

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51rd2-rltim

Email: info@E-XFL.COM

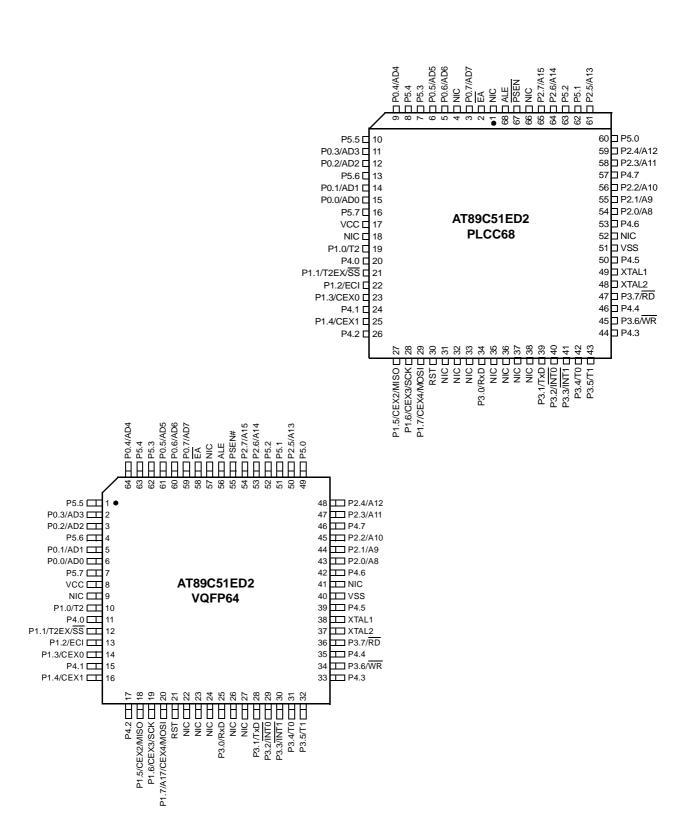
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. C51 Core SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
ACC	E0h	Accumulator								
В	F0h	B Register								
PSW	D0h	Program Status Word	CY	AC	F0	RS1	RS0	OV	F1	Р
SP	81h	Stack Pointer								
DPL	82h	Data Pointer Low Byte								
DPH	83h	Data Pointer High Byte								

Table 3. System Management SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
PCON	87h	Power Control	SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL
AUXR	8Eh	Auxiliary Register 0	DPU	-	MO	XRS2	XRS1	XRS0	EXTRAM	AO
AUXR1	A2h	Auxiliary Register 1	-	-	ENBOOT	-	GF3	0	-	DPS
CKRL	97h	Clock Reload Register	-	-	-	-	-	-	-	-
CKCKON0	8Fh	Clock Control Register 0	-	WDTX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2
CKCKON1	AFh	Clock Control Register 1	-	-	-	-	-	-	-	SPIX2


Table 4. Interrupt SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
IEN0	A8h	Interrupt Enable Control 0	EA	EC	ET2	ES	ET1	EX1	ET0	EX0
IEN1	B1h	Interrupt Enable Control 1	-	-	-	-	-	ESPI		KBD
IPH0	B7h	Interrupt Priority Control High 0	-	PPCH	PT2H	PHS	PT1H	PX1H	PT0H	PX0H
IPL0	B8h	Interrupt Priority Control Low 0	-	PPCL	PT2L	PLS	PT1L	PX1L	PTOL	PX0L
IPH1	B3h	Interrupt Priority Control High 1	-	-	-	-	-	SPIH		KBDH
IPL1	B2h	Interrupt Priority Control Low 1	-	-	-	-	-	SPIL		KBDL

Table 5. Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
P0	80h	8-bit Port 0								
P1	90h	8-bit Port 1								
P2	A0h	8-bit Port 2								
P3	B0h	8-bit Port 3								
P4	C0h	8-bit Port 4								

NIC: Not Internaly Connected

Oscillator

To optimize the power consumption and execution time needed for a specific task, an internal prescaler feature has been implemented between the oscillator and the CPU and peripherals.

