rates to communicate via one serial bus
 - Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer
 - Programmable clocks allow for versatile rate control
 - Supports 7-bit addressing mode
 - Supports multiple address recognition (four slave addresses with mask option)
 - Supports Power-down wake-up function
 - Support FIFO function
- ADC (Analog-to-Digital Converter)
 - 10-bit SAR ADC with 300K SPS
 - Up to 8-ch single-end input and one internal input from band-gap
 - Conversion started either by software trigger, PWM trigger, or external pin trigger
 - Supports conversion value monitoring (or comparison) for threshold voltage detection
 - Analog Comparator
 - Two analog comparators with programmable 16-level internal voltage reference
 - Build-in CRV (comparator reference voltage)
 - Supports Hysteresis function
 - Interrupt when compared results changed
- ISP (In-System Programming) and ICP (In-Circuit Programming)
- BOD (Brown-out Detector)
 - With 4 programmable threshold levels: 4.4V/3.7V/2.7V/2.2V

4 PARTS INFORMATION LIST AND PIN CONFIGURATION

4.1 NuMicro Mini51™ Series Selection Code

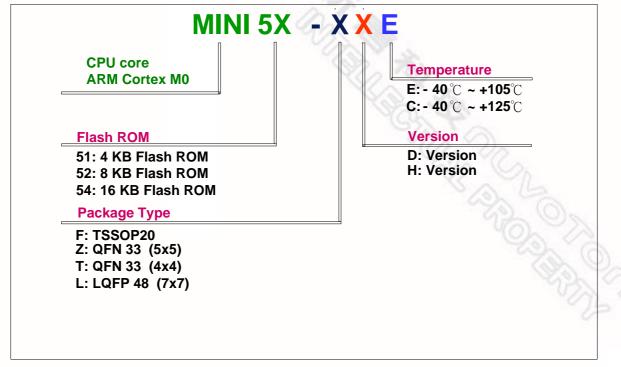


Figure 4.1-1 NuMicro Mini51™ Series Selection Code

4.3.2 QFN 33-pin



Figure 4.3-2 NuMicro Mini51™ Series QFN 33-pin Diagram

5 BLOCK DIAGRAM

5.1 NuMicro Mini51™ Block Diagram

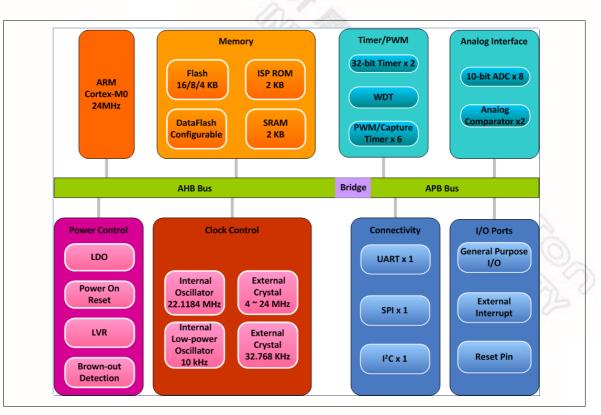


Figure 5.1-1 NuMicro Mini51™ Series Block Diagram

NuMicro MINI51[™] DE Series Datasheet

nuvoTon

Exception Number	Interrupt Number (Bit In Interrupt Registers)	Interrupt Name	Source Module	Interrupt Description	Power-Down Wake-Up
29	13	-	- 23	17	
30	14	SPI_INT	SPI	SPI interrupt	No
31	15	-	-	the COV-	
32	16	GP5_INT	GPIO	External signal interrupt from GPIO group P5 except P5.2	Yes
33	17	HIRC_TRIM_IN T	HIRC	HIRC trim interrupt	No
34	18	I2C_INT	I ² C	I ² C interrupt	Yes
35 ~ 40	19 ~ 24	-	-	-	n.
41	25	ACMP_INT	ACMP	Analog Comparator 0 or Comparator 1 interrupt	Yes
42 ~ 43	26 ~ 27	-	-	-	20.0
44	28	PWRWU_INT	CLKC	Clock controller interrupt for chip wake- up from Power-down state	Yes
45	29	ADC_INT	ADC	ADC interrupt	No
46 ~ 47	30 ~ 31	-	-	-	1

Table 6.2-2 System	Interrupt Map	Vector Table
--------------------	---------------	--------------

