

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51ed2-rltim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 7. PCA SFRs (Continued)

Mnemo -nic	Add	Name	9	7		6	5	4	3	2	1	0
ССАРОН	FAh	PCA	Compare Capture Module 0 H	CCAPO	H7	CCAP0H6	CCAP0H5	CCAP0H4	CCAP0H3	CCAP0H2	CCAP0H1	ССАРОНО
CCAP1H	FBh	PCA	Compare Capture Module 1 H	CCAP1	H7	CCAP1H6	CCAP1H5	CCAP1H4	CCAP1H3	CCAP1H2	CCAP1H1	CCAP1H0
CCAP2H	FCh	PCA	Compare Capture Module 2 H	CCAP2	H7	CCAP2H6	CCAP2H5	CCAP2H4	CCAP2H3	CCAP2H2	CCAP2H1	CCAP2H0
ССАРЗН	FDh	PCA	PCA Compare Capture Module 3 H		H7	CCAP3H6	CCAP3H5	CCAP3H4	CCAP3H3	CCAP3H2	CCAP3H1	CCAP3H0
CCAP4H	FEh	PCA	CA Compare Capture Module 3 H		H7	CCAP4H6	CCAP4H5	CCAP4H4	CCAP4H3	CCAP4H2	CCAP4H1	CCAP4H0
CCAP0L	EAh	PCA	Compare Capture Module 0 L	CCAPO	L7	CCAP0L6	CCAP0L5	CCAP0L4	CCAP0L3	CCAP0L2	CCAP0L1	CCAP0L0
CCAP1L	EBh	PCA	Compare Capture Module 1 L	CCAP1	L7	CCAP1L6	CCAP1L5	CCAP1L4	CCAP1L3	CCAP1L2	CCAP1L1	CCAP1L0
CCAP2L	ECh	PCA	Compare Capture Module 2 L	CCAP2	L7	CCAP2L6	CCAP2L5	CCAP2L4	CCAP2L3	CCAP2L2	CCAP2L1	CCAP2L0
CCAP3L	EDh	PCA	Compare Capture Module 3 L	CCAP3	L7	CCAP3L6	CCAP3L5	CCAP3L4	CCAP3L3	CCAP3L2	CCAP3L1	CCAP3L0
CCAP4L	EEh	PCA	Compare Capture Module 4 L	CCAP4	L7	CCAP4L6	CCAP4L5	CCAP4L4	CCAP4L3	CCAP4L2	CCAP4L1	CCAP4L0
Table 8.	Ser	ial I/O	Port SFRs						•			•
Mnemoni	с	Add	Name		7	6	5	4	3	2	1	0
SCON		98h	Serial Control	FI	E/SM	10 SM1	SM2	REN	TB8	RB8	ТІ	RI
SBUF		99h	Serial Data Buffer									
SADEN		B9h	Slave Address Mask									
SADDR		A9h	Slave Address									
BDRCON		9Bh	Baud Rate Control					BRR	ТВСК	RBCK	SPD	SRC
BRL		9Ah	Baud Rate Reload									

Table 9. SPI Controller SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SPCON	C3h	SPI Control	SPR2	SPEN	SSDIS	MSTR	CPOL	CPHA	SPR1	SPR0
SPSTA	C4h	SPI Status	SPIF	WCOL	SSERR	MODF				
SPDAT	C5h	SPI Data	SPD7	SPD6	SPD5	SPD4	SPD3	SPD2	SPD1	SPD0

Table 10. Keyboard Interface SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
KBLS	9Ch	Keyboard Level Selector	KBLS7	KBLS6	KBLS5	KBLS4	KBLS3	KBLS2	KBLS1	KBLS0
KBE	9Dh	Keyboard Input Enable	KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBE0
KBF	9Eh	Keyboard Flag Register	KBF7	KBF6	KBF5	KBF4	KBF3	KBF2	KBF1	KBF0

Table 11. EEPROM data Memory SFR (AT89C51ED2 only)