Registers

Table 14. CKRL Register

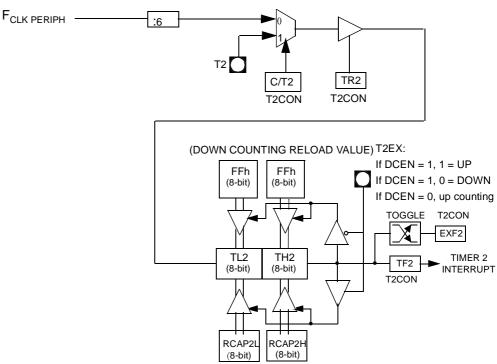
CKRL - Clock Reload Register (97h)

7		6	5	4	3	2	1	0
CKRL7	C	KRL6	CKRL5	CKRL4	CKRL3	CKRL2	CKRL1	CKRL0
Bit Numb	er	Mne	emonic	Description				
7:0		(CKRL	Clock Reload Register Prescaler value				

Reset Value = 1111 1111b Not bit addressable

Table 15. PCON Register

PCON - Power Control Register (87h)


7	6		5	4	3	2	1	0					
SMOD1	SMOE	D0	-	POF	GF1	GF0	PD	IDL					
Bit Numb	er l	Bit M	nemonic	Description									
7		S	MOD1	Serial Port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.									
6		SMOD0		Serial Port Mode bit 0 Cleared to select SM0 bit in SCON register. Set to select FE bit in SCON register.									
5	-		-	Reserved The value read from this bit is indeterminate. Do not set this bit.									
4			POF	Power-off FlagCleared by software to recognize the next reset type.Set by hardware when V_{CC} rises from 0 to its nominal voltage. Can also be set by software.									
3	3 GF1		GF1	General-purp Cleared by sof Set by software	tware for gene		0						
2	2 GF0			General-purp Cleared by sof Set by software	tware for gene		-						
1 PD		PD	Power-down Mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.						Cleared by hardware when reset occurs.				
0			IDL	Idle Mode bit Cleared by hardware when interrupt or reset occurs. Set to enter idle mode.									

Reset Value = 00X1 0000b Not bit addressable

(UP COUNTING RELOAD VALUE)

Programmable Clock-output

In the clock-out mode, Timer 2 operates as a 50% duty-cycle, programmable clock generator (See Figure 15). The input clock increments TL2 at frequency $F_{CLK PERIPH}/2$. The timer repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H and RCAP2L registers are loaded into TH2 and TL2. In this mode, Timer 2 overflows do not generate interrupts. The formula gives the clock-out frequency as a function of the system oscillator frequency and the value in the RCAP2H and RCAP2L registers:

 $Clock-OutFrequency = \frac{F_{CLKPERIPH}}{4 \times (65536 - RCAP2H/RCAP2L)}$

For a 16 MHz system clock, Timer 2 has a programmable frequency range of 61 Hz $(F_{CLK PERIPH}/2^{16})$ to 4 MHz $(F_{CLK PERIPH}/4)$. The generated clock signal is brought out to T2 pin (P1.0).

Timer 2 is programmed for the clock-out mode as follows:

- Set T2OE bit in T2MOD register.
- Clear C/T2 bit in T2CON register.
- Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L registers.
- Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the reload value or a different one depending on the application.
- To start the timer, set TR2 run control bit in T2CON register.

It is possible to use Timer 2 as a baud rate generator and a clock generator simultaneously. For this configuration, the baud rates and clock frequencies are not independent since both functions use the values in the RCAP2H and RCAP2L registers.

ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMm	ECCFn	Module Function
0	0	0	0	0	0	0	No Operation
х	1	0	0	0	0	х	16-bit capture by a positive-edge trigger on CEXn
х	0	1	0	0	0	Х	16-bit capture by a negative trigger on CEXn
х	1	1	0	0	0	Х	16-bit capture by a transition on CEXn
1	0	0	1	0	0	х	16-bit Software Timer/Compare mode.
1	0	0	1	1	0	Х	16-bit High Speed Output
1	0	0	0	0	1	0	8-bit PWM
1	0	0	1	Х	0	Х	Watchdog Timer (module 4 only)

Table 25. PCA Module Modes (CCAPMn Registers)

There are two additional registers associated with each of the PCA modules. They are CCAPnH and CCAPnL and these are the registers that store the 16-bit count when a capture occurs or a compare should occur. When a module is used in the PWM mode these registers are used to control the duty cycle of the output (See Table 26 & Table 27).

Table 26. CCAPnH Registers (n = 0 - 4)

6

CCAP0H - PCA Module 0 Compare/Capture Control Register High (0FAh)

CCAP1H - PCA Module 1 Compare/Capture Control Register High (0FBh)

CCAP2H - PCA Module 2 Compare/Capture Control Register High (0FCh)

CCAP3H - PCA Module 3 Compare/Capture Control Register High (0FDh)

CCAP4H - PCA Module 4 Compare/Capture Control Register High (0FEh)

٨

5

1	0	5	-	5	2	•	U
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7 - 0	-	PCA Module CCAPnH Val		Capture Con	trol		

2

2

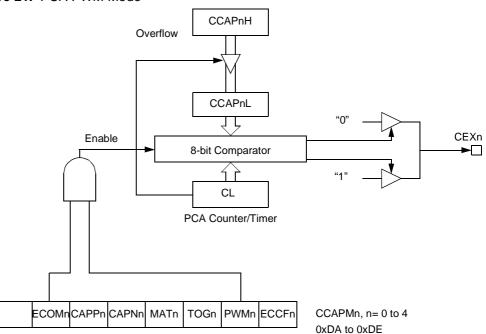
1

Λ

Reset Value = 0000 0000b Not bit addressable

7

Figure 20. PCA High Speed Output Mode



Before enabling ECOM bit, CCAPnL and CCAPnH should be set with a non zero value, otherwise an unwanted match could happen.

Once ECOM is set, writing CCAPnL will clear ECOM so that an unwanted match doesn't occur while modifying the compare value. Writing to CCAPnH will set ECOM. For this reason, user software should write CCAPnL first, and then CCAPnH. Of course, the ECOM bit can still be controlled by accessing to CCAPMn register.

Pulse Width ModulatorModeAll of the PCA modules can be used as PWM outputs. Figure 21 shows the PWM function. The frequency of the output depends on the source for the PCA timer. All of the
modules will have the same frequency of output because they all share the PCA timer.
The duty cycle of each module is independently variable using the modules capture reg-
ister CCAPLn. When the value of the PCA CL SFR is less than the value in the modules
CCAPLn SFR the output will be low, when it is equal to or greater than the output will be
high. When CL overflows from FF to 00, CCAPLn is reloaded with the value in CCAPHn.
This allows updating the PWM without glitches. The PWM and ECOM bits in the module's CCAPMn register must be set to enable the PWM mode.

PCA Watchdog Timer An on-board watchdog timer is available with the PCA to improve the reliability of the system without increasing chip count. Watchdog timers are useful for systems that are susceptible to noise, power glitches, or electrostatic discharge. Module 4 is the only PCA module that can be programmed as a watchdog. However, this module can still be used for other modes if the watchdog is not needed. Figure 19 shows a diagram of how the watchdog works. The user pre-loads a 16-bit value in the compare registers. Just like the other compare modes, this 16-bit value is compared to the PCA timer value. If a match is allowed to occur, an internal reset will be generated. This will not cause the RST pin to be driven high.

In order to hold off the reset, the user has three options:

- 1. Periodically change the compare value so it will never match the PCA timer.
- 2. Periodically change the PCA timer value so it will never match the compare values.
- 3. Disable the watchdog by clearing the WDTE bit before a match occurs and then re-enable it.

