

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	50
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51ed2-rdrim

Email: info@E-XFL.COM

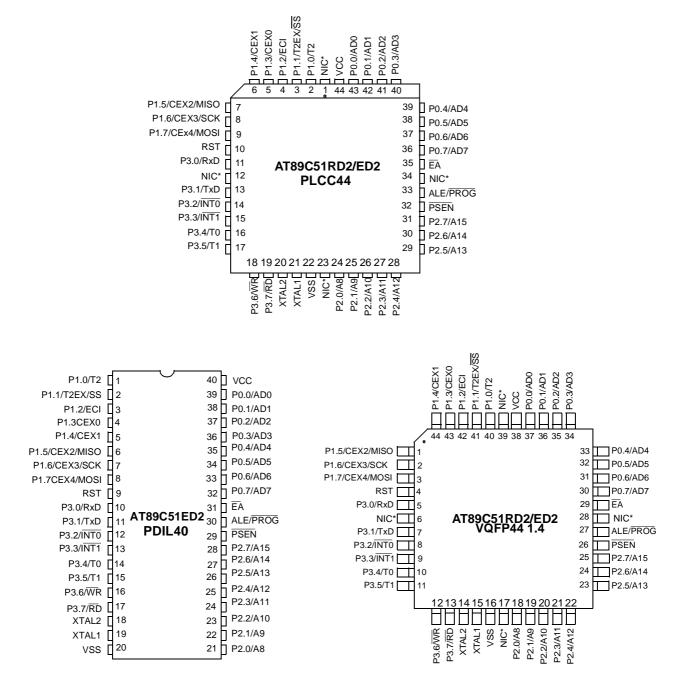
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