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
EECON	D2h	EEPROM Data Control							EEE	EEBUSY

Table 13. Pin Description

			Pin Numb	er			
Mnemonic	PLCC44	VQFP44	PLCC68	VQFP64	PDIL40	Туре	Name and Function
V _{SS}	22	16	51	40	20	I	Ground: 0V reference
V _{CC}	44	38	17	8	40	I	Power Supply: This is the power supply voltage for normal, idle and power-down operation
P0.0 - P0.7	43 - 36	37 - 30	15, 14, 12, 11, 9,6, 5, 3	6, 5, 3, 2, 64, 61,60,59	32-39	I/O	Port 0 : Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. Port 0 must be polarized to V_{CC} or V_{SS} in order to prevent any parasitic current consumption. Port 0 is also the multiplexed low-order address and data bus during access to external program and data memory. In this application, it uses strong internal pull-up when emitting 1s. Port 0 also inputs the code bytes during EPROM programming. External pull-ups are required during program verification during which P0 outputs the code bytes.
P1.0 - P1.7	2 - 9	40 - 44 1 - 3	19, 21, 22, 23, 25, 27, 28, 29	10, 12, 13, 14, 16, 18, 19, 20	1-8	I/O	Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. Port 1 also receives the low-order address byte during memory programming and verification. Alternate functions for AT89C51RD2/ED2 Port 1 include:
	2	40	19	10	1	I/O	P1.0: Input/Output
						I/O	T2 (P1.0): Timer/Counter 2 external count input/Clockout
	3	41	21	12	2	I/O	P1.1: Input/Output
						I	T2EX: Timer/Counter 2 Reload/Capture/Direction Control
						I	SS: SPI Slave Select
	4	42	22	13	3	I/O	P1.2: Input/Output
						I	ECI: External Clock for the PCA
	5	43	23	14	4	I/O	P1.3: Input/Output
						I/O	CEX0: Capture/Compare External I/O for PCA module 0
	6	44	25	16	5	I/O	P1.4: Input/Output
						I/O	CEX1: Capture/Compare External I/O for PCA module 1
	7	1	27	18	6	I/O	P1.5: Input/Output
						I/O	CEX2: Capture/Compare External I/O for PCA module 2
						I/O	MISO: SPI Master Input Slave Output line
							When SPI is in master mode, MISO receives data from the slave peripheral. When SPI is in slave mode, MISO outputs data to the master controller.
	8	2	28	19	7	I/O	P1.6: Input/Output
						I/O	CEX3: Capture/Compare External I/O for PCA module 3
						I/O	SCK: SPI Serial Clock

Functional Block Diagram

Figure 4. Functional Oscillator Block Diagram

Prescaler Divider

- A hardware RESET puts the prescaler divider in the following state:
 - CKRL = FFh: F_{CLK CPU} = F_{CLK PERIPH} = F_{OSC}/2 (Standard C51 feature)
- Any value between FFh down to 00h can be written by software into CKRL register in order to divide frequency of the selected oscillator:
 - CKRL = 00h: minimum frequency $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSC}/1020$ (Standard Mode) $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSC}/510$ (X2 Mode)
 - CKRL = FFh: maximum frequency $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSC}/2$ (Standard Mode) $F_{CLK CPU} = F_{CLK PERIPH} = F_{OSC}$ (X2 Mode)

 $\rm F_{CLK\,CPU}$ and $\rm F_{CLK\,PERIPH}$

In X2 Mode, for CKRL<>0xFF: $F_{CPU} = F_{CLKPERIPH} = \frac{F_{OSC}}{2 \times (255 - CKRL)}$

In X1 Mode, for CKRL<>0xFF then: $F_{CPU} = F_{CLKPERIPH} = \frac{F_{OSC}}{4 \times (255 - CKRL)}$ INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

(UP COUNTING RELOAD VALUE)