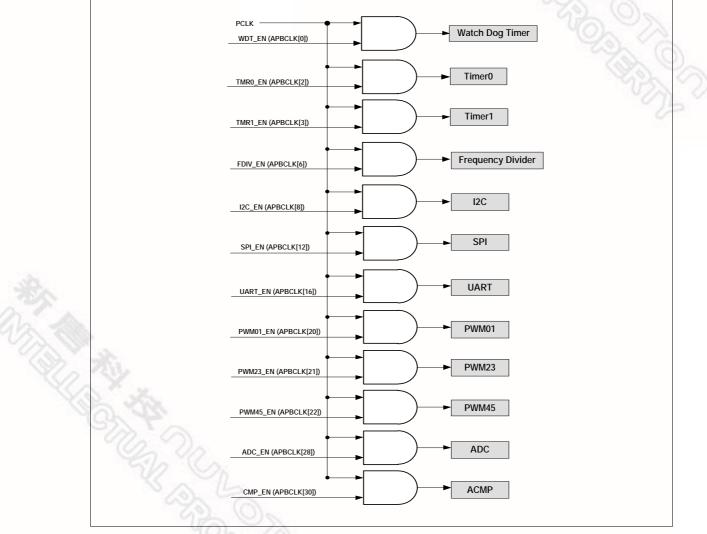
6.2.4 Vector Table

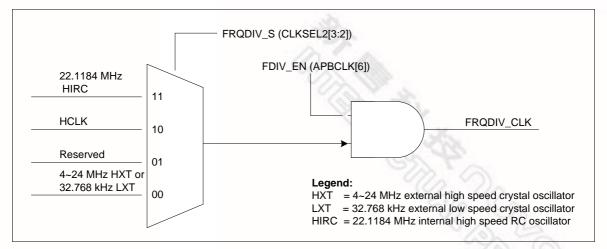

When an interrupt is accepted, the processor will automatically fetch the starting address of the interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table based address is fixed at 0x00000000. The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses for all exception handlers. The vector number on previous page defines the order of entries in the vector table associated with the exception handler entry as illustrated in previous section.

Vector Table Word Offset (Bytes)	Description				
0x00	Initial Stack Pointer Value				
Exception Number * 0x04	Exception Entry Pointer using that Exception Number				

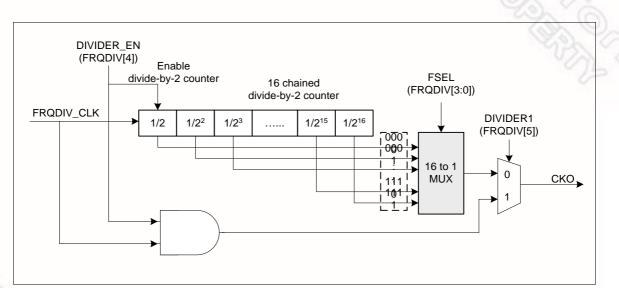
Table 6.2-3 Vector Table Format

6.4.3 ISP Clock Source Selection


The clock source of ISP is from AHB clock (HCLK). Please refer to the register AHBCLK.



6.4.4 Module Clock Source Selection


The peripheral clock has different clock source switch settings depending on different peripherals. Please refer to the CLKSEL1 and APBCLK register description in section **Error! Reference source not found.**

6.7 Flash Memory Controller (FMC)

6.7.1 Overview

The NuMicro Mini51[™] series is equipped with 4K/8K/16K bytes on chip embedded flash memory for application program (APROM) that can be updated through ISP procedure. In-System-Programming (ISP) and In-Application-Programming (IAP) enable user to update program memory when chip is soldered on PCB. After chip power on Cortex[™]-M0 CPU fetches code from APROM or LDROM decided by boot select (CBS) in CONFIG0. By the way, the NuMicro Mini51[™] series also provides Data Flash region that is shared with APROM and its start address is configurable and defined by user in CONFIG1.

6.7.2 Features

- Running up to 24 MHz with zero wait state for discontinuous address read access
- 4/8/16 Kbytes application program memory (APROM)
- 2 Kbytes in system programming (ISP) loader program memory (LDROM)
- Programmable data flash start address
- All embedded flash memory supports 512 bytes page erase
- In System Program (ISP)/In Application Program (IAP) to update on chip flash memory

6.10 Enhanced PWM Generator

6.10.1 Overview

The NuMicro Mini51[™] series has built one PWM unit which is specially designed for motor driving control applications. The PWM unit supports six PWM generators which can be configured as six independent PWM outputs, PWM0~PWM5, or as three complementary PWM pairs, (PWM0, PWM1), (PWM2, PWM3) and (PWM4, PWM5) with three programmable dead-zone generators.