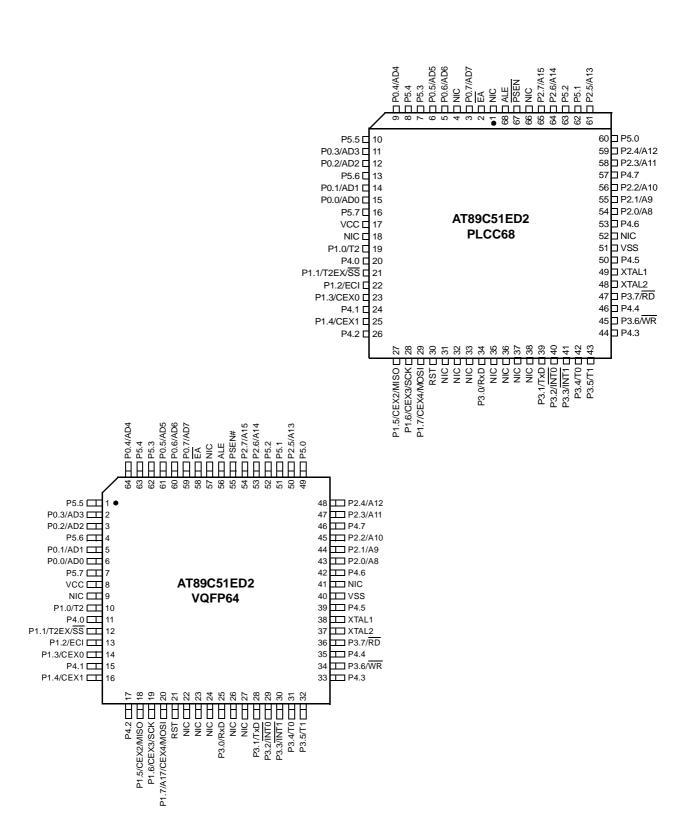
8 AT89C51RD2/ED2

reserved

	Addressable	Non Bit Addressable							
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h		CH 0000 0000	CCAP0H XXXX XXXX	CCAP1H XXXX XXXX	CCAP2H XXXX XXXX	CCAP3H XXXX XXXX	CCAP4H XXXX XXXX		FFh
F0h	B 0000 0000								F7h
E8h	P5 bit addressable 1111 1111	CL 0000 0000	CCAP0L XXXX XXXX	CCAP1L XXXX XXXX	CCAP2L XXXX XXXX	CCAP3L XXXX XXXX	CCAP4L XXXX XXXX		EFł
E0h	ACC 0000 0000								E7h
D8h	CCON 00X0 0000	CMOD 00XX X000	CCAPM0 X000 0000	CCAPM1 X000 0000	CCAPM2 X000 0000	CCAPM3 X000 0000	CCAPM4 X000 0000		DFł
D0h	PSW 0000 0000	FCON XXXX 0000	EECON xxxx xx00						D7h
C8h	T2CON 0000 0000	T2MOD XXXX XX00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000			CFr
C0h	P4 1111 1111			SPCON 0001 0100	SPSTA 0000 0000	SPDAT XXXX XXXX		P5 byte Addressable 1111 1111	C7ł
B8h	IPL0 X000 000	SADEN 0000 0000							BFł
B0h	P3 1111 1111	IEN1 XXXX X000	IPL1 XXXX X000	IPH1 XXXX X111				IPH0 X000 0000	B7h
A8h	IEN0 0000 0000	SADDR 0000 0000						CKCON1 XXXX XXX0	AFł
A0h	P2 1111 1111		AUXR1 0XXX X0X0				WDTRST XXXX XXXX	WDTPRG XXXX X000	A7ł
98h	SCON 0000 0000	SBUF XXXX XXXX	BRL 0000 0000	BDRCON XXX0 0000	KBLS 0000 0000	KBE 0000 0000	KBF 0000 0000		9Fł
90h	P1 1111 1111							CKRL 1111 1111	97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR XX00 1000	CKCON0 0000 0000	8Fł
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 00X1 0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Table 12. SFR Mapping


Bit


Table 12 shows all SFRs with their address and their reset value.

Pin Configurations

Figure 2. Pin Configurations

NIC: Not Internaly Connected

Table 17. CKCON1 Register

CKCON1 - Clock Control Register (AFh)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	SPIX2
Bit Number	Bit Mnemonic	Description					
7	-	Reserved					
6	-	Reserved					
5	-	Reserved					
4	-	Reserved					
3	-	Reserved					
2	-	Reserved					
1	-	Reserved					
0	SPIX2	this bit has no Clear to selec	o effect). ct 6 clock peri	dated when th ods per periph ods per periph	neral clock cyc	cle.	n X2 is low,

Reset Value = XXXX XXX0b Not bit addressable

Table 18. AUXR1 Register

AUXR1- Auxiliary Register 1(0A2h)

7	6	5	4	3	2	1	0	
-	-	ENBOOT	-	GF3	0	-	DPS	
Bit Number	Bit Mnemonic	Description						
7	-	Reserved The value rea	ad from this b	it is indetermir	ate. Do not se	et this bit.		
6	-	Reserved The value rea	ad from this b	it is indetermir	ate. Do not se	et this bit.		
5	ENBOOT	Enable Boot Cleared to dis Set to map th	sable boot RC	DM. between F800	h - 0FFFFh.			
4	-	Reserved The value rea	ad from this b	it is indetermir	ate. Do not se	et this bit.		
3	GF3	This bit is a	general-pur	oose user flaç	j . ⁽¹⁾			
2	0	Always clea	red					
1	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
0	DPS	Data Pointer Cleared to se Set to select	lect DPTR0.					

Reset Value = XXXX XX0X0b

Not bit addressable

Note: 1. Bit 2 stuck at 0; this allows to use INC AUXR1 to toggle DPS without changing GF3.

ASSEMBLY LANGUAGE

; Block move using dual data pointers ; Modifies DPTR0, DPTR1, A and PSW ; note: DPS exits opposite of entry state ; unless an extra INC AUXR1 is added ; 00A2 AUXR1 EQU 0A2H ; 0000 909000MOV DPTR, #SOURCE ; address of SOURCE 0003 05A2 INC AUXR1 ; switch data pointers 0005 90A000 MOV DPTR, #DEST ; address of DEST 0008 LOOP: 0008 05A2 INC AUXR1 ; switch data pointers 000A E0 MOVX A,@DPTR ; get a byte from SOURCE 000B A3 INC DPTR ; increment SOURCE address 000C 05A2 INC AUXR1 ; switch data pointers 000E FO MOVX @DPTR,A ; write the byte to DEST 000F A3 INC DPTR ; increment DEST address 0010 70F6JNZ LOOP ; check for 0 terminator 0012 05A2 INC AUXR1 ; (optional) restore DPS

Table 24 shows the CCAPMn settings for the various PCA functions.

