

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51ed2-slsim

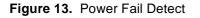
Email: info@E-XFL.COM

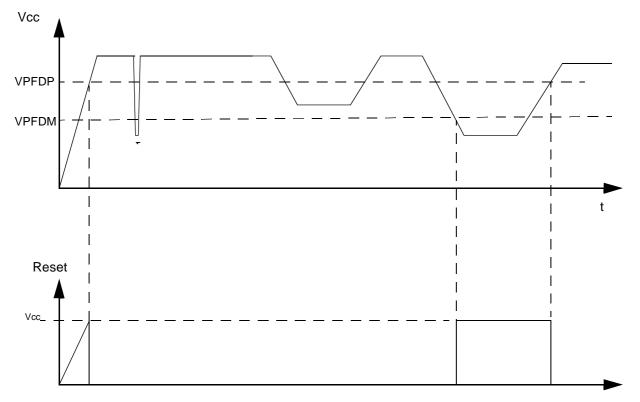
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

Registers

Table 19. AUXR Register


AUXR - Auxiliary Register (8Eh)


7	6	5	4	3	2	1	0			
DPU	-	МО	XRS2	XRS1	XRS0	EXTRAM	AO			
Bit Number	Bit Mnemonic	Description	Description							
7	DPU	Cleared by s	Disable Weak Pull-up Cleared by software to activate the permanent weak pull-up (default) Set by software to disable the weak pull-up (reduce power consumption)							
6	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.							
5	MO	Cleared to st periods (defa	Pulse length Cleared to stretch MOVX control: the \overline{RD} and the \overline{WR} pulse length is 6 clock periods (default). Set to stretch MOVX control: the \overline{RD} and the \overline{WR} pulse length is 30 clock periods.							
4	XRS2	XRAM Size								
3	XRS1	<u>XRS2</u> <u>XR</u> 0 0	<u>8S1</u> <u>XRS0</u> 0	<u>XRAM size</u> 256 bytes						
2	XRS0	0 0 0 1 0 1 1 0	1 0 1 0	512 bytes 768 bytes(defa 1024 bytes 1792 bytes	ault)					
1	EXTRAM	Cleared to a Set to acces Programmed	EXTRAM bit Cleared to access internal XRAM using movx @ Ri/ @ DPTR. Set to access external memory. Programmed by hardware after Power-up regarding Hardware Security Byte (HSB), default setting, XRAM selected.							
0	AO		E is emitted a used). (defau	t a constant rat lt) Set, ALE is a		•				

Reset Value = 0X00 10'HSB. XRAM'0b Not bit addressable

The Power fail detect monitor the supply generated by the voltage regulator and generate a reset if this supply falls below a safety threshold as illustrated in the Figure 13 below.

When the power is applied, the Power Monitor immediately asserts a reset. Once the internal supply after the voltage regulator reach a safety level, the power monitor then looks at the XTAL clock input. The internal reset will remain asserted until the Xtal1 levels are above and below VIH and VIL. Further more. An internal counter will count 1024 clock periods before the reset is de-asserted.

If the internal power supply falls below a safety level, a reset is immediately asserted.

Table 22. CMOD Register

CMOD - PCA Counter Mode Register (D9h)

7	6	5	4	3	2	1	0			
CIDL	WDTE	-	-	-	CPS1	CPS0	ECF			
Bit Number	Bit Mnemonic	Description	Description							
7	CIDL	Cleared to p	Counter Idle Control Cleared to program the PCA Counter to continue functioning during idle Mode. Set to program PCA to be gated off during idle.							
6	WDTE	Cleared to di	Watchdog Timer Enable Cleared to disable Watchdog Timer function on PCA Module 4. Set to enable Watchdog Timer function on PCA Module 4.							
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.							
4	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.				
3	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.				
2	CPS1	PCA Count	Pulse Select							
1	CPS0	CPS1 CPS 0 0 1 0 1 1	0 1 Internal clock F _{CLK PERIPH} /2 1 0 Timer 0 Overflow							
0	ECF	Cleared to di	PCA Enable Counter Overflow Interrupt Cleared to disable CF bit in CCON to inhibit an interrupt. Set to enable CF bit in CCON to generate an interrupt.							

