

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51ed2-rlrim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SFR Mapping

The Special Function Registers (SFRs) of the AT89C51RD2/ED2 fall into the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP
- I/O port registers: P0, P1, P2, P3, PI2
- Timer registers: T2CON, T2MOD, TCON, TH0, TH1, TH2, TMOD, TL0, TL1, TL2, RCAP2L, RCAP2H
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON
- PCA (Programmable Counter Array) registers: CCON, CCAPMx, CL, CH, CCAPxH, CCAPxL (x: 0 to 4)
- Power and clock control registers: PCON
- Hardware Watchdog Timer registers: WDTRST, WDTPRG
- Interrupt system registers: IE0, IPL0, IPH0, IE1, IPL1, IPH1
- Keyboard Interface registers: KBE, KBF, KBLS
- SPI registers: SPCON, SPSTR, SPDAT
- BRG (Baud Rate Generator) registers: BRL, BDRCON
- Clock Prescaler register: CKRL
- Others: AUXR, AUXR1, CKCON0, CKCON1

Functional Block Diagram

Figure 4. Functional Oscillator Block Diagram

Prescaler Divider

- A hardware RESET puts the prescaler divider in the following state:
 - CKRL = FFh: F_{CLK CPU} = F_{CLK PERIPH} = F_{OSC}/2 (Standard C51 feature)
- Any value between FFh down to 00h can be written by software into CKRL register in order to divide frequency of the selected oscillator:
 - CKRL = 00h: minimum frequency $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSC}/1020$ (Standard Mode) $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSC}/510$ (X2 Mode)
 - CKRL = FFh: maximum frequency $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSC}/2$ (Standard Mode) $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSC}$ (X2 Mode)

 $\rm F_{CLK\,CPU}$ and $\rm F_{CLK\,PERIPH}$

In X2 Mode, for CKRL<>0xFF: $F_{CPU} = F_{CLKPERIPH} = \frac{F_{OSC}}{2 \times (255 - CKRL)}$

In X1 Mode, for CKRL<>0xFF then: $F_{CPU} = F_{CLKPERIPH} = \frac{F_{OSC}}{4 \times (255 - CKRL)}$

Registers

Table 19. AUXR Register

AUXR - Auxiliary Register (8Eh)

7	6	5	4	3	2	1	0
DPU	-	MO	XRS2	XRS1	XRS0	EXTRAM	AO
Bit Number	Bit Mnemonic	Description					
7	DPU	Disable Wea Cleared by s Set by softwa	Ik Pull-up oftware to ac are to disable	tivate the perm the weak pull-	anent weak p up (reduce po	oull-up (default ower consump) tion)
6	-	Reserved The value rea	ad from this t	bit is indetermir	nate. Do not s	et this bit.	
5	MO	Pulse length Cleared to st periods (defa Set to stretch	n retch MOVX iult). MOVX contr	control: the \overline{RL}	\overline{D} and the \overline{WR} the \overline{WR} pulse	pulse length is length is 30 cl	s 6 clock lock periods.
4	XRS2	XRAM Size					
3	XRS1	<u>XRS2</u> <u>XR</u> 0 0	<u>S1</u> <u>XRS0</u> 0	<u>XRAM size</u> 256 bytes			
2	XRS0	0 0 0 1 0 1 1 0	1 0 1 0	512 bytes 768 bytes(defa 1024 bytes 1792 bytes	ault)		
1	EXTRAM	EXTRAM bit Cleared to ac Set to access Programmed (HSB), defau	ccess interna s external me l by hardware lt setting, XR	I XRAM using i mory. after Power-u AM selected.	movx @ Ri/ @ p regarding H	DPTR.	rity Byte
0	AO	ALE Output Cleared, ALE X2 mode is u instruction is	bit is emitted a ised). (defaul used.	t a constant rat t) Set, ALE is a	e of 1/6 the os active only du	scillator freque ring a MOVX c	ncy (or 1/3 if or MOVC

Reset Value = 0X00 10'HSB. XRAM'0b Not bit addressable

The Power fail detect monitor the supply generated by the voltage regulator and generate a reset if this supply falls below a safety threshold as illustrated in the Figure 13 below.