Table 24. CCAPMn Registers (n = 0-4)

CCAPM0 - PCA Module 0 Compare/Capture Control Register (0DAh)

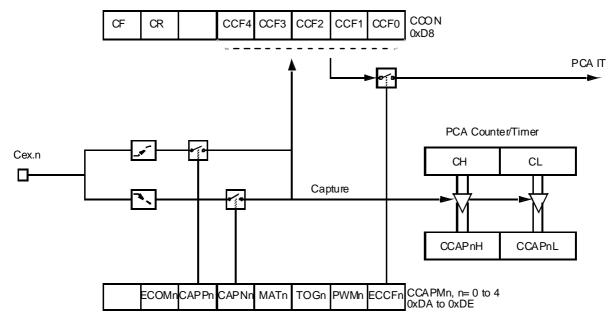
CCAPM1 - PCA Module 1 Compare/Capture Control Register (0DBh)

- CCAPM2 PCA Module 2 Compare/Capture Control Register (0DCh)
- CCAPM3 PCA Module 3 Compare/Capture Control Register (0DDh)

CCAPM4 - PCA Module 4 Compare/Capture Control Register (0DEh)

7	6	5	4	3	2	1	0	
-	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	
Bit Number	Bit Mnemonic	Description						
7	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
6	ECOMn		-	nparator functi tor function.	on.			
5	CAPPn			e edge capture e capture.				
4	CAPNn			e edge captur ge capture.	e.			
3	MATn			of the PCA co causes the CC			agging an	
2	TOGn		,	of the PCA co causes the CE				
1	PWMn	Cleared to di	Pulse Width Modulation Mode Cleared to disable the CEXn pin to be used as a pulse width modulated output. Set to enable the CEXn pin to be used as a pulse width modulated output.					
0	CCF0	an interrupt.	sable compar	e/capture flag oture flag CCF		-	-	

Reset Value = X000 0000b Not bit addressable



PCA Capture Mode

To use one of the PCA modules in the capture mode either one or both of the CCAPM bits CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1) is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated (Refer to Figure 18).

Figure 18. PCA Capture Mode

16-bit Software Timer/ Compare Mode

The PCA modules can be used as software timers by setting both the ECOM and MAT bits in the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set (See Figure 19).

Baud Rates	F _{osc} = 16	. 384 MHz	F _{OSC} = 24MHz		
	BRL	BRL Error (%)		Error (%)	
115200	247	1.23	243	0.16	
57600	238	1.23	230	0.16	
38400	229	1.23	217	0.16	
28800	220	1.23	204	0.16	
19200	203	0.63	178	0.16	
9600	149	0.31	100	0.16	
4800	43	1.23	-	-	

Table 34	. Example of Computed	Value When X2=1,	SMOD1=1, SPD=1
----------	-----------------------	------------------	----------------

Table 35. Example of Computed Value When X2=0, SMOD1=0, SPD=0

Baud Rates	F _{osc} = 16	. 384 MHz	F _{OSC} = 24MHz		
	BRL	BRL Error (%)		Error (%)	
4800	247	1.23	243	0.16	
2400	238	1.23	230	0.16	
1200	220	1.23	202	3.55	
600	185	0.16	152	0.16	

The baud rate generator can be used for mode 1 or 3 (refer to Figure 25.), but also for mode 0 for UART, thanks to the bit SRC located in BDRCON register (Table 42.)