Reset Value = 00XX X000b Not bit addressable

The CCON register contains the run control bit for the PCA and the flags for the PCA timer (CF) and each module (Refer to Table 23).

- Bit CR (CCON.6) must be set by software to run the PCA. The PCA is shut off by clearing this bit.
- Bit CF: The CF bit (CCON.7) is set when the PCA counter overflows and an interrupt will be generated if the ECF bit in the CMOD register is set. The CF bit can only be cleared by software.
- Bits 0 through 4 are the flags for the modules (bit 0 for module 0, bit 1 for module 1, etc.) and are set by hardware when either a match or a capture occurs. These flags also can only be cleared by software.

ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn	Module Function
0	0	0	0	0	0	0	No Operation
х	1	0	0	0	0	х	16-bit capture by a positive-edge trigger on CEXn
х	0	1	0	0	0	Х	16-bit capture by a negative trigger on CEXn
х	1	1	0	0	0	Х	16-bit capture by a transition on CEXn
1	0	0	1	0	0	х	16-bit Software Timer/Compare mode.
1	0	0	1	1	0	Х	16-bit High Speed Output
1	0	0	0	0	1	0	8-bit PWM
1	0	0	1	Х	0	Х	Watchdog Timer (module 4 only)

Table 25. PCA Module Modes (CCAPMn Registers)

There are two additional registers associated with each of the PCA modules. They are CCAPnH and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a compare should occur. When a module is used in the PWM mode these registers are used to control the duty cycle of the output (See Table 26 & Table 27).

Table 26. CCAPnH Registers (n = 0 - 4)

6

CCAP0H - PCA Module 0 Compare/Capture Control Register High (0FAh)

CCAP1H - PCA Module 1 Compare/Capture Control Register High (0FBh)

CCAP2H - PCA Module 2 Compare/Capture Control Register High (0FCh)

CCAP3H - PCA Module 3 Compare/Capture Control Register High (0FDh)

CCAP4H - PCA Module 4 Compare/Capture Control Register High (0FEh)

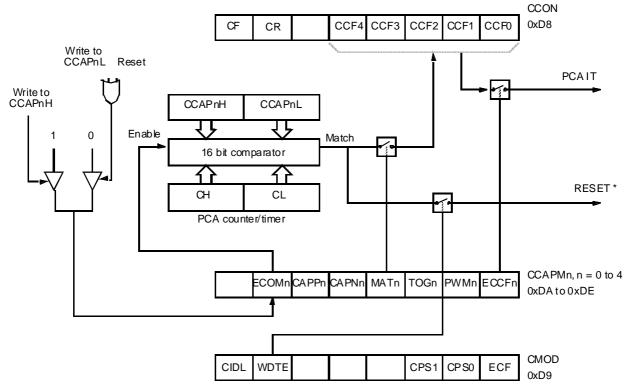
٨

5

1	0	5	-	5	2	•	U
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0	-	PCA Module CCAPnH Val		Capture Con	trol		

2

2


1

Λ

Reset Value = 0000 0000b Not bit addressable

7

Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen. Writing to CCAPnH will set the ECOM bit.

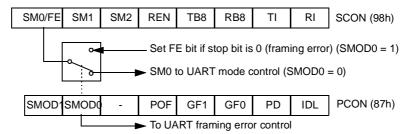
Once ECOM is set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

High Speed Output Mode In this mode the CEX output (on port 1) associated with the PCA module will toggle each time a match occurs between the PCA counter and the modules capture registers. To activate this mode the TOG, MAT, and ECOM bits in the module's CCAPMn SFR must be set (See Figure 20).

A prior write must be done to CCAPnL and CCAPnH before writing the ECOMn bit.

Serial I/O Port

The serial I/O port in the AT89C51RD2/ED2 is compatible with the serial I/O port in the 80C52.


It provides both synchronous and asynchronous communication modes. It operates as a Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O port includes the following enhancements:

- Framing error detection
- Automatic address recognition

Framing Error Detection Framing bit error detection is provided for the three asynchronous modes (modes 1, 2 and 3). To enable the framing bit error detection feature, set SMOD0 bit in PCON register (See Figure 22).

Figure 22. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register (See Table 33.) bit is set.

Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset can clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 23. and Figure 24.).