Table 33. SCON Register

SCON - Serial Control Register (98h)

7	6	5	4	3	2	1	0		
FE/SM0	SM1	SM2	REN	TB8	RB8	ТІ	RI		
Bit Number	Bit Mnemo	onic Descr	Description						
7	FE	Clear Set by	hardware wh	SMOD0=1) fror state, not o ten an invalid t to enable acc	stop bit is dete	ected.			
	SM) Refer	Serial port Mode bit 0 Refer to SM1 for serial port mode selection. SMOD0 must be cleared to enable access to the SM0 bit.						
6	SM	<u>SM0</u>	0 Sł 1 8- 0 9-	ode <u>E</u> hift Register F bit UART \ bit UART F	Baud Rate _{XTAL} /12 (or F _x /ariable 		• X2)		
5	SM:	2 Clear Set to	to disable mul enable multip	bit / Multipro ltiprocessor co rocessor com This bit should	mmunication	feature. ature in mode			
4	REI	l Clear	otion Enable to disable seri enable serial	ial reception.					
3	ТВ8	3 Clear	to transmit a l	Ninth bit to tr ogic 0 in the 9 jic 1 in the 9th	th bit.	odes 2 and 3			
2	RB	Cleare Set by	ed by hardwar hardware if 9	nth bit receive e if 9th bit receive 0th bit received 0, RB8 is the	eived is a logic l is a logic 1.	c 0.) RB8 is not		
1	ті	Clear Set by	Transmit Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0 or at the beginning of the stop bit in the other modes.						
0	RI	Clear Set by	Receive Interrupt flag Clear to acknowledge interrupt. Set by hardware at the end of the 8th bit time in mode 0, see Figure 23. and Figure 24. in the other modes.						

Reset Value = 0000 0000b Bit addressable

Table 42. BDRCON Register

BDRCON - Baud Rate Control Register (9Bh)

7	6	5	4	3	2	1	0				
-	-	-	BRR	ТВСК	RBCK	SPD	SRC				
Bit Number	Bit Mnemonic	Descriptior	Description								
7	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit								
6	-	Reserved The value re	ead from this	bit is indeterm	inate. Do not s	set this bit					
5	-	Reserved The value re	ead from this I	oit is indetermi	nate. Do not s	et this bit.					
4	BRR	Cleared to s	Baud Rate Run Control bit Cleared to stop the internal Baud Rate Generator. Set to start the internal Baud Rate Generator.								
3	ТВСК	Cleared to s	elect Timer 1	e Generator S or Timer 2 for d Rate Genera	the Baud Rate						
2	RBCK	Cleared to s	elect Timer 1	enerator Sele or Timer 2 for d Rate Genera	the Baud Rate						
1	SPD	Cleared to s	Baud Rate Speed Control bit for UART Cleared to select the SLOW Baud Rate Generator. Set to select the FAST Baud Rate Generator.								
0	SRC	Cleared to s mode).	Baud Rate Source select bit in Mode 0 for UART Cleared to select F _{OSC} /12 as the Baud Rate Generator (F _{CLK PERIPH} /6 in X2 mode). Set to select the internal Baud Rate Generator for UARTs in mode 0.								

Reset Value = XXX0 0000b Not bit addressable

Keyboard Interface

The AT89C51RD2/ED2 implements a keyboard interface allowing the connection of a 8 x n matrix keyboard. It is based on 8 inputs with programmable interrupt capability on both high or low level. These inputs are available as alternate function of P1 and allow to exit from idle and power-down modes.

The keyboard interfaces with the C51 core through 3 special function registers: KBLS, the Keyboard Level Selection register (Table 45), KBE, the Keyboard interrupt Enable register (Table 44), and KBF, the Keyboard Flag register (Table 43).

Interrupt The keyboard inputs are considered as 8 independent interrupt sources sharing the same interrupt vector. An interrupt enable bit (KBD in IE1) allows global enable or disable of the keyboard interrupt (see Figure 27). As detailed in Figure 28 each keyboard input has the capability to detect a programmable level according to KBLS. x bit value. Level detection is then reported in interrupt flags KBF.x that can be masked by software using KBE. x bits.