UART Registers

Table 36. SADEN Register

SADEN - Slave Address Mask Register for UART (B9h)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b

Table 37. SADDR Register

SADDR - Slave Address Register for UART (A9h)

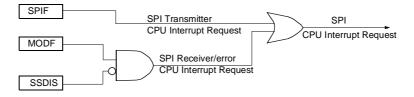
7	6	5	4	3	2	1	0

Reset Value = 0000 0000b

AT89C51RD2/ED2

Table 42. BDRCON Register

BDRCON - Baud Rate Control Register (9Bh)


7	6	5	4	3	2	1	0	
-	-	-	BRR	ТВСК	RBCK	SPD	SRC	
Bit Number	Bit Mnemonic	Descriptior	1					
7	-	Reserved The value re	ead from this	bit is indeterm	inate. Do not s	set this bit		
6	-	Reserved The value re	ead from this	bit is indeterm	inate. Do not s	set this bit		
5	-	Reserved The value re	ead from this I	oit is indetermi	nate. Do not s	et this bit.		
4	BRR	Cleared to s	•	bit al Baud Rate (aud Rate Gene				
3	ТВСК	Cleared to s	elect Timer 1	e Generator S or Timer 2 for d Rate Genera	the Baud Rate			
2	RBCK	Cleared to s	elect Timer 1	enerator Sele or Timer 2 for d Rate Genera	the Baud Rate			
1	SPD	Cleared to s	Baud Rate Speed Control bit for UART Cleared to select the SLOW Baud Rate Generator. Set to select the FAST Baud Rate Generator.					
0	SRC	Cleared to s mode).	elect F _{OSC} /12		Rate Generato	or (F _{CLK PERIPH} /		

Reset Value = XXX0 0000b Not bit addressable

Figure 35. SPI Interrupt Requests Generation

There are three registers in the Module that provide control, status and data storage functions. These registers

Registers

Register (SPCON)

are describes in the following paragraphs.Serial Peripheral Control• The Serial Peripheral Control Register does the following:

Selects one of the Master clock rates

- Configure the SPI Module as Master or Slave
- Selects serial clock polarity and phase
- Enables the SPI Module
- Frees the SS pin for a general-purpose

Table 48 describes this register and explains the use of each bit

Table 48. SPCON Register

SPCON - Serial Peripheral Control Register (0C3H)

7	6	5	4	3	2	1	0		
SPR2	SPEN	SSDIS	MSTR	CPOL	СРНА	SPR1	SPR0		
Bit Number	Bit Mne	emonic	Description						
7	SF	PR2	Serial Peripheral Rate 2 Bit with SPR1 and SPR0 define the clock rate.						
6	SF	'EN	Serial Peripheral Enable Cleared to disable the SPI interface. Set to enable the SPI interface.						
5	SS	DIS	SS Disable Cleared to enable SS in both Master and Slave modes. Set to disable SS in both Master and Slave modes. In Slave mo this bit has no effect if CPHA ='0'. When SSDIS is set, no MOD interrupt request is generated.						
4	MS	STR	Serial Peripheral Master Cleared to configure the SPI as a Slave. Set to configure the SPI as a Master.						
3	CF	POL	Clock Polarity Cleared to have the SCK set to '0' in idle state. Set to have the SCK set to '1' in idle low.						
2	CF		Clock Phase Cleared to have the data sampled when the SCK leaves the idle state (see CPOL). Set to have the data sampled when the SCK returns to idle state (see CPOL).						

Table 57. IPL1 Register

IPL1 - Interrupt Priority Register (B2h)

7	6	5	4	3	2	1	0		
-	-	-	-	-	SPIL	TWIL	KBDL		
Bit Number	Bit Mnemonic	Description							
7	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.						
6	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.						
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.						
3	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.			
2	SPIL		t Priority bit H for priority I						
1	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.						
0	KBDL	-	Keyboard interrupt Priority bit Refer to KBDH for priority level.						

Reset Value = XXXX X000b Bit addressable

Hardware Watchdog Timer

The WDT is intended as a recovery method in situations where the CPU may be subjected to software upset. The WDT consists of a 14-bit counter and the Watchdog Timer ReSeT (WDTRST) SFR. The WDT is by default disabled from exiting reset. To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST-pin.