Every complementary PWM pairs share one 8-bit prescaler. There are six clock dividers providing five divided frequencies (1, 1/2, 1/4, 1/8, 1/16) for each channel. Each PWM output has independent 16-bit counter for PWM period control, and 16-bit comparators for PWM duty control. The six PWM generators provide twelve independent PWM interrupt flags which are set by hardware when the corresponding PWM period counter comparison matched period and duty. Each PWM interrupt source with its corresponding enable bit can request PWM interrupt. The PWM generators can be configured as One-shot mode to produce only one PWM cycle signal or Auto-reload mode to output PWM waveform continuously.

To prevent PWM driving output pin with unsteady waveform, the 16-bit period down counter and 16-bit comparator are implemented with double buffer. When user writes data to counter/comparator buffer registers, the updated value will be loaded into the 16-bit down counter/ comparator at the end of current period. The double buffering feature avoids glitch at PWM outputs.

Besides PWM, Motor controlling also need Timer, ACMP and ADC to work together. In order to control motor more precisely, we provide some registers that not only configure PWM but also Timer, ADC and ACMP, by doing so, it can save more CPU time and control motor with ease especially in BLDC.

6.10.2 Features

The PWM unit supports the following features:

- Independent 16-bit PWM duty control units with maximum six port pins:
 - Six independent PWM outputs PWM0, PWM1, PWM2, PWM3, PWM4, and PWM5
 - Three complementary PWM pairs, with each pin in a pair mutually complement to each other and capable of programmable dead-zone insertion – (PWM0, PWM1), (PWM2, PWM3) and (PWM4, PWM5)
 - Three synchronous PWM pairs, with each pin in a pair in-phase (PWM0, PWM1), (PWM2, PWM3) and (PWM4, PWM5)
 - Group control bit PWM2 and PWM4 are synchronized with PWM0, PWM3 and PWM5 are synchronized with PWM1
- One-shot (only support edge alignment mode) or Auto-reload mode PWM
- Up to 16-bit resolution
- Supports Edge-aligned and Center-aligned mode
- Programmable dead-zone insertion between complementary paired PWMs
- Each pin of PWM0 to PWM5 has independent polarity setting control
- Hardware fault brake protections

- Two Interrupt source types:
 - Synchronously requested at PWM frequency when down counter comparison matched (edge- and center-aligned mode) or underflow (edgealigned mode)
 - Requested when external fault brake asserted
 - BKP0: EINT0 or CPO1
 - ♦ BKP1: EINT1 or CPO0
- The PWM signals before polarity control stage are defined in the view of positive logic. The PWM ports is active high or active low are controlled by polarity control register.
- Supports independently rising CMR matching (in Center-aligned mode), CNR matching (in Center-aligned mode), falling CMR matching, period matching to trigger ADC conversion
- Timer comparing matching event trigger PWM to do phase change in BLDC application
- Supports ACMP output event trigger PWM to force PWM output at most one period low, this feature is usually for step motor control
- Provides interrupt accumulation function

7 ARM® CORTEX[™]-M0 CORE

7.1 Overview

The Cortex[™]-M0 processor is a configurable, multistage, 32-bit RISC processor which has an AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug functionality. The processor can execute Thumb code and is compatible with other CortexTM-M profile processors. The profile supports two modes - Thread mode and Handler mode. Handler mode is entered as a result of an exception. An exception return can only be issued in Handler mode. Thread mode is entered on Reset and can be entered as a result of an exception return. The following figure shows the functional controller of the processor.