Programmable Clock-output

In the clock-out mode, Timer 2 operates as a 50% duty-cycle, programmable clock generator (See Figure 15). The input clock increments TL2 at frequency $F_{CLK PERIPH}/2$. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, Timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency as a function of the system oscillator frequency and the value in the RCAP2H and RCAP2L registers:

 $Clock-OutFrequency = \frac{F_{CLKPERIPH}}{4 \times (65536 - RCAP2H/RCAP2L)}$

For a 16 MHz system clock, Timer 2 has a programmable frequency range of 61 Hz $(F_{CLK PERIPH}/2^{16})$ to 4 MHz $(F_{CLK PERIPH}/4)$. The generated clock signal is brought out to T2 pin (P1.0).

Timer 2 is programmed for the clock-out mode as follows:

- Set T2OE bit in T2MOD register.
- Clear C/T2 bit in T2CON register.
- Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

It is possible to use Timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn	Module Function
0	0	0	0	0	0	0	No Operation
x	1	0	0	0	0	х	16-bit capture by a positive-edge trigger on CEXn
х	0	1	0	0	0	х	16-bit capture by a negative trigger on CEXn
х	1	1	0	0	0	х	16-bit capture by a transition on CEXn
1	0	0	1	0	0	х	16-bit Software Timer/Compare mode.
1	0	0	1	1	0	Х	16-bit High Speed Output
1	0	0	0	0	1	0	8-bit PWM
1	0	0	1	Х	0	Х	Watchdog Timer (module 4 only)

Table 25. PCA Module Modes (CCAPMn Registers)

There are two additional registers associated with each of the PCA modules. They are CCAPnH and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a compare should occur. When a module is used in the PWM mode these registers are used to control the duty cycle of the output (See Table 26 & Table 27).

Table 26. CCAPnH Registers (n = 0 - 4)

6

CCAP0H - PCA Module 0 Compare/Capture Control Register High (0FAh)

CCAP1H - PCA Module 1 Compare/Capture Control Register High (0FBh)

CCAP2H - PCA Module 2 Compare/Capture Control Register High (0FCh)

CCAP3H - PCA Module 3 Compare/Capture Control Register High (0FDh)

CCAP4H - PCA Module 4 Compare/Capture Control Register High (0FEh)

٨

5

•	•	•	•	Ū	-	•	· ·
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0	-	PCA Module CCAPnH Val	e n Compare/ ue	Capture Con	trol		

2

2

1

Λ

Reset Value = 0000 0000b Not bit addressable

7

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen. Writing to CCAPnH will set the ECOM bit.

Once ECOM is set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

High Speed Output Mode In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the modules capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (See Figure 20).

A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit.

Table 42. BDRCON Register

BDRCON - Baud Rate Control Register (9Bh)

7	6	5	4	3	2	1	0				
-	-	-	- BRR TBCK RBCK SPD S								
Bit Number	Bit Mnemonic	Descriptior	Description								
7	-	Reserved The value re	ead from this I	bit is indetermi	inate. Do not :	set this bit					
6	-	Reserved The value re	ead from this I	bit is indetermi	inate. Do not s	set this bit					
5	-	Reserved The value re	ead from this t	oit is indetermi	nate. Do not s	set this bit.					
4	BRR	Baud Rate Cleared to s Set to start t	Run Control stop the internation the internal Ba	bit al Baud Rate (aud Rate Gene	Generator. erator.						
3	ТВСК	Transmissi Cleared to s Set to selec	on Baud rate select Timer 1 t internal Baud	Generator S or Timer 2 for d Rate Genera	election bit for the Baud Rate	or UART e Generator.					
2	RBCK	Reception Cleared to s Set to selec	Baud Rate G select Timer 1 t internal Bauc	enerator Sele or Timer 2 for d Rate Genera	the Baud Rate	UART e Generator.					
1	SPD	Baud Rate Cleared to s Set to selec	Baud Rate Speed Control bit for UART Cleared to select the SLOW Baud Rate Generator. Set to select the FAST Baud Rate Generator.								
0	SRC	Baud Rate Cleared to s mode). Set to selec	Baud Rate Source select bit in Mode 0 for UART Cleared to select F _{OSC} /12 as the Baud Rate Generator (F _{CLK PERIPH} /6 in X2 node). Set to select the internal Baud Rate Generator for UARTs in mode 0.								