Using the WDT

To enable the WDT, user must write 01EH and 0E1H in sequence to the WDTRST, SFR location 0A6H. When WDT is enabled, the user needs to service it by writing to 01EH and 0E1H to WDTRST to avoid WDT overflow. The 14-bit counter overflows when it reaches 16383 (3FFFH) and this will reset the device. When WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 16383 machine cycle. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST-pin. The RESET pulse duration is 96 x T_{CLK PERIPH}, where T_{CLK PERIPH}= 1/F_{CLK PERIPH}. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

To have a more powerful WDT, a 2^7 counter has been added to extend the Time-out capability, ranking from 16 ms to 2s @ F_{OSCA} = 12 MHz. To manage this feature, refer to WDTPRG register description, Table 61. The WDTPRG register should be configured before the WDT activation sequence, and can not be modified until next reset.

 Table 61.
 WDTRST Register

WDTRST - Watchdog Reset Register (0A6h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-

Reset Value = XXXX XXXXb

Write only, this SFR is used to reset/enable the WDT by writing 01EH then 0E1H in sequence.

ONCE[®] Mode (ON-Chip Emulation)

The ONCE mode facilitates testing and debugging of systems using AT89C51RD2/ED2 without removing the circuit from the board. The ONCE mode is invoked by driving certain pins of the AT89C51RD2/ED2; the following sequence must be exercised:

- Pull ALE low while the device is in reset (RST high) and PSEN is high.
- Hold ALE low as RST is deactivated.

While the AT89C51RD2/ED2 is in ONCE mode, an emulator or test CPU can be used to drive the circuit. Table 63 shows the status of the port pins during ONCE mode.

Normal operation is restored when normal reset is applied.

ĺ	ALE	PSEN	Port 0	Port 1	Port 2	Port 3	Port I2	XTALA1/2	XTALB1/2
	Weak pull-up	Weak pull-up	Float	Weak pull-up	Weak pull-up	Weak pull-up	Float	Active	Active

Table 63. External Pin Status During ONCE Mode

Power-off Flag

The power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset.

A cold start reset is the one induced by V_{CC} switch-on. A warm start reset occurs while V_{CC} is still applied to the device and could be generated for example by an exit from power-down.

The power-off flag (POF) is located in PCON register (Table 64). POF is set by hardware when V_{CC} rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset.

Table 64. PCON Register

7	6	5	4	3	2	1	0		
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL		
Bit Number	Bit Mnemonic	Description							
7	SMOD1	Serial port N Set to select		rate in mode 1	, 2 or 3.				
6	SMOD0	Cleared to se	Serial port Mode bit 0 Cleared to select SM0 bit in SCON register. Set to select FE bit in SCON register.						
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	POF	Cleared by s	Power-Off Flag Cleared by software to recognize the next reset type. Set by hardware when V_{CC} rises from 0 to its nominal voltage. Can also be set by software.						
3	GF1			I-purpose usa pose usage.	ge.				
2	GF0	Cleared by u	General-purpose Flag Cleared by user for general-purpose usage. Set by user for general-purpose usage.						
1	PD	Cleared by h	Power-down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.						
0	IDL	Cleared by h	Idle mode bit Cleared by hardware when interrupt or reset occurs. Set to enter idle mode.						

PCON - Power Control Register (87h)

Reset Value = 00X1 0000b Not bit addressable

Mnemonic	Definition	Default value	Description
SBV	Software Boot Vector	FCh	
BSB	Boot Status Byte	0FFh	
SSB	Software Security Byte	FFh	
	Copy of the Manufacturer Code	58h	Atmel
	Copy of the Device ID #1: Family Code	D7h	C51 X2, Electrically Erasable
	Copy of the Device ID #2: Memories Size and Type	ECh	AT89C51RD2/ED2 64KB
	Copy of the Device ID #3: Name and Revision	EFh	AT89C51RD2/ED2 64KB, Revision 0

After programming the part by ISP, the BSB must be cleared (00h) in order to allow the application to boot at 0000h.