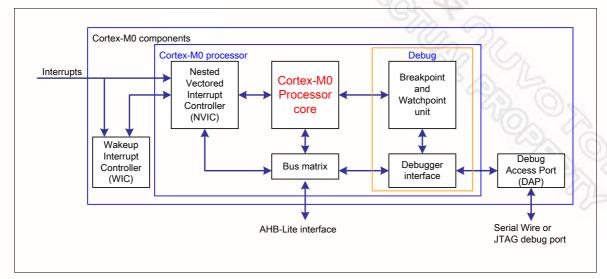


Figure 7.1-1 Functional Block Diagram

7.2 Features

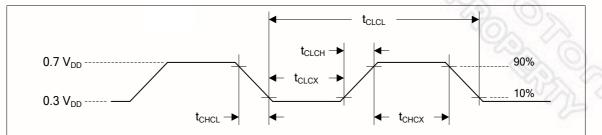
- A low gate count processor
 - ARMv6-M Thumb[®] instruction set
 - Thumb-2 technology
 - ARMv6-M compliant 24-bit SysTick timer
 - A 32-bit hardware multiplier
 - System interface supported with little-endian data accesses
 - Ability to have deterministic, fixed-latency, interrupt handling
 - Load/store-multiples and multicycle-multiplies that can be abandoned and restarted to facilitate rapid interrupt handling
 - C Application Binary Interface compliant exception model:
 - This is the ARMv6-M, C Application Binary Interface (C-ABI) compliant exception model that enables the use of pure C functions as interrupt handlers
 - Low power Idle mode entry using the Wait For Interrupt (WFI), Wait For Event (WFE) instructions, or return from interrupt sleep-on-exit feature
- NVIC

				100		V _{DD}	5.5V	
I _{DD2}		-	7.0	22	mA	HXT	24 MHz	
			8	m As		HIRC	Disabled Disabled	-
	_					All digital modules	Disabled	
				S22	25	M	3.3V	
				X	8	V _{DD} HXT	3.3V 24 MHz	
I _{DD3}		-	7.1		mA	HIRC	Disable	
					-27	All digital	Enabled	
	-					modules	Lindbied	
						V _{DD}	3.3 V	
						HXT	24 MHz	
I _{DD4}		-	5.0	-	mA	HIRC	Disabled	
						All digital	Disabled	
						modules	Disabied	
				-				
			6.1			V _{DD}	5.5V	-
I _{DD5}		-			mA	HXT	Disabled	
						HIRC	Enabled	
						All digital modules	Enabled	
						V _{DD}	5.5V	
			3.9		mA	HXT	Disabled	
I _{DD6}	Operating Current	-		-		HIRC	Enabled	
	Normal Run Mode					All digital	Disabled	
	HCLK =22.1184 MHz					modules		
	while(1){} Executed from Flash		- 6.0	-	mA	V _{DD}	3.3V	
1		_				HXT	Disabled	
I _{DD7}		-				HIRC	Enabled	
SX.						All digital modules	Enabled	
2.33	-					V _{DD}	3.3V	
UN.	3		3.9		mA	HXT	Disabled	
I _{DD8}	40.	-	3.9	-	mA	HIRC	Enabled	
K	AL					All digital modules	Disabled	

							V _{DD}	5.5 V	
				4.4	32.		HXT	12 MHz	
	I _{IDLE9}		-		~~~	mA	HIRC	Disabled	
					China Co		All digital modules	Enabled	
		-				261			
					100	. X	V _{DD}	5.5 V	
	I _{IDLE10}		-	3.3	- X	mA	HXT	12 MHz	
						(CS)	HIRC	Disabled	
		Operating Current Idle Mode				4	All digital modules	Disabled	
		HCLK =12 MHz							
							V _{DD}	3.3 V	
	I _{IDLE11}		-	2.9	-	mA	HXT	12 MHz	
							HIRC	Disabled	
		_					All digital modules	Enabled	
					-	mA			
	I _{IDLE12}		-	1.8			V _{DD}	3.3 V	
							HXT	12 MHz	
							HIRC	Disabled	
							All digital modules	Disabled	
				- 2.9	_	mA	V _{DD}	5.5 V	
	I _{IDLE13}		_				HXT	4 MHz	
	IDLE 13					110 (HIRC	Disabled	
							All digital modules	Enabled	
		Operating Current Idle Mode	-	2.5	-	mA	V _{DD}	5.5 V	
							HXT	4 MHz	
	I _{IDLE14}	HCLK =4 MHz					HIRC	Disabled	
	Ş.,						All digital modules	Disabled	
	2.33						V _{DD}	3.3 V	
	23	3		. –			HXT	4 MHz	
	I _{IDLE15}	00	-	1.5	-	mA	HIRC	Disabled	
	N	AL.					All digital modules	Enabled	