When the power is applied, the Power Monitor immediately asserts a reset. Once the internal supply after the voltage regulator reach a safety level, the power monitor then looks at the XTAL clock input. The internal reset will remain asserted until the Xtal1 levels are above and below VIH and VIL. Further more. An internal counter will count 1024 clock periods before the reset is de-asserted.

If the internal power supply falls below a safety level, a reset is immediately asserted.

Registers

Table 20. T2CON Register

T2CON - Timer 2 Control Register (C8h)

7	6	5	4	3	2	1	0
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#
Bit Number	Bit Mnemonic	Description					
7	TF2	Timer 2 ove Must be clea Set by hardw	rflow Flag red by softwai /are on Timer	e. 2 overflow, if	RCLK = 0 and	J TCLK = 0.	
6	EXF2	Timer 2 Exte Set when a c EXEN2 = 1. When set, ca interrupt is e Must be clea counter mod	Fimer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin EXEN2 = 1. When set, causes the CPU to vector to Timer 2 interrupt routine when Timer 2 interrupt is enabled. Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode (DCEN = 1).				
5	RCLK	Receive Clo Cleared to us Set to use Ti	Receive Clock bit Cleared to use timer 1 overflow as receive clock for serial port in mode 1 or 3 Set to use Timer 2 overflow as receive clock for serial port in mode 1 or 3.				
4	TCLK	Transmit Cle Cleared to us Set to use Ti	ock bit se timer 1 ove mer 2 overflo	erflow as trans w as transmit	mit clock for s clock for seria	erial port in m I port in mode	node 1 or 3. e 1 or 3.
3	EXEN2	Timer 2 Exte Cleared to ig Set to cause detected, if T	ernal Enable nore events o a capture or ïmer 2 is not	bit on T2EX pin fo reload when a used to clock t	r Timer 2 ope negative tran the serial port	ration. Isition on T2E	X pin is
2	TR2	Timer 2 Run Cleared to tu Set to turn of	rn off Timer 2 n Timer 2.				
1	C/T2#	Timer/Coun Cleared for t Set for count for clock out	ter 2 select b imer operation er operation (mode.	it 1 (input from ir input from T2	nternal clock s input pin, fallir	system: F _{CLK P} ng edge trigge	_{ERIPH}). r). Must be 0
0	CP/RL2#	Timer 2 Cap If RCLK = 1 on Timer 2 o Cleared to an if EXEN2=1. Set to captur	ture/Reload or TCLK = 1, verflow. uto-reload on e on negative	bit CP/RL2# is ig Timer 2 overfl transitions or	nored and tim ows or negati n T2EX pin if E	er is forced to ve transitions EXEN2 = 1.	auto-reload on T2EX pin

Reset Value = 0000 0000b Bit addressable

Table 23. CCON Register

CCON - PCA Counter Control Register (D8h)

7	6	5	4	3	2	1	0	
CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	
Bit Number	Bit Mnemonic	Description						
7	CF	PCA Counte Set by hardw CMOD is set may be set b	PCA Counter Overflow flag Set by hardware when the counter rolls over. CF flags an interrupt if bit ECF in CMOD is set. CF may be set by either hardware or software but can only be cleared by software.					
6	CR	PCA Counte Must be clea Set by softwa	PCA Counter Run control bit Must be cleared by software to turn the PCA counter off. Set by software to turn the PCA counter on.					
5	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.		
4	CCF4	PCA Module Must be clea Set by hardw	e 4 interrupt red by softwa vare when a n	flag ire. natch or captu	re occurs.			
3	CCF3	PCA Module Must be clea Set by hardw	PCA Module 3 interrupt flag Must be cleared by software. Set by hardware when a match or capture occurs.					
2	CCF2	PCA Module Must be clea Set by hardw	e 2 interrupt red by softwa vare when a n	flag ire. natch or captu	re occurs.			
1	CCF1	PCA Module Must be clea Set by hardw	e 1 interrupt red by softwa vare when a n	f lag ire. natch or captu	re occurs.			
0	CCF0	PCA Module Must be clea Set by hardw	e 0 interrupt red by softwa vare when a n	flag ire. natch or captu	re occurs.			