This structure allow keyboard arrangement from 1 by n to 8 by n matrix and allows usage of P1 inputs for other purpose.

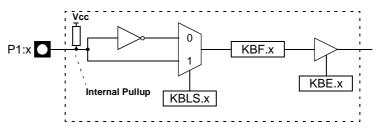
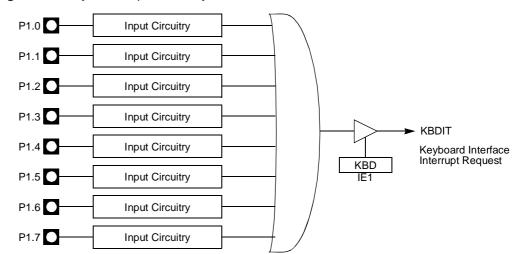



Figure 28. Keyboard Input Circuitry

Power Reduction Mode

P1 inputs allow exit from idle and power-down modes as detailed in Section "Power Management", page 82.

Table 44. KBE Register

KBE-Keyboard Input Enable Register (9Dh)

7	6	5	4	3	2	1	0				
KBE7	KBE6	KBE5	KBE4	KBE3	KBE2	KBE1	KBE0				
Bit Number	Bit Mnemonic	Description	Description								
7	KBE7	Cleared to en	Keyboard line 7 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.7 bit in KBF register to generate an interrupt request.								
6	KBE6	Cleared to en	ne 6 Enable I nable standar e KBF.6 bit in		o generate an	interrupt requ	iest.				
5	KBE5	Cleared to en	ne 5 Enable I nable standar e KBF.5 bit in		o generate an	interrupt requ	iest.				
4	KBE4	Cleared to en	ne 4 Enable I nable standar e KBF.4 bit in		o generate an	interrupt requ	iest.				
3	KBE3	Cleared to en	ne 3 Enable I nable standar e KBF.3 bit in		o generate an	interrupt requ	iest.				
2	KBE2	Cleared to en	ne 2 Enable I nable standar e KBF.2 bit in		o generate an	interrupt requ	iest.				
1	KBE1	Cleared to en	ne 1 Enable I nable standar e KBF.1 bit in		o generate an	interrupt requ	iest.				
0	KBE0	Keyboard line 0 Enable bit Cleared to enable standard I/O pin. Set to enable KBF.0 bit in KBF register to generate an interrupt request.									

Reset Value = 0000 0000b

Bit Number	Bit Mnemonic	Description
1	-	Reserved The value read from this bit is indeterminate. Do not set this bit.
0	-	Reserved The value read from this bit is indeterminate. Do not set this bit.

Reset Value = 00X0 XXXXb

Not Bit addressable

Serial Peripheral DATa Register (SPDAT) The Serial Peripheral Data Register (Table 50) is a read/write buffer for the receive data register. A write to SPDAT places data directly into the shift register. No transmit buffer is available in this model.

A Read of the SPDAT returns the value located in the receive buffer and not the content of the shift register.

Table 50. SPDAT Register

SPDAT - Serial Peripheral Data Register (0C5H)

7	6	5	4	3	2	1	0
R7	R6	R5	R4	R3	R2	R1	R0

Reset Value = Indeterminate

R7:R0: Receive data bits

SPCON, SPSTA and SPDAT registers may be read and written at any time while there is no on-going exchange. However, special care should be taken when writing to them while a transmission is on-going:

- Do not change SPR2, SPR1 and SPR0
- Do not change CPHA and CPOL
- Do not change MSTR
- Clearing SPEN would immediately disable the peripheral
- Writing to the SPDAT will cause an overflow.

Interrupt System

The <u>AT89C51RD2/ED2</u> has a total of 9 interrupt vectors: two external interrupts (INT0 and INT1), three timer interrupts (timers 0, 1 and 2), the serial port interrupt, SPI interrupt, Keyboard interrupt and the PCA global interrupt. These interrupts are shown in Figure 36.