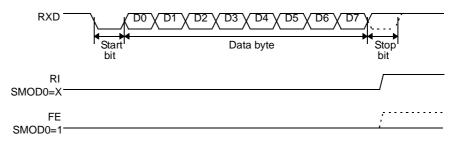


Table 38. SBUF Register

SBUF - Serial Buffer Register for UART (99h)

7	6	5	4	3	2	1	0

Reset Value = XXXX XXXXb

Table 39. BRL Register

BRL - Baud Rate Reload Register for the internal baud rate generator, UART (9Ah)

7	6	5	4	3	2	1	0

Reset Value = 0000 0000b

Table 41. PCON Register

PCON - Power Control Register (87h)

7	6	5	4	3	2	1	0			
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL			
Bit Number	Bit Mnemonic		Description							
7	SMOD1		Serial port Mode bit 1 for UART Set to select double baud rate in mode 1, 2 or 3.							
6	SMOD0	Cleared to s	Serial port Mode bit 0 for UART Cleared to select SM0 bit in SCON register. Set to select FE bit in SCON register.							
5	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.							
4	POF	Cleared to re Set by hard	Power-Off Flag Cleared to recognize next reset type. Set by hardware when VCC rises from 0 to its nominal voltage. Can also be set by software.							
3	GF1		user for gener	al purpose usa irpose usage.	age.					
2	GF0		user for gener	al purpose usa irpose usage.	age.					
1	PD	Cleared by I	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.							
0	IDL	Idle mode I Cleared by I Set to enter	nardware whe	en interrupt or i	eset occurs.					

Reset Value = 00X1 0000b Not bit addressable

Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

Table 44. KBE Register

KBE-Keyboard Input Enable Register (9Dh)

7	6	5	4	3	2	1	0			
KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBE0			
Bit Number	Bit Mnemonic	Description	Description							
7	KBE7	Cleared to en	Keyboard line 7 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.7 bit in KBF register to generate an interrupt request.							
6	KBE6	Cleared to en	Keyboard line 6 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.6 bit in KBF register to generate an interrupt request.							
5	KBE5	Cleared to en	Keyboard line 5 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.5 bit in KBF register to generate an interrupt request.							
4	KBE4	Cleared to en	ne 4 Enable I nable standar e KBF.4 bit in		o generate an	interrupt requ	iest.			
3	KBE3	Cleared to en	ne 3 Enable I nable standar e KBF.3 bit in		o generate an	interrupt requ	iest.			
2	KBE2	Cleared to en	ne 2 Enable I nable standar e KBF.2 bit in		o generate an	interrupt requ	iest.			
1	KBE1	Cleared to en	Keyboard line 1 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.1 bit in KBF register to generate an interrupt request.							
0	KBE0	Cleared to en	ne 0 Enable I nable standar e KBF.0 bit in		o generate an	interrupt requ	iest.			

Reset Value = 0000 0000b

Bit Number	Bit Mnemonic	Descri	ption		
		SPR2	SPR1	SPR0	Serial Peripheral Rate
1	SPR1	0	0	0	F _{CLK PERIPH} /2
1		0	0	1	F _{CLK PERIPH} /4
		0	1	0	F _{CLK PERIPH} /8
		0	1	1	F _{CLK PERIPH} /16
		1	0	0	F _{CLK PERIPH} /32
0	SPR0	1	0	1	F _{CLK PERIPH} /64
-		1	1	0	F _{CLK PERIPH} /128
		1	1	1	Invalid

Reset Value = 0001 0100b

Not bit addressable

Serial Peripheral Status Register The Serial Peripheral Status Register contains flags to signal the following conditions:

(SPSTA)

- Data transfer complete
- Write collision
- Inconsistent logic level on SS pin (mode fault error)

Table 49 describes the SPSTA register and explains the use of every bit in the register.

Table 49. SPSTA Register

SPSTA - Serial Peripheral Status and Control register (0C4H)

7	6	5	4	3	2	1	0				
SPIF	WCOL	SSERR	MODF	-	-	-	-				
Bit Number	Bit Mnemonic	Description	Description								
7	SPIF	Serial Peripheral Data Transfer Flag Cleared by hardware to indicate data transfer is in progress or has been approved by a clearing sequence. Set by hardware to indicate that the data transfer has been completed.									
6	WCOL	Cleared by ha	Write Collision Flag Cleared by hardware to indicate that no collision has occurred or has been approved by a clearing sequence. Set by hardware to indicate that a collision has been detected.								
5	SSERR	-	are when \overline{SS}	e Error Flag is de-asserted PI (clearing Sl			ed data.				
4	MODF	has been app	proved by a cl	dicate that the earing sequer e that the SS p	nce.						
3	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit								
2	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not se	et this bit.					