Reset Value = XXX0 0000b Not bit addressable

Keyboard Interface

The AT89C51RD2/ED2 implements a keyboard interface allowing the connection of a 8 x n matrix keyboard. It is based on 8 inputs with programmable interrupt capability on both high or low level. These inputs are available as alternate function of P1 and allow to exit from idle and power-down modes.

The keyboard interfaces with the C51 core through 3 special function registers: KBLS, the Keyboard Level Selection register (Table 45), KBE, the Keyboard interrupt Enable register (Table 44), and KBF, the Keyboard Flag register (Table 43).

Interrupt The keyboard inputs are considered as 8 independent interrupt sources sharing the same interrupt vector. An interrupt enable bit (KBD in IE1) allows global enable or disable of the keyboard interrupt (see Figure 27). As detailed in Figure 28 each keyboard input has the capability to detect a programmable level according to KBLS. x bit value. Level detection is then reported in interrupt flags KBF.x that can be masked by software using KBE. x bits.

This structure allow keyboard arrangement from 1 by n to 8 by n matrix and allows usage of P1 inputs for other purpose.

Figure 28. Keyboard Input Circuitry

Power Reduction Mode

P1 inputs allow exit from idle and power-down modes as detailed in Section "Power Management", page 82.

Table 45. KBLS Register

KBLS-Keyboard Level Selector Register (9Ch)

7	6	5	4	3	2	1	0			
KBLS7	KBLS6	KBLS5	KBLS4	KBLS3	KBLS2	KBLS1	KBLS0			
Bit Number	Bit Mnemonic	Description	escription							
7	KBLS7	Keyboard lin Cleared to en Set to enable	n e 7 Level Se nable a low le e a high level	election bit vel detection on detection on P	on Port line 7. Port line 7.					
6	KBLS6	Keyboard lin Cleared to en Set to enable	n e 6 Level Se nable a low le e a high level	election bit vel detection on detection on P	on Port line 6. Port line 6.					
5	KBLS5	Keyboard lin Cleared to en Set to enable	n e 5 Level Se nable a low le e a high level	election bit vel detection on detection on P	on Port line 5. Port line 5.					
4	KBLS4	Keyboard lin Cleared to en Set to enable	n e 4 Level Se nable a low le e a high level	election bit vel detection on detection on P	on Port line 4. Port line 4.					
3	KBLS3	Keyboard lin Cleared to en Set to enable	n e 3 Level Se nable a low le e a high level	election bit vel detection on detection on P	on Port line 3. Port line 3.					
2	KBLS2	Keyboard lin Cleared to en Set to enable	Keyboard line 2 Level Selection bit Cleared to enable a low level detection on Port line 2. Set to enable a high level detection on Port line 2.							
1	KBLS1	Keyboard lin Cleared to en Set to enable	Ceyboard line 1 Level Selection bit Cleared to enable a low level detection on Port line 1. Set to enable a high level detection on Port line 1.							
0	KBLS0	Keyboard lin Cleared to en Set to enable	Keyboard line 0 Level Selection bit Cleared to enable a low level detection on Port line 0. Set to enable a high level detection on Port line 0.							

Reset Value = 0000 0000b

Table 57. IPL1 Register

IPL1 - Interrupt Priority Register (B2h)

7	6	5	4	3	2	1	0			
-	-	-	-	-	SPIL	TWIL	KBDL			
Bit Number	Bit Mnemonic	Description	Description							
7	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.				
6	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.				
5	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.				
4	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.				
3	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.				
2	SPIL	SPI interrup Refer to SPI	SPI interrupt Priority bit Refer to SPIH for priority level.							
1	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.							
0	KBDL	Keyboard in Refer to KBD	Keyboard interrupt Priority bit Refer to KBDH for priority level.							