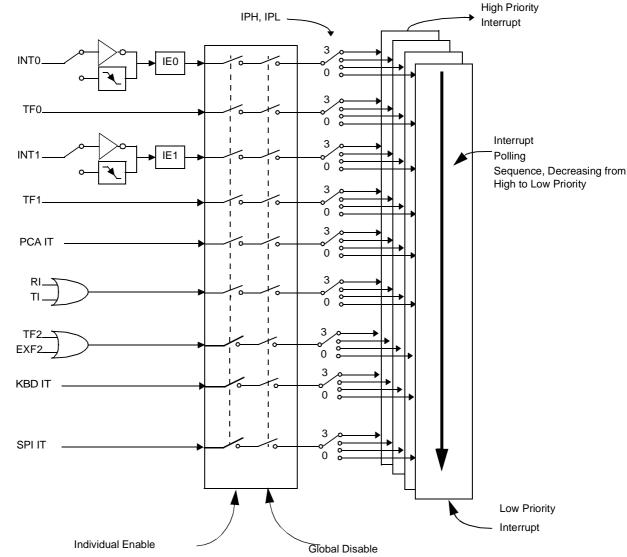


Figure 36. Interrupt Control System

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (Table 54 and Table 56). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one out of four priority levels by setting or clearing a bit in the Interrupt Priority register (Table 57) and in the Interrupt Priority High register (Table 55 and Table 56) shows the bit values and priority levels associated with each combination.

Table 58. IPH1 Register

IPH1 - Interrupt Priority High Register (B3h)

7	6	5	4	3	2	1	0	
-	-	-	-	-	SPIH	-	KBDH	
Bit Number	Bit Mnemonic	Description						
7	-	Reserved The value re	ad from this b	oit is indetermi	nate. Do not s	et this bit.		
6	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.		
5	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.		
4	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.		
3	-	Reserved The value re	ad from this b	it is indetermi	nate. Do not s	et this bit.		
2	SPIH	SPIH S 0 0 0 1 1 0	0 0 Lowest 0 1 1 0					
1	-	Reserved The value re	Reserved The value read from this bit is indeterminate. Do not set this bit.					
0	KBDH	KB DH K	Keyboard interrupt Priority High bit KB DH Priority Level 0 0 Lowest 0 1 0					

Reset Value = XXXX X000b Not bit addressable

ISP Protocol Description

Physical Layer

The UART used to transmit information has the following configuration:

- Character: 8-bit data
- Parity: none
- Stop: 2 bits
- Flow control: none
- Baudrate: autobaud is performed by the bootloader to compute the baudrate chosen by the host.

Frame Description The Serial Protocol is based on the Intel Hex-type records.

Intel Hex records consist of ASCII characters used to represent hexadecimal values and are summarized below.

Figure 45. Intel Hex Type Frame

Record Mark ':'	Reclen	Load Offset	Record Type	Data or Info	Checksum
1-byte	1-byte	2-bytes	1-byte	n-bytes	1-byte

Record Mark:

Record Mark is the start of frame. This field must contain ':'.

Reclen:

Reclen specifies the number of bytes of information or data which follows the Record Type field of the record.

Load Offset:

Load Offset specifies the 16-bit starting load offset of the data bytes, therefore this field is used only for Data Program Record (see Section "ISP Commands Summary").

• Record Type:

Record Type specifies the command type. This field is used to interpret the remaining information within the frame. The encoding for all the current record types is described in Section "ISP Commands Summary".

Data/Info:

Data/Info is a variable length field. It consists of zero or more bytes encoded as pairs of hexadecimal digits. The meaning of data depends on the **Record Type**.

Checksum:

The two's complement of the 8-bit bytes that result from converting each pair of ASCII hexadecimal digits to one byte of binary, and including the **Reclen** field to and including the last byte of the **Data/Info** field. Therefore, the sum of all the ASCII pairs in a record after converting to binary, from the **Reclen** field to and including the **Checksum** field, is zero.

Functional Description

Software Security Bits (SSB)The SSB protects any Flash access from ISP command.
The command "Program Software Security Bit" can only write a higher priority level.