Registers

Table 60. PCON Register

PCON (S87:h) Power configuration Register

7	6	5	4	3	2	1	0			
-	-	-	-	GF1	GF0	PD	IDL			
Bit Number	Bit Mnemonic	Description								
7-4	-	Reserved The value rea	Reserved The value read from these bits is indeterminate. Do not set these bits.							
3	GF1	One use is to	General Purpose flag 1 One use is to indicate whether an interrupt occurred during normal operation or during Idle mode.							
2	GF0	General Pur One use is to during Idle m	indicate whe	ether an interru	pt occurred d	uring normal o	operation or			
1	PD	Cleared by h Set to activat	Power-Down Mode bit Cleared by hardware when an interrupt or reset occurs. Set to activate the Power-Down mode. If IDL and PD are both set, PD takes precedence.							
0	IDL	Set to activat	ardware when the Idle mo	n an interrupt o de. , PD takes pre		S.				

Reset Value= XXXX 0000b

	Table 68.	Prog	ram Lo	ck Bit	S			
	Prog	Program Lock Bits						
	Security Level	-		LB2	Protection Description			
	1	U	U	U	No program lock features enabled.			
	2	2 P U U 3 X P U		U	MOVC instruction executed from external program memory is disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further parallel programming of the on chip code memory is disabled. ISP and software programming with API are still allowed.			
	3			U	Same as 2, also verify code memory through parallel programming interface is disabled.			
	4	Х	х	Р	Same as 3, also external execution is disabled (Default).			
	P: X: W	Note: U: Unprogrammed or "one" level. P: Programmed or "zero" level. X: Do not care WARNING: Security level 2 and 3 should only be programme verification.						
	They are s	he code access through the parallel programming interface. vel 4. The code access through the ISP is still possible and e security bits" which are stored in the extra Flash memory re.						
	th the parallel programmer, a chip erase must first be done. nactive state and will erase the Flash memory. The part ref- using Flash parallel programming modes.							
Default ValuesThe default value of the HSB provides parts ready to be program• BLJB: Programmed force ISP operation.• X2: Unprogrammed to force X1 mode (Standard Mode).				e ISP operation.				
	 X2: Unprogrammed to force X1 mode (standard Mode). XRAM: Unprogrammed to valid XRAM 							
	 LB2-0: Security level four to protect the code from a parallel access with maximum security. 							
Software Registers	Several registers are used in factory and by parallel programmers. These values are used by Atmel ISP.							
		These registers are in the "Extra Flash Memory" part of the Flash memory. This block is also called "XAF" or eXtra Array Flash. They are accessed in the following ways:						
	Commands issued by the parallel memory programmer.							
	Commands issued by the ISP software.							
	 Calls of API issued by the application software. 							

Table 68 Program Lock Bits

Several software registers are described in Table 69.

Mnemonic	Definition	Default value	Description
SBV	SBVSoftware Boot VectorBSBBoot Status ByteSSBSoftware Security ByteCopy of the Manufacturer CodeCopy of the Device ID #1: Family CodeCopy of the Device ID #2: Memories Size and TypeCopy of the Device ID #3: Name and Revision		
BSB			
SSB			
			Atmel
			C51 X2, Electrically Erasable
			AT89C51RD2/ED2 64KB
			AT89C51RD2/ED2 64KB, Revision 0

After programming the part by ISP, the BSB must be cleared (00h) in order to allow the application to boot at 0000h.

The content of the Software Security Byte (SSB) is described in Table 70 and Table 71.

To assure code protection from a parallel access, the HSB must also be at the required level.