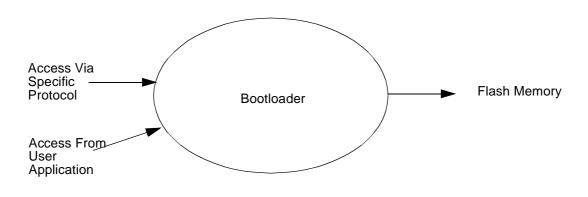
The content of the Software Security Byte (SSB) is described in Table 70 and Table 71.

To assure code protection from a parallel access, the HSB must also be at the required level.

Table 70. Software Security Byte

7	6	5	4	3	2	1	0				
-	-	-	-	-	-	LB1	LB0				
Bit Number	Bit Mnemonic	Description	Description								
7	-	Reserved Do not clear t	Reserved Do not clear this bit.								
6	-	Reserved Do not clear t	Reserved Do not clear this bit.								
5	-	Reserved Do not clear t	Reserved Do not clear this bit.								
4	-	Reserved Do not clear t	Reserved Do not clear this bit.								
3	-	Reserved Do not clear t	Reserved Do not clear this bit.								
2	-	Reserved Do not clear t	Reserved Do not clear this bit.								
1-0	LB1-0		User Memory Lock Bits See Table 71								

The two lock bits provide different levels of protection for the on-chip code and data, when programmed as shown in Table 71.



Bootloader Architecture

Introduction

The bootloader manages communication according to a specifically defined protocol to provide the whole access and service on Flash memory. Furthermore, all accesses and routines can be called from the user application.

Figure 41. Diagram Context Description

Acronyms

ISP: In-System Programming SBV: Software Boot Vector BSB: Boot Status Byte SSB: Software Security Byte HW: Hardware Byte

AT89C51RD2/ED2

Functional Description

Software Security Bits (SSB)The SSB protects any Flash access from ISP command.
The command "Program Software Security Bit" can only write a higher priority level.

There are three levels of security:

level 0: NO_SECURITY (FFh)

This is the default level. From level 0, one can write level 1 or level 2.

level 1: WRITE_SECURITY (FEh)

For this level it is impossible to write in the Flash memory, BSB and SBV. The Bootloader returns 'P' on write access. From level 1, one can write only level 2.

• level 2: RD_WR_SECURITY (FCh

The level 2 forbids all read and write accesses to/from the Flash/EEPROM memory.

The Bootloader returns 'L' on read or write access.

Only a full chip erase in parallel mode (using a programmer) or ISP command can reset the software security bits.

From level 2, one cannot read and write anything.

	Level 0	Level 1	Level 2
Flash/EEPROM	Any access allowed	Read-only access allowed	Any access not allowed
Fuse Bit	Any access allowed	Read-only access allowed	Any access not allowed
BSB & SBV	Any access allowed	Read-only access allowed	Any access not allowed
SSB	Any access allowed	Write level 2 allowed	Read-only access allowed
Manufacturer Info	Read-only access allowed	Read-only access allowed	Read-only access allowed
Bootloader Info	Read-only access allowed	Read-only access allowed	Read-only access allowed
Erase Block	Allowed	Not allowed	Not allowed
Full Chip Erase	Allowed	Allowed	Allowed
Blank Check	Allowed	Allowed	Allowed

Table 73. Software Security Byte Behavior

	®
API Call Description	The IAP allows to reprogram a microcontroller on-chip Flash memory without removing it from the system and while the embedded application is running.
	The user application can call some Application Programming Interface (API) routines allowing IAP. These API are executed by the bootloader.
	To call the corresponding API, the user must use a set of Flash_api routines which can be linked with the application.
	Example of Flash_api routines are available on the Atmel web site on the software appli- cation note:
	C Flash Drivers for the AT89C51RD2/ED2
	The API calls description and arguments are shown in Table 76.
Process	The application selects an API by setting R1, ACC, DPTR0 and DPTR1 registers.
	All calls are made through a common interface "USER_CALL" at the address FFF0h.
	The jump at the USER_CALL must be done by LCALL instruction to be able to come- back in the application.
	Before jump at the USER_CALL, the bit ENBOOT in AUXR1 register must be set.
Constraints	The interrupts are not disabled by the bootloader.
	Interrupts must be disabled by user prior to jump to the USER_CALL, then re-enabled when returning.
	Interrupts must also be disabled before accessing EEPROM Data then re-enabled after.