There are three levels of security:

level 0: NO_SECURITY (FFh)

This is the default level. From level 0, one can write level 1 or level 2.

level 1: WRITE_SECURITY (FEh)

For this level it is impossible to write in the Flash memory, BSB and SBV. The Bootloader returns 'P' on write access. From level 1, one can write only level 2.

• level 2: RD_WR_SECURITY (FCh

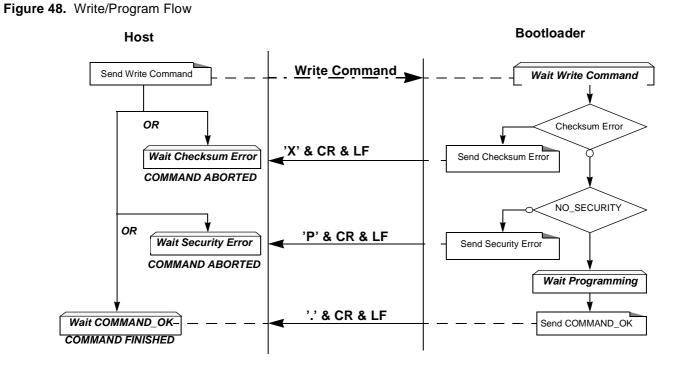
The level 2 forbids all read and write accesses to/from the Flash/EEPROM memory.

The Bootloader returns 'L' on read or write access.

Only a full chip erase in parallel mode (using a programmer) or ISP command can reset the software security bits.

From level 2, one cannot read and write anything.

	Level 0	Level 1	Level 2
Flash/EEPROM	Any access allowed	Read-only access allowed	Any access not allowed
Fuse Bit	Any access allowed	Read-only access allowed	Any access not allowed
BSB & SBV	Any access allowed	Read-only access allowed	Any access not allowed
SSB	Any access allowed	Write level 2 allowed	Read-only access allowed
Manufacturer Info	Read-only access allowed	Read-only access allowed	Read-only access allowed
Bootloader Info	Read-only access allowed	Read-only access allowed	Read-only access allowed
Erase Block	Allowed	Not allowed	Not allowed
Full Chip Erase	Allowed	Allowed	Allowed
Blank Check	Allowed	Allowed	Allowed


Table 73. Software Security Byte Behavior

Write/Program Commands Description

This flow is common to the following frames:

- Flash/EEPROM Programming Data Frame
- EOF or Atmel Frame (only Programming Atmel Frame)
- Config Byte Programming Data Frame
- Baud Rate Frame

Example

Programming Data (write 55h at address 0010h in the Flash)_

 HOST
 :
 01
 0010
 00
 55
 9A

 BOOTLOADER
 :
 01
 0010
 00
 55
 9A
 . CR
 LF

 Programming Atmet
 turction (write SSB to level 2)

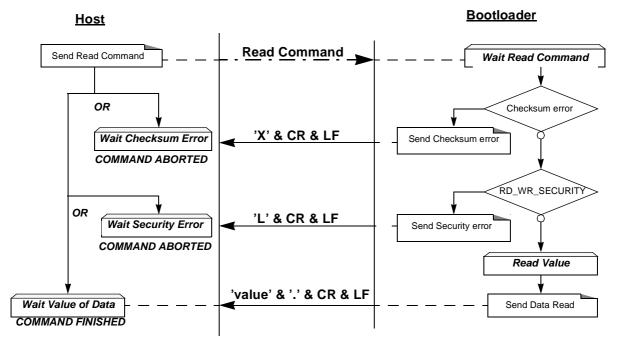
 HOST
 :
 02
 0000
 03
 05
 01
 F5

 BOOTLOADER
 :
 02
 0000
 03
 05
 01
 F5.
 CR
 LF

 Writing Frame (write BSB to 55h)
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 <

 HOST
 :
 0.3
 0.000
 0.3
 0.6
 0.0
 5.5
 9.F

 BOOTLOADER
 :
 0.3
 0.000
 0.3
 0.6
 0.0
 5.5
 9.F



Read Function Description

This flow is similar for the following frames:

- Reading Frame
- EOF Frame/ Atmel Frame (only reading Atmel Frame)

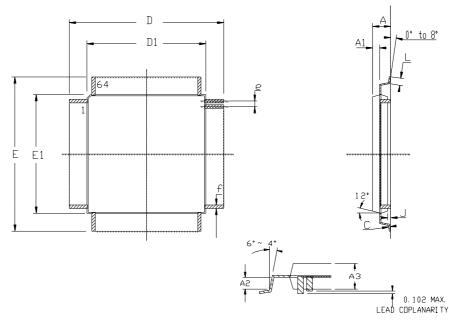
Figure 51. Read Flow

Example

Read function (read SBV)

HOST	: 02 0000 05 07 02 F0
BOOTLOADER	: 02 0000 05 07 02 F0 Value . CR LF
Atmel Read funct	<u>ion (read Bootloader version)</u>
HOST	: 02 0000 01 02 00 FB
BOOTLOADER	: 02 0000 01 02 00 FB Value . CR LF

	®
API Call Description	The IAP allows to reprogram a microcontroller on-chip Flash memory without removing it from the system and while the embedded application is running.
	The user application can call some Application Programming Interface (API) routines allowing IAP. These API are executed by the bootloader.
	To call the corresponding API, the user must use a set of Flash_api routines which can be linked with the application.
	Example of Flash_api routines are available on the Atmel web site on the software appli- cation note:
	C Flash Drivers for the AT89C51RD2/ED2
	The API calls description and arguments are shown in Table 76.
Process	The application selects an API by setting R1, ACC, DPTR0 and DPTR1 registers.
	All calls are made through a common interface "USER_CALL" at the address FFF0h.
	The jump at the USER_CALL must be done by LCALL instruction to be able to come- back in the application.
	Before jump at the USER_CALL, the bit ENBOOT in AUXR1 register must be set.
Constraints	The interrupts are not disabled by the bootloader.
	Interrupts must be disabled by user prior to jump to the USER_CALL, then re-enabled when returning.
	Interrupts must also be disabled before accessing EEPROM Data then re-enabled after.


MEL

The user must take care of hardware watchdog before launching a Flash operation.

Command	R1	Α	DPTR0	DPTR1	Returned Value	Command Effect
READ MANUF ID	00h	XXh	0000h	XXh	ACC = Manufacturer Id	Read Manufacturer identifier
READ DEVICE ID1	00h	XXh	0001h	XXh	ACC = Device Id 1	Read Device identifier 1
READ DEVICE ID2	00h	XXh	0002h	XXh	ACC = Device Id 2	Read Device identifier 2
READ DEVICE ID3	00h	XXh	0003h	XXh	ACC = Device Id 3	Read Device identifier 3
	01h		DPH = 00h	00h	ACC = DPH	Erase block 0
			DPH = 20h			Erase block 1
ERASE BLOCK		XXh	DPH = 40h			Erase block 2
			DPH = 80h			Erase block 3
			DPH = C0h			Erase block 4
PROGRAM DATA BYTE	02h	Vaue to write	Address of byte to program	XXh	ACC = 0: DONE	Program up one data byte in the on-chip flash memory.

Table 76. API Call Summary

VQFP64

	м	м	IN	СН	
	Min	Max	Min	Max	
А	-	1.60	_	. 063	
A1	Ο.	64 REF	. 0	.025 REF	
A2	0.	64 REF	. 0	25 REF	
A3	1.35	1.45	. 053	. 057	
D	11.75	12.25	. 463	. 483	
D1	9.90	10.10	. 390	. 398	
E	11.75	12.25	. 463	. 483	
E1	9.90	10.10	. 390	. 398	
J	0.05	-	. 002	-	
L	0.45	0,75	. 018	.030	
e	0.50 BSC		.0197 BSC		
f	0.2	5 BSC	. 01	0 BSC	