Reset Value = XXXX X000b Bit addressable

- 3. Generate an enabled external Keyboard interrupt (same behavior as external interrupt).
- Note: During the time that execution resumes, the internal RAM cannot be accessed; however, it is possible for the Port pins to be accessed. To avoid unexpected outputs at the Port pins, the instruction immediately following the instruction that activated the Power-Down mode should not write to a Port pin or to the external RAM.
- Note: Exit from power-down by reset redefines all the SFRs, but does not affect the internal RAM content.

Mode	Port 0	Port 1	Port 2	Port 3	Port 4	ALE	PSEN#
Reset	Floating	High	High	High	High	High	High
Idle (internal code)	Data	Data	Data	Data	Data	High	High
Idle (external code)	Floating	Data	Data	Data	Data	High	High
Power- Down (internal code)	Data	Data	Data	Data	Data	Low	Low
Power- Down (external code)	Floating	Data	Data	Data	Data	Low	Low

Table 59. Pin Conditions in Special Operating Modes

	Prog	Program Lock Bits						
	Security Level	LB0	LB1	LB2	Protection Description			
	1	U	U	U	No program lock features enabled.			
	2	2 P U U		U	MOVC instruction executed from external program memory is disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further parallel programming of the on chip code memory is disabled. ISP and software programming with API are still allowed.			
	3	х	Р	U	Same as 2, also verify code memory through parallel programming interface is disabled.			
	4	Х	х	Р	Same as 3, also external execution is disabled (Default).			
	Note: U: Unprogrammed or "one" level. P: Programmed or "zero" level. X: Do not care WARNING: Security level 2 and 3 should only be programmed after verification.							
	These sec They are is controll accessed	curity I set by ed by by the	oits pro defaul the "so ISP fi	otect th t to lev oftware rmwar	he code access through the parallel programming interface. vel 4. The code access through the ISP is still possible and e security bits" which are stored in the extra Flash memory re.			
	To load a This will s erence ca	new a et the n alwa	pplicat HSB i ays be	tion wi n its ir read ι	th the parallel programmer, a chip erase must first be done. nactive state and will erase the Flash memory. The part ref- using Flash parallel programming modes.			
Default Values	The defau • BLJB:	lt valu Progi	e of th ramme	e HSE d forc	3 provides parts ready to be programmed with ISP: e ISP operation.			
	• X2: Unprogrammed to force X1 mode (Standard Mode).							
	XRAM: Unprogrammed to valid XRAM							
	LB2-0 securi	: Secı ty.	urity lev	/el fou	Ir to protect the code from a parallel access with maximum			
Software Registers	Several registers are used in factory and by parallel programmers. These values are used by Atmel ISP.							
	These reg also called	isters d "XAF	are in =" or e2	the "E Ktra A	xtra Flash Memory" part of the Flash memory. This block is rray Flash. They are accessed in the following ways:			
	Comn	nands	issuec	l by th	e parallel memory programmer.			
	Commands issued by the ISP software.							
	 Calls of API issued by the application software. 							

Table 68 Program Lock Bits

Several software registers are described in Table 69.

	Table	69.	Default	Values
--	-------	-----	---------	--------

Mnemonic	Definition	Default value	Description
SBV	Software Boot Vector	FCh	
BSB	Boot Status Byte	0FFh	
SSB	Software Security Byte	FFh	
	Copy of the Manufacturer Code	58h	Atmel
	Copy of the Device ID #1: Family Code	D7h	C51 X2, Electrically Erasable
	Copy of the Device ID #2: Memories Size and Type	ECh	AT89C51RD2/ED2 64KB
	Copy of the Device ID #3: Name and Revision	EFh	AT89C51RD2/ED2 64KB, Revision 0

After programming the part by ISP, the BSB must be cleared (00h) in order to allow the application to boot at 0000h.