Reset Value = 00X0 0000b Bit addressable

The watchdog timer function is implemented in Module 4 (See Figure 19).

The PCA interrupt system is shown in Figure 17.

PCA Capture Mode

To use one of the PCA modules in the capture mode either one or both of the CCAPM bits CAPN and CAPP for that module must be set. The external CEX input for the module (on port 1) is sampled for a transition. When a valid transition occurs the PCA hardware loads the value of the PCA counter registers (CH and CL) into the module's capture registers (CCAPnL and CCAPnH). If the CCFn bit for the module in the CCON SFR and the ECCFn bit in the CCAPMn SFR are set then an interrupt will be generated (Refer to Figure 18).

Figure 18. PCA Capture Mode

16-bit Software Timer/ Compare Mode

The PCA modules can be used as software timers by setting both the ECOM and MAT bits in the modules CCAPMn register. The PCA timer will be compared to the module's capture registers and when a match occurs an interrupt will occur if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set (See Figure 19).

Figure 20. PCA High Speed Output Mode

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen.

Once ECOM is set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

Pulse Width Modulator
ModeAll of the PCA modules can be used as PWM outputs. Figure 21 shows the PWM func-
tion. The frequency of the output depends on the source for the PCA timer. All of the
modules will have the same frequency of output because they all share the PCA timer.
The duty cycle of each module is independently variable using the modules capture reg-
ister CCAPLn. When the value of the PCA CL SFR is less than the value in the modules
CCAPLn SFR the output will be low, when it is equal to or greater than the output will be
high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn.
This allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

Table 33. SCON Register

SCON - Serial Control Register (98h)

7	6	5	5	4	3	2	1	0
FE/SM0	SM1	SI	M2	REN	TB8	RB8	ТІ	RI
Bit Number	Bit Mnemc	onic	Descr	iption				
7	FE		Frami Clear Set by SMOE	alid stop bit. ected. bit.				
	SMO	D	Serial Refer SMOD	port Mode b to SM1 for se 00 must be cle	it 0 rial port mode eared to enable	selection. e access to th	e SM0 bit.	
6	SM	1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				• X2)	
5	SM2	2	Serial port Mode 2 bit / Multiprocessor Communication Enable Clear to disable multiprocessor communication feature. Set to enable multiprocessor communication feature in mode 2 and eventually mode 1. This bit should be cleared in mode 0.				n able bit 2 and 3, and	
4	REI	٧	Recep Clear Set to	otion Enable to disable seri enable serial	bit al reception. reception.			
3	ТВ8	3	Trans Clear Set to	mitter Bit 8 / to transmit a log transmit a log	Ninth bit to tr ogic 0 in the 9 jic 1 in the 9th	r ansmit in mo th bit. bit.	odes 2 and 3	
2	RB	3	Receiver Bit 8 / Ninth bit received in modes 2 and 3 Cleared by hardware if 9th bit received is a logic 0. Set by hardware if 9th bit received is a logic 1. In mode 1, if SM2 = 0, RB8 is the received stop bit. In mode 0 RB8 is used.) RB8 is not	
1	ті		Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode of the stop bit in the other modes.		mode 0 or at th	ne beginning		
0	RI		Recei Clear Set by and Fi	ve Interrupt f to acknowledg hardware at igure 24. in the	lag ge interrupt. the end of the e other modes	8th bit time in	mode 0, see	Figure 23.