				1000		V _{DD}	3.3 V	
I _{IDLE16}		-	1.1	X	mA	HXT	4 MHz	
IDLE16			1.1	mr.		HIRC	Disabled	
			All digital modules	Disabled				
				- SU	2	V _{DD}	5.5 V	
				X	0	HXT	Disabled	
					No.	HIRC	Disabled	
I _{IDLE17}		-	225	-	μA	LIRC	Enabled	
						All digital modules	Enabled	
							ules which support 1 source	
						17	190	
						V _{DD}	5.5 V	
						HXT	Disabled	
IDLE18	- 225 -	μA	HIRC	Disabled				
						LIRC	Enabled	
	Operating Current Idle Mode					All digital modules	Disabled	
	at 10 kHz						0.01/	
						V _{DD}	3.3 V	
						HXT	Disabled	
I _{IDLE19}		- 200 - 4	200 - μA	μA	HIRC	Disabled		
							Enabled	
						All digital modules	Enabled	
						Only enable mod kHz LIRC clock s	ules which support 1 ource	
						V _{DD}	3.3 V	
						HXT	Disabled	
I _{IDLE20}		-	200	-	μA	HIRC	Disabled	
						LIRC	Enabled	
						All digital modules	Disabled	
I _{PWD1}	Standby Current Power-down Mode	-	10	-	μΑ		cillators and analog	
I _{PWD2}	(Deep Sleep Mode)	-	9	-	μA	V _{DD} = 3.3 V, All os blocks turned off.	cillators and analog	
IL	Logic 0 Input Current P0/1/2/3/4/5 (Quasi- bidirectional Mode)	<u>.</u> -	-70	-75	μΑ	$V_{DD} = 5.5 \text{ V}, V_{IN} = 0 \text{ V}$		

I _{SK13}	Drain and Push-pull Mode)	5	8	-	mA	$V_{DD} = 2.5 \text{ V}, V_S = 0.45 \text{ V}$
	-			. 2		

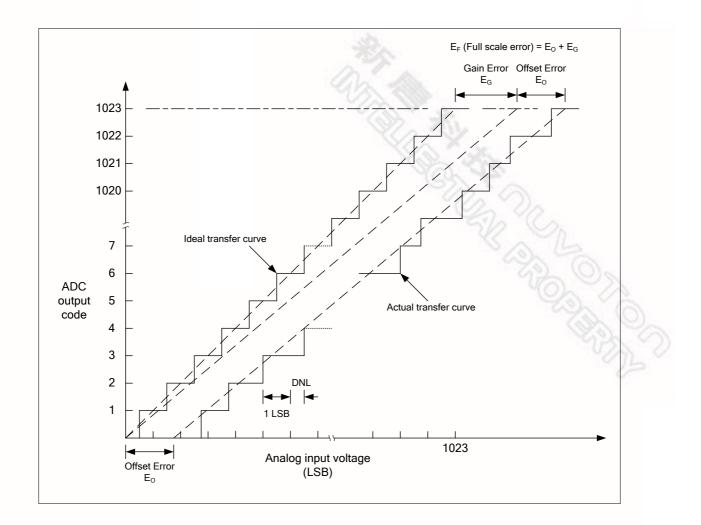

Notes:

- 1. /RESET pin is a Schmitt trigger input.
- 2. XTAL1 is a CMOS input.

3. Pins of P0, P1, P2, P3, P4 and P5 can source a transition current when they are being externally driven from 1 to 0. In the condition of VDD=5.5V, the transition current reaches its maximum value when VIN approximates to 2V.

9.3 AC Electrical Characteristics

9.3.1 External Input Clock



Note: Duty cycle is 50%.

Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
t _{CHCX}	Clock High Time	10	-	-	ns	-
t _{CLCX}	Clock Low Time	10	-	-	ns	-
t _{CLCH}	Clock Rise Time	2	-	15	ns	-
t _{CHCL}	Clock Fall Time	2	-	15	ns	-

9.3.2 External 4~24 MHz High Speed Crystal (HXT)

Symbol	Parameter	Min.	Тур.	Max	Unit	Test Conditions
V _{HXT}	Operation Voltage	2.5	-	5.5	V	-
T _A	Temperature	-40	-	105	°C	-
I _{HXT}	Operating Current	-	2.5	-	mA	12 MHz, V _{DD} = 5.5V
HXT	Operating Current	-	1.0	-	mA	12 MHz, $V_{DD} = 3.3V$
f _{HXT}	Clock Frequency	4	-	24	MHz	-