Table 70. Software Security Byte

7	6	5	4	3	2	1	0
-	-	-	-	-	-	LB1	LB0
Bit Number	Bit Mnemonic	Description					
7	-	Reserved Do not clear t	his bit.				
6	-	Reserved Do not clear this bit.					
5	-	Reserved Do not clear this bit. Reserved Do not clear this bit.					
4	-						
3	-	Reserved Do not clear this bit.					
2	-	Reserved Do not clear this bit. User Memory Lock Bits See Table 71					
1-0	LB1-0						

The two lock bits provide different levels of protection for the on-chip code and data, when programmed as shown in Table 71.

Functional Description

Software Security Bits (SSB)The SSB protects any Flash access from ISP command.
The command "Program Software Security Bit" can only write a higher priority level.

There are three levels of security:

level 0: NO_SECURITY (FFh)

This is the default level. From level 0, one can write level 1 or level 2.

level 1: WRITE_SECURITY (FEh)

For this level it is impossible to write in the Flash memory, BSB and SBV. The Bootloader returns 'P' on write access. From level 1, one can write only level 2.

• level 2: RD_WR_SECURITY (FCh

The level 2 forbids all read and write accesses to/from the Flash/EEPROM memory.

The Bootloader returns 'L' on read or write access.

Only a full chip erase in parallel mode (using a programmer) or ISP command can reset the software security bits.

From level 2, one cannot read and write anything.

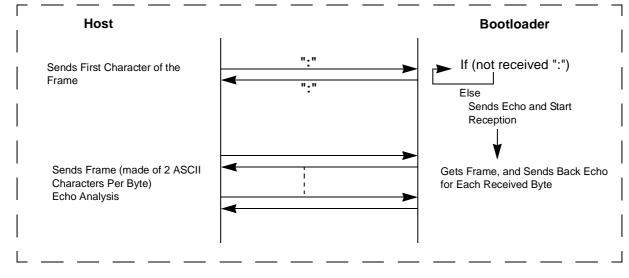

	Level 0	Level 1	Level 2		
Flash/EEPROM	Any access allowed	Read-only access allowed	Any access not allowed		
Fuse Bit	Any access allowed Read-only access allowed		Any access not allowed		
BSB & SBV	Any access allowed	Read-only access allowed	Any access not allowed		
SSB	Any access allowed	Write level 2 allowed	Read-only access allowed Read-only access allowed		
Manufacturer Info	Read-only access allowed	Read-only access allowed			
Bootloader Info	Read-only access allowed	Read-only access allowed	Read-only access allowed		
Erase Block	Allowed	Not allowed	Not allowed		
Full Chip Erase	Allowed	Allowed	Allowed		
Blank Check	Allowed	Allowed	Allowed		

Table 73. Software Security Byte Behavior

Figure 47. Command Flow

Electrical Characteristics

Absolute Maximum Ratings

I = industrial Storage Temperature Voltage on V_{CC} to V_{SS} VVoltage on Any Pin to V_{SS} Power Dissipation	-65°C to + 150°C
Power Dissipation	1 W ⁽²⁾

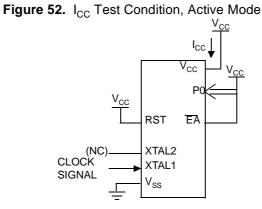
Note: Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Power dissipation is based on the maximum allowable die temperature and the thermal resistance of the package.

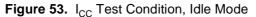
DC Parameters for Standard Voltage

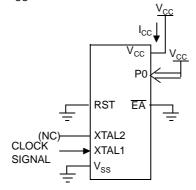
 $T_A = -40^{\circ}C$ to $+85^{\circ}C$; $V_{SS} = 0V$;

 V_{CC} =2.7V to 5.5V and F = 0 to 40 MHz (both internal and external code execution)

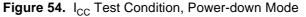

 V_{CC} =4.5V to 5.5V and F = 0 to 60 MHz (internal code execution only)