Reset Value = 0000 0000b Bit addressable

Table 40. T2CON Register

T2CON - Timer 2 Control Register (C8h)

7	6	5	4	3	2	1	0	
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#	
Bit Number	Bit Mnemonic			Desc	ription			
7	TF2	Timer 2 over Must be clear Set by hard	Fimer 2 overflow Flag Must be cleared by software. Set by hardware on timer 2 overflow, if RCLK = 0 and TCLK = 0.					
6	EXF2	Timer 2 Ext Set when a EXEN2=1. When set, c interrupt is e Must be clea counter mod	Fimer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin in EXEN2=1. When set, causes the CPU to vector to timer 2 interrupt routine when timer 2 Interrupt is enabled. Must be cleared by software. EXF2 doesn't cause an interrupt in Up/down counter mode (DCEN = 1)					
5	RCLK	Receive Cle Cleared to u Set to use ti	Receive Clock bit for UART Cleared to use timer 1 overflow as receive clock for serial port in mode 1 or 3 Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.					
4	TCLK	Transmit C Cleared to u Set to use ti	lock bit for U ise timer 1 ov mer 2 overflo	IART erflow as trans w as transmit	smit clock for clock for seria	serial port in r I port in mode	node 1 or 3. e 1 or 3.	
3	EXEN2	Timer 2 Ext Cleared to it Set to cause detected, if	Timer 2 External Enable bit Cleared to ignore events on T2EX pin for timer 2 operation. Set to cause a capture or reload when a negative transition on T2EX pin is detected, if timer 2 is not used to clock the serial port.					
2	TR2	Timer 2 Ru Cleared to t Set to turn c	Timer 2 Run control bit Cleared to turn off timer 2. Set to turn on timer 2.					
1	C/T2#	Timer/Counter 2 select bit Cleared for timer operation (input from internal clock system: F _{CLK PERIF} Set for counter operation (input from T2 input pin, falling edge trigger). 0 for clock out mode.				_{'ERIPH}). er). Must be		
0	CP/RL2#	Timer 2 Ca If RCLK=1 c timer 2 over Cleared to a if EXEN2=1 Set to captu	U for clock out mode. Timer 2 Capture/Reload bit If RCLK=1 or TCLK=1, CP/RL2# is ignored and timer is forced to auto-reloa timer 2 overflow. Cleared to auto-reload on timer 2 overflows or negative transitions on T2EX if EXEN2=1. Set to capture on negative transitions on T2EX pin if EXEN2=1.					

Reset Value = 0000 0000b Bit addressable

Registers

Table 60. PCON Register

PCON (S87:h) Power configuration Register

7	6	5	4	3	2	1	0
-	-	-	-	GF1	GF0	PD	IDL
Bit Number	Bit Mnemonic	Description	Description				
7-4	-	Reserved The value rea	Reserved The value read from these bits is indeterminate. Do not set these bits.				
3	GF1	General Pur One use is to during Idle m	General Purpose flag 1 One use is to indicate whether an interrupt occurred during normal operation during Idle mode.				
2	GF0	General Pur One use is to during Idle m	General Purpose flag 0 One use is to indicate whether an interrupt occurred during normal operation of during Idle mode.				operation or
1	PD	Power-Down Mode bit Cleared by hardware when an interrupt or reset occurs. Set to activate the Power-Down mode. If IDL and PD are both set, PD takes precedence.					
0	IDL	Idle Mode bi Cleared by h Set to activat If IDL and PE	t ardware wher e the Idle mo are both set	n an interrupt o de. , PD takes pre	or reset occur ecedence.	s.	