9.4.2 LDO & Power Management

Symbol	Parameter	Min	Тур	Max	Unit	Test Condition
V _{DD}	DC Power Supply	2.5	-	5.5	V	-
V _{LDO}	Output Voltage	1.62	1.8	1.98	V	-
T _A	Temperature	-40	25	105	°C	

Notes:

1. It is recommended a $0.1\mu F$ bypass capacitor is connected between V_{DD} and the closest V_{SS} pin of the device.

9.4.3 Low Voltage Reset

Symbol	Parameter	Min	Тур	Мах	Unit	Test Condition
AV _{DD}	Supply Voltage	0	-	5.5	V	-

T _A	Temperature	-40	25	105	°C	-
I _{LVR}	Quiescent Current	-	1	5	μA	$AV_{DD} = 5.5V$
V _{LVR}	Threshold Voltage	1.90	2.00	2.10	V	T _A =25°C
		1.70	1.90	2.05	V	T _A =-40°C
		2.00	2.20	2.45	V	T _A =105°C

9.4.4 Brown-out Detector

Symbol	Parameter	Min	Тур	Max	Unit	Test Condition
AV_{DD}	Supply Voltage	0	-	5.5	V	25
T _A	Temperature	-40	25	105	°C	22-02
I _{BOD}	Quiescent Current	-	-	140	μA	AV _{DD} =5.5V
	Brown-out Detector (Falling edge)	4.2	4.38	4.55	V	BOD_VL [1:0]=11
V _{BOD}		3.5	3.68	3.85	V	BOD_VL [1:0]=10
▲ BOD		2.5	2.68	2.85	V	BOD_VL [1:0]=01
		2.0	2.18	2.35	V	BOD_VL [1:0]=00
	Brown-out Detector (Rising edge)	4.3	4.52	4.75	V	BOD_VL [1:0]=11
V _{BOD}		3.5	3.8	4.05	V	BOD_VL [1:0]=10
A ROD		2.5	2.77	3.05	V	BOD_VL [1:0]=01
		2.0	2.25	2.55	V	BOD_VL [1:0]=00

9.4.5 Power-on Reset

Symbol	Parameter	Min	Тур	Max	Unit	Test Condition
T _A	Temperature	-40	25	105	°C	-
V _{POR}	Reset Voltage	1.6	2	2.4	V	-
V _{POR}	V _{DD} Start Voltage to Ensure Power-on Reset	-	-	100	mV	
RR _{VDD}	V _{DD} Raising Rate to Ensure Power-on Reset	0.025	-	-	V/ms	
t _{POR}	Minimum Time for V _{DD} Stays at VPOR to Ensure Power- on Reset	0.5	-	-	ms	

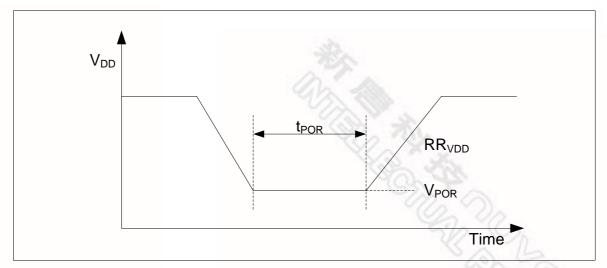


Figure 9-2Power-up Ramp Condition

9.4.6 Comparator

Symbol	Parameter	Min	Тур	Max	Unit	Test Condition
V _{CMP}	Supply Voltage	2.5	-	5.5	V	
T _A	Temperature -40		25	105	°C	-
I _{CMP}	Operation Current	-	40	80	μA	AV _{DD} =5V
V_{OFF}	Input Offset Voltage		10	20	mV	-
V _{SW}	Output Swing	0.1	-	AV _{DD} -0.1	V	-
V _{COM}	Input Common Mode Range	0.1	-	AV _{DD} - 0.1	V	-
-	DC Gain	40	70	-	dB	-
T _{PGD}	Propagation Delay	-	200	-	ns	V _{COM} =1.2 V, V _{DIFF} =0.1 V
V _{HYS}	Hysteresis - ±30 ±60 mV		mV	V _{COM} =1.2 V		
T _{STB}	Stable time	-	-	1	μs	