The content of the Software Security Byte (SSB) is described in Table 70 and Table 71.

To assure code protection from a parallel access, the HSB must also be at the required level.

Table 70. Software Security Byte

7	6	5	4	3	2	1	0			
-	-	-	-	-	-	LB1	LB0			
Bit Number	Bit Mnemonic	Description								
7	-	Reserved Do not clear t	eserved to not clear this bit.							
6	-	Reserved Do not clear t	eserved No not clear this bit.							
5	-	Reserved Do not clear t	Reserved Do not clear this bit.							
4	-	Reserved Do not clear t	Reserved Do not clear this bit.							
3	-	Reserved Do not clear t	his bit.							
2	-	Reserved Do not clear t	Reserved Do not clear this bit.							
1-0	LB1-0	User Memory See Table 71	/ Lock Bits							

The two lock bits provide different levels of protection for the on-chip code and data, when programmed as shown in Table 71.

Bootloader Functionality The bootloader can be activated by two means: Hardware conditions or regular boot process.

The Hardware conditions (EA = 1, PSEN = 0) during the Reset# falling edge force the on-chip bootloader execution. This allows an application to be built that will normally execute the end user's code but can be manually forced into default ISP operation.

As PSEN is a an output port in normal operating mode after reset, user application should take care to release PSEN after falling edge of reset signal. The hardware conditions are sampled at reset signal falling edge, thus they can be released at any time when reset input is low.

To ensure correct microcontroller startup, the PSEN pin should not be tied to ground during power-on (See Figure 43).

Figure 43. Hardware conditions typical sequence during power-on.

The on-chip bootloader boot process is shown Figure 44.

Table 72. Bootloader Process Description

	Purpose
Hardware Conditions	The Hardware Conditions force the bootloader execution whatever BLJB, BSB and SBV values.
BLJB	The Boot Loader Jump Bit forces the application execution. BLJB = 0 => Bootloader execution BLJB = 1 => Application execution The BLJB is a fuse bit in the Hardware Byte. It can be modified by hardware (programmer) or by software (API). Note: The BLJB test is performed by hardware to prevent any program execution.
SBV	The Software Boot Vector contains the high address of customer bootloader stored in the application. SBV = FCh (default value) if no customer bootloader in user Flash. Note: The customer bootloader is called by JMP [SBV]00h instruction.

Functional Description

Software Security Bits (SSB)The SSB protects any Flash access from ISP command.
The command "Program Software Security Bit" can only write a higher priority level.

There are three levels of security:

level 0: NO_SECURITY (FFh)

This is the default level. From level 0, one can write level 1 or level 2.

level 1: WRITE_SECURITY (FEh)

For this level it is impossible to write in the Flash memory, BSB and SBV. The Bootloader returns 'P' on write access. From level 1, one can write only level 2.

• level 2: RD_WR_SECURITY (FCh

The level 2 forbids all read and write accesses to/from the Flash/EEPROM memory.

The Bootloader returns 'L' on read or write access.

Only a full chip erase in parallel mode (using a programmer) or ISP command can reset the software security bits.

From level 2, one cannot read and write anything.

	Level 0	Level 1	Level 2
Flash/EEPROM	Any access allowed	Read-only access allowed	Any access not allowed
Fuse Bit	Any access allowed	Read-only access allowed	Any access not allowed
BSB & SBV	Any access allowed	Read-only access allowed	Any access not allowed
SSB	Any access allowed	Write level 2 allowed	Read-only access allowed
Manufacturer Info	Read-only access allowed	Read-only access allowed	Read-only access allowed
Bootloader Info	Read-only access allowed	Read-only access allowed	Read-only access allowed
Erase Block	Allowed	Not allowed	Not allowed
Full Chip Erase	Allowed	Allowed	Allowed
Blank Check	Allowed	Allowed	Allowed

Table 73. Software Security Byte Behavior

Autobaud Performances

The ISP feature allows a wide range of baud rates in the user application. It is also adaptable to a wide range of oscillator frequencies. This is accomplished by measuring the bit-time of a single bit in a received character. This information is then used to program the baud rate in terms of timer counts based on the oscillator frequency. The ISP feature requires that an initial character (an uppercase U) be sent to the AT89C51RD2/ED2 to establish the baud rate. Table show the autobaud capability.