Reset Value= XXXX 0000b

Table 62. WDTPRG Register

WDTPRG - Watchdog Timer Out Register (0A7h)

7	6		5	4	3	2	1	0
-	-		-	-	-	S2	S1	S0
Bit Number	Bit Mnemonic	Des	cription					
7	-							
6	-							
5	-	Res The	erved value re	ad from this bi	t is undetermi	ned. Do not try	to set this bit	
4	-							
3	-							
2	S2	WD.	T Time-c	out select bit	2			
1	S1	WD.	T Time-c	out select bit	1			
0	S0	WD.	T Time-c	out select bit	0			
		S2 0 0 0 1 1 1 1	S1 S 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 1 1	$\begin{array}{c c} \hline & \underline{Selected} \\ (2^{14} - 1) \\ (2^{15} - 1) \\ (2^{16} - 1) \\ (2^{17} - 1) \\ (2^{18} - 1) \\ (2^{19} - 1) \\ (2^{20} - 1) \\ (2^{21} - 1) \end{array}$	Time-out machine cycle machine cycle machine cycle machine cycle machine cycle machine cycle machine cycle	es, 16. 3 ms @ es, 32.7 ms @ es, 65. 5 ms @ es, 131 ms @ es, 262 ms @ es, 542 ms @ es, 542 ms @ es, 1.05 ms @	$F_{OSCA} = 12 M$	1Hz Hz Hz łz łz łz Hz

Reset Value = XXXX X000

WDT during Power-down and Idle

In Power-down mode the oscillator stops, which means the WDT also stops. While in Power-down mode the user does not need to service the WDT. There are 2 methods of exiting Power-down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, servicing the WDT should occur as it normally should whenever the AT89C51RD2/ED2 is reset. Exiting Power-down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service routine.

To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is better to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting the AT89C51RD2/ED2 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

Read Data

The following procedure is used to read the data stored in the EEPROM memory:

- Check EEBUSY flag
- If the user application interrupts routines use XRAM memory space: Save and disable interrupts.
- Load DPTR with the address to read
- Set bit EEE of EECON register
- Execute a MOVX A, @DPTR
- Clear bit EEE of EECON register
- Restore interrupts.

Figure 39. Recommended EEPROM Data Read Sequence

Flash/EEPROM Memory	The Flash memory increases EEPROM and ROM functionality with in-circuit electrical erasure and programming. It contains 64K bytes of program memory organized respectively in 512 pages of 128 bytes. This memory is both parallel and serial In-System Programmable (ISP). ISP allows devices to alter their own program memory in the actual end product under software control. A default serial loader (bootloader) program allows ISP of the Flash.
	The programming does not require external dedicated programming voltage. The necessary high programming voltage is generated on-chip using the standard V_{CC} pins of the microcontroller.
Features	 Flash EEPROM Internal Program Memory Boot vector allows user provided Flash loader code to reside anywhere in the Flash memory space. This configuration provides flexibility to the user. Default loader in Boot ROM allows programming via the serial port without the need of a user provided loader. Up to 64K bytes external program memory if the internal program memory is disabled (EA = 0). Programming and erasing voltage with standard power supply Read/Programming/Erase: Byte-wise read without wait state Byte or page erase and programming (10 ms) Typical programming time (64K bytes) is 22s with on chip serial bootloader Parallel programming with 87C51 compatible hardware interface to programmer Programmable security for the code in the Flash 100K write cycles 10 years data retention
Flash Programming and Erasure	 The 64-K byte Flash is programmed by bytes or by pages of 128 bytes. It is not necessary to erase a byte or a page before programming. The programming of a byte or a page includes a self erase before programming. There are three methods of programming the Flash memory: The on-chip ISP bootloader may be invoked which will use low level routines to program the pages. The interface used for serial downloading of Flash is the UART. The Flash may be programmed or erased in the end-user application by calling low-level routines through a common entry point in the Boot ROM. The Flash may be programmed using the parallel method by using a conventional EPROM programmer. The parallel programming method used by these devices is similar to that used by EPROM 87C51 but it is not identical and the commercially available programmers need to have support for the AT89C51RD2/ED2. The bootloader and the Application Programming Interface (API) routines are located in the BOOT ROM.

Flash Registers and Memory Map

The AT89C51RD2/ED2 Flash memory uses several registers for its management:

- Hardware register can only be accessed through the parallel programming modes which are handled by the parallel programmer.
- Software registers are in a special page of the Flash memory which can be accessed through the API or with the parallel programming modes. This page, called "Extra Flash Memory", is not in the internal Flash program memory addressing space.