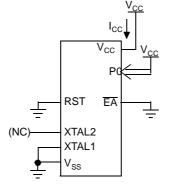
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except RST, XTAL1	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage RST, XTAL1	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, ports 1, 2, 3, 4 ⁽⁶⁾			0.3 0.45 1.0	V V V	$\begin{split} V_{CC} &= 4.5 V \text{ to } 5.5 V \\ I_{OL} &= 100 \ \mu A^{(4)} \\ I_{OL} &= 1.6 \ m A^{(4)} \\ I_{OL} &= 3.5 \ m A^{(4)} \end{split}$
				0.45	V	$V_{CC} = 2.7V \text{ to } 5.5V$ $I_{OL} = 0.8 \text{ mA}^{(4)}$
V _{OL1}	Output Low Voltage, port 0, ALE, PSEN ⁽⁶⁾			0.3 0.45 1.0	V V V	$\begin{split} V_{CC} &= 4.5 V \text{ to } 5.5 V \\ I_{OL} &= 200 \ \mu A^{(4)} \\ I_{OL} &= 3.2 \ m A^{(4)} \\ I_{OL} &= 7.0 \ m A^{(4)} \end{split}$
				0.45	V	$V_{CC} = 2.7V \text{ to } 5.5V$ $I_{OL} = 1.6 \text{ mA}^{(4)}$
V _{OH}	Output High Voltage, ports 1, 2, 3, 4	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$V_{CC} = 5V \pm 10\%$ $I_{OH} = -10 \ \mu A$ $I_{OH} = -30 \ \mu A$ $I_{OH} = -60 \ \mu A$
		0.9 V _{CC}			V	V_{CC} = 2.7V to 5.5V I_{OH} = -10 μ A

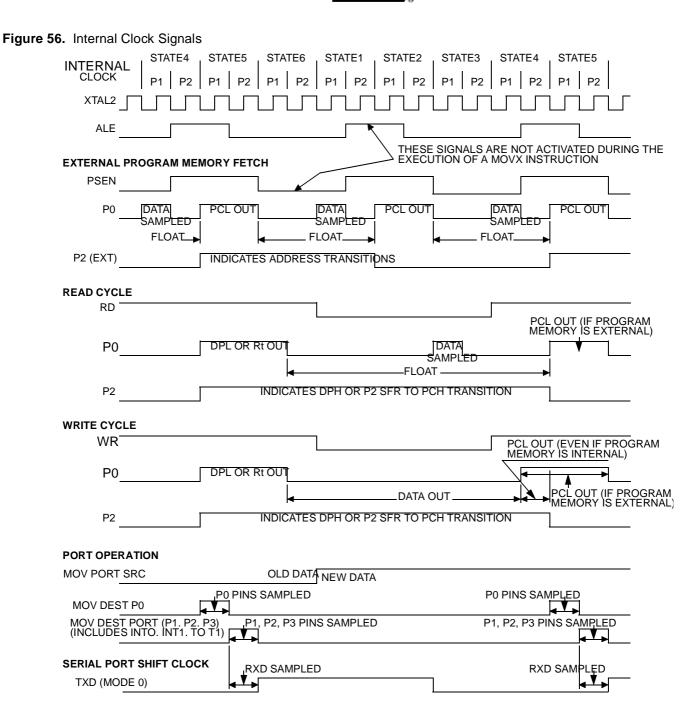



Maximum total I_{OL} for all output pins: 71 mA If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

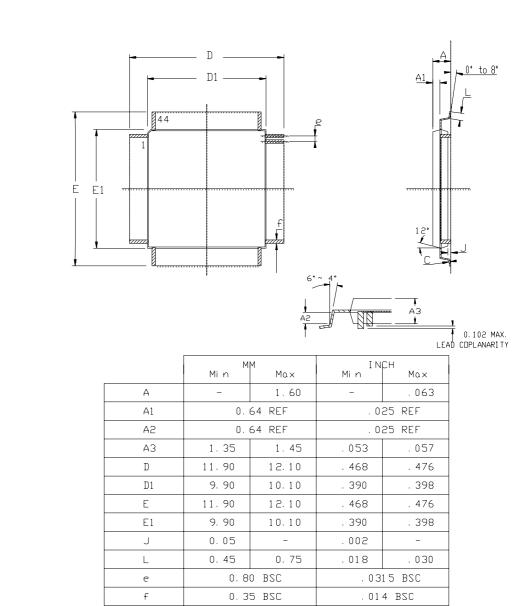
7. The maximum dV/dt value specifies the maximum Vcc drop to issure no internal POR/PFD reset.




All other pins are disconnected.



All other pins are disconnected.



All other pins are disconnected.

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A = 25^{\circ}C$ fully loaded) \overline{RD} and \overline{WR} propagation delays are approximately 50 ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

VQFP44