Frequency (MHz)									
Baudrate (kHz)	1.8432	2	2.4576	3	3.6864	4	5	6	7.3728
2400	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
4800	OK	-	ОК	ОК	ОК	OK	ОК	ОК	ОК
9600	OK	-	ОК	ОК	ОК	OK	ОК	ОК	ОК
19200	OK	-	ОК	ОК	ОК	-	-	ОК	ОК
38400	-	-	ОК		ОК	-	ОК	ОК	OK
57600	-	-	-	-	ОК	-	-	-	ОК
115200	-	-	-	-	-	-	-	-	ОК
								·	
Frequency (MHz)									
Baudrate (kHz)	8	10	11.0592	12	14.746	16	20	24	26.6
2400	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
4800	OK	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
9600	OK	ОК	ОК	ОК	ОК	OK	ОК	ОК	OK
19200	OK	ОК	ОК	ОК	ОК	ОК	ОК	ОК	ОК
38400	-	-	ОК	ОК	ОК	OK	ОК	ОК	ОК
57600	-	-	ОК	-	ОК	ОК	ОК	ОК	ОК
115200	-	-	ОК	-	ОК	-	-	-	-

Table 74. Autobaud Performances

Command Data Stream Protocol All commands are sent using the same flow. Each frame sent by the host is echoed by the bootloader.

Read Function Description

This flow is similar for the following frames:

- Reading Frame
- EOF Frame/ Atmel Frame (only reading Atmel Frame)

Figure 51. Read Flow

Example

Read function (read SBV)

HOST	: 02 0000 05 07 02 F0
BOOTLOADER	: 02 0000 05 07 02 F0 Value . CR LF
Atmel Read funct	ion (read Bootloader version)
HOST	: 02 0000 01 02 00 FB
BOOTLOADER	: 02 0000 01 02 00 FB Value . CR LF

VQFP64

	м	М	IN	СН
	Min	Max	Min	Ma×
А	-	1.60	_	. 063
A1	0.	64 REF	.025 REF	
A2	Ο.	64 REF	.025 REF	
A3	1.35	1.45	. 053	. 057
D	11.75	12.25	. 463	. 483
D1	9.90	10.10	. 390	. 398
E	11.75	12.25	. 463	. 483
E1	9.90	10.10	. 390	. 398
J	0.05	-	. 002	_
L	0.45	0.75	. 018	.030
е	0.5	0 BSC	. 01	97 BSC
f	0.2	5 BSC	. 01	0 BSC

Serial I/O Port	49
Framing Error Detection	49
Automatic Address Recognition	50
Registers	52
Baud Rate Selection for UART for Mode 1 and 3	52
UART Registers	55
Keyboard Interface	60
Registers	61
Serial Port Interface (SPI)	64
Features	64
Signal Description	64
Functional Description	66
Interrupt System	73
Registers	74
Interrupt Sources and Vector Addresses	74
	75
Power Management	82
Introduction	82
Idle Mode	82
Power-Down Mode	82
Registers	85
Hardware Watchdog Timer	86
Using the WDT	86
WDT during Power-down and Idle	87
ONCE [®] Mode (ON- Chip Emulation)	88
Power-off Flag	89
Reduced EMI Mode	90
EEPROM Data Memory	91
Write Data	91
Read Data	93
Registers	94
Flash/EEPROM Memory	95
Features	95
Flash Programming and Erasure	95
Flash Registers and Memory Map	96
Flash Memory Status	99
Memory Organization	99