MEL

The user must take care of hardware watchdog before launching a Flash operation.

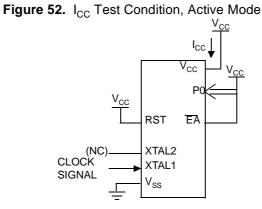
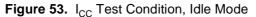
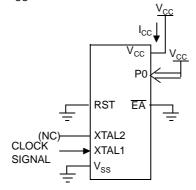
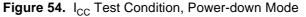

Command	R1	Α	DPTR0	DPTR1	Returned Value	Command Effect	
READ MANUF ID	00h	XXh	0000h	XXh	ACC = Manufacturer Id	Read Manufacturer identifier	
READ DEVICE ID1	00h	XXh	0001h	XXh	ACC = Device Id 1	Read Device identifier 1	
READ DEVICE ID2	00h	XXh	0002h	XXh	ACC = Device Id 2	Read Device identifier 2	
READ DEVICE ID3	00h	XXh	0003h	XXh	ACC = Device Id 3	Read Device identifier 3	
			DPH = 00h			Erase block 0	
			DPH = 20h			Erase block 1	
ERASE BLOCK	01h	XXh	DPH = 40h	00h	ACC = DPH	Erase block 2	
			DPH = 80h			Erase block 3	
			DPH = C0h			Erase block 4	
PROGRAM DATA BYTE	02h	Vaue to write	Address of byte to program	XXh	ACC = 0: DONE	Program up one data byte in the on-chip flash memory.	

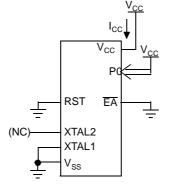
Table 76. API Call Summary



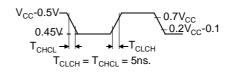

Maximum total I_{OL} for all output pins: 71 mA If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

7. The maximum dV/dt value specifies the maximum Vcc drop to issure no internal POR/PFD reset.




All other pins are disconnected.

All other pins are disconnected.



All other pins are disconnected.

AT89C51RD2/ED2

Figure 55. Clock Signal Waveform for I_{CC} Tests in Active and Idle Modes

AC Parameters

Explanation	of	the	AC
Symbols			

Each timing symbol has 5 characters. The first character is always a "T" (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

Example: T_{AVLL} = Time for Addr<u>ess Valid</u> to ALE Low. T_{LLPL} = Time for ALE Low to PSEN Low.

(Load Capacitance for port 0, ALE and PSEN = 100 pF; Load Capacitance for all other outputs = 80 pF.)

Table 77 Table 80, and Table 83 give the description of each AC symbols.

Table 78, Table 79, Table 81 and Table 84 gives the range for each AC parameter.

Table 78, Table 79 and Table 85 give the frequency derating formula of the AC parameter for each speed range description. To calculate each AC symbols. take the x value in the correponding column (-M) and use this value in the formula.

Example: T_{LLIU} for -M and 20 MHz, Standard clock.

x = 35 ns T 50 ns T_{CCIV} = 4T - x = 165 ns

External Program Memory Characteristics

Table 77. Symbol Description

Symbol	Parameter
Т	Oscillator clock period
T _{LHLL}	ALE pulse width
T _{AVLL}	Address Valid to ALE
T _{LLAX}	Address Hold After ALE
T _{LLIV}	ALE to Valid Instruction In
T _{LLPL}	ALE to PSEN
T _{PLPH}	PSEN Pulse Width
T _{PLIV}	PSEN to Valid Instruction In
T _{PXIX}	Input Instruction Hold After PSEN
T _{PXIZ}	Input Instruction Float After PSEN
T _{AVIV}	Address to Valid Instruction In
T _{PLAZ}	PSEN Low to Address Float