Hardware Register The only hardware register of the AT89C51RD2/ED2 is called Hardware Byte or Hardware Security Byte (HSB).

7	6	5	4	3	2	1	0	
X2	BLJB	-	-	XRAM	LB2	LB1	LB0	
Bit Number	Bit Mnemonic	Description						
7	X2	X2 Mode Programmed Unprogramme (Default).	K2 Mode Programmed ('0' value) to force X2 mode (6 clocks per instruction) after reset. Jnprogrammed ('1' Value) to force X1 mode, Standard Mode, after reset (Default).					
6	BLJB	Boot Loader Jump Bit Unprogrammed ('1' value) to start the user's application on next reset at address 0000h. Programmed ('0' value) to start the boot loader at address F800h on next reset (Default).						
5	-	Reserved						
4	-	Reserved						
3	XRAM	XRAM config Programmed Unprogramme	j bit (only pro to inhibit XRA ed, this bit to v	o grammable I M. valid XRAM (D	o y programm Default).	er tools)		
2-0	LB2-0	User Memory See Table 68	/ Lock Bits (d	only program	mable by pro	ogrammer too	ols)	

 Table 67.
 Hardware Security Byte (HSB)

Boot Loader Jump Bit (BLJB)

One bit of the HSB, the BLJB bit, is used to force the boot address:

- When this bit is programmed ('0' value) the boot address is F800h.
- When this bit is unprogrammed ('1' value) the boot address is 0000h.

By default, this bit is programmed and the ISP is enabled.

Flash Memory Lock Bits

The three lock bits provide different levels of protection for the on-chip code and data when programmed as shown in Table 68.

Program	n Lock	Bits	
Security Level	LB0	LB1	Protection Description
1	1	1	No program lock features enabled.
2	0	1	ISP programming of the Flash is disabled.
3	Х	0	Same as 2, also verify through ISP programming interface is disabled.

 Table 71.
 User Memory Lock Bits of the SSB

Note: X: Do not care

WARNING: Security level 2 and 3 should only be programmed after Flash verification.

Flash Memory Status AT89C51RD2/ED2 parts are delivered in standard with the ISP ROM bootloader.

After ISP or parallel programming, the possible contents of the Flash memory are summarized in Figure 40:

Figure 40. Flash Memory Possible Contents

Memory Organization When the EA pin is high, the processor fetches instructions from internal program Flash. If the EA pin is tied low, all program memory fetches are from external memory.

Display Data Description

Example

Display data from address 0000h to 0020h

HOST	: 05 0000 04 0000 0020 00 D7
BOOTLOADER	: 05 0000 04 0000 0020 00 D7
BOOTLOADER	0000=data CR LF (16 data
BOOTLOADER	0010=data CR LF (16 data
BOOTLOADER	0020=data CR LF (1 data)

Table 84. AC Parameters for a Fix Clock

	-М		
Symbol	Min	Мах	Units
T _{XLXL}	300		ns
T _{QVHX}	200		ns
T_{XHQX}	30		ns
T_{XHDX}	0		ns
T _{XHDV}		117	ns

Table 85.	AC Parameters	for a	Variable (Clock
-----------	---------------	-------	------------	-------

Symbol	Туре	Standard Clock	X2 Clock	X Parameter For -M Range	Units
T_{XLXL}	Min	12 T	6 T		ns
T _{QVHX}	Min	10 T - x	5 T - x	50	ns
T _{XHQX}	Min	2 T - x	T - x	20	ns
T _{XHDX}	Min	х	х	0	ns
T_{XHDV}	Max	10 T - x	5 T- x	133	ns

Shift Register Timing Waveforms

External Clock Drive Waveforms

124 AT89C51RD2/ED2

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A = 25^{\circ}C$ fully loaded) \overline{RD} and \overline{WR} propagation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.