

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

betans	
Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, I ² C, IrDA, Microwire, SPI, SSI, SSP, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	-
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 3.6V
Data Converters	A/D 8x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc4072fbd80e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M4 microcontroller

-		1	-											
Type number	Flash (kB)	SRAM (kB)	EEPROM (B)	EMC bus width (bit)	LCD	Ethernet	USB	CAN	UART	QEI	SD/MMC	Comparator	FPU	Package
LPC4078FBD144	512	96	4032	8	no	yes	H/O/D	2	5	yes	yes	yes	yes	LQFP144
LPC4078FBD100	512	96	4032	-	no	yes	H/O/D	2	5	yes	yes	yes	yes	LQFP100
LPC4078FBD80	512	96	4032	-	no	yes	H/O/D	2	5	yes	no	yes	yes	LQFP80
LPC4076														
LPC4076FET180	256	80	2048	16	no	yes	H/O/D	2	5	yes	yes	yes	yes	TFBGA180
LPC4076FBD144	256	80	2048	8	no	yes	H/O/D	2	5	yes	yes	yes	yes	LQFP144
LPC4074														
LPC4074FBD144	128	40	2048	-	no	no	D	2	4	no	no	no	no	LQFP144
LPC4074FBD80	128	40	2048	-	no	no	D	2	4	no	no	no	no	LQFP80
LPC4072														·
LPC4072FET80	64	24	2048	-	no	no	D	2	4	no	no	no	no	TFBGA80
LPC4072FBD80	64	24	2048	-	no	no	D	2	4	no	no	no	no	LQFP80

Table 2. Ordering options ...continued

onductors N.V. 2017. All rights reserved. 19 of 140

Rev. 3 — 11 January 2017

F

 Table 3.
 Pin description ...continued

 Not all functions are available on all parts. See <u>Table 2</u> (Ethernet, USB, LCD, QEI, SD/MMC, comparator pins) and <u>Table 5</u> (EMC pins).

3X_7X	Symbol	Pin LQFP208	Ball TFBGA208	Ball TFBGA180	Pin LQFP144	Pin LQFP100	Pin LQFP80	Pin TFBGA80		Reset state <u>[1]</u>	Type ^[2]	Description
	P0[23]	18	H1	F5	13	9	-	-	[5]	I; PU	I/O	P0[23] — General purpose digital input/output pin.
											I	ADC0_IN[0] — A/D converter 0, input 0. When configured as an ADC input, the digital function of the pin must be disabled.
All inf											I/O	I2S_RX_SCK — Receive Clock. It is driven by the master and received by the slave. Corresponds to the signal SCK in the <i>I</i> ² S-bus specification.
ormatic											I	T3_CAP0 — Capture input for Timer 3, channel 0.
on prov	P0[24]	16	G2	E1	11	8	-	-	[5]	I; PU	I/O	P0[24] — General purpose digital input/output pin.
ided in this docu											1	ADC0_IN[1] — A/D converter 0, input 1. When configured as an ADC input, the digital function of the pin must be disabled.
All information provided in this document is subject to legal disclaimers											I/O	I2S_RX_WS — Receive Word Select. It is driven by the master and received by the slave. Corresponds to the signal WS in the <i>I</i> ² S-bus specification.
o legal											I	T3_CAP1 — Capture input for Timer 3, channel 1.
disclair	P0[25]	14	F1	E4	10	7	7	D1	[5]	I; PU	I/O	P0[25] — General purpose digital input/output pin.
ners.											1	ADC0_IN[2] — A/D converter 0, input 2. When configured as an ADC input, the digital function of the pin must be disabled.
© NXF											I/O	I2S_RX_SDA — Receive data. It is driven by the transmitter and read by the receiver. Corresponds to the signal SD in the <i>I</i> ² <i>S</i> - <i>bus specification</i> .
© NXP Semico											0	U3_TXD — Transmitter output for UART3.

NXP Semiconductors

32-LPC408x/7x

<u>-</u>	
t arm	
Cortex-M4	
microcontroll	

 Table 3.
 Pin description ...continued

 Image: Section 2...continued
 Image: Section 2...continued

 Image: Section 2...continued
 Image: Section 2....continued

 I

(_7X	Symbol	Pin LQFP208	Ball TFBGA208	Ball TFBGA180	Pin LQFP144	Pin LQFP100	Pin LQFP80	Pin TFBGA80		Reset state <u>[1]</u>	Type ^[2]	Description
	P1[20]	70	U7	K6	49	34	27	J5	[3]	I; PU	I/O	P1[20] — General purpose digital input/output pin.
											0	USB_TX_DP1 — D+ transmit data for USB port 1 (OTG transceiver).
											0	PWM1[2] — Pulse Width Modulator 1, channel 2 output.
											I	QEI_PHA — Quadrature Encoder Interface PHA input.
All ir											I	MC_FB0 — Motor control PWM channel 0 feedback input.
format											I/O	SSP0_SCK — Serial clock for SSP0.
ion pro											0	LCD_VD[6] — LCD data.
vided ir											0	LCD_VD[10] — LCD data.
n this d	P1[21]	72	R8	N6	50	35	-	-	[3]	I; PU	I/O	P1[21] — General purpose digital input/output pin.
All information provided in this document is subject to legal disclaimen											0	USB_TX_DM1 — D– transmit data for USB port 1 (OTG transceiver).
subjec											0	PWM1[3] — Pulse Width Modulator 1, channel 3 output.
t to lega											I/O	SSP0_SSEL — Slave Select for SSP0.
al discla											Ι	MC_ABORT — Motor control PWM, active low fast abort.
aimers.											-	R — Function reserved.
											0	LCD_VD[7] — LCD data.
											0	LCD_VD[11] — LCD data.

Product data sheet

Rev. 3 11 January 2017

© NXP Semiconductors N.V. 2017. All rights reserved. 26 of 140

NXP Semiconductors

32-bit ARM Cortex-M4 microcontroller

LPC408x/7x

Pin description ... continued

 Table 3.
 Pin description ...continued

 Image: Not all functions are available on all parts. See <u>Table 2</u> (Ethernet, USB, LCD, QEI, SD/MMC, comparator pins) and <u>Table 5</u> (EMC pins).

^{98X_7X} duct data sheet	Symbol	Pin LQFP208	Ball TFBGA208	Ball TFBGA180	Pin LQFP144	Pin LQFP100	Pin LQFP80	Pin TFBGA80		Reset state <u>[1]</u>	Type ^[2]	Description
	P2[0] to P2[31]										I/O	Port 2: Port 2 is a 32 bit I/O port with individual direction controls for each bit. The operation of port 1 pins depends upon the pin function selected via the pin connect block.
	P2[0]	154	B17	D12	107	75	60	B10	[3]	I; PU	I/O	P2[0] — General purpose digital input/output pin.
											0	PWM1[1] — Pulse Width Modulator 1, channel 1 output.
A											0	U1_TXD — Transmitter output for UART1.
All information provided in this document is subject to legal disclaimen Rev. 3 — 11 January 2017											-	R — Function reserved.
R R											-	R — Function reserved.
Rev. 3											-	R — Function reserved.
in this											-	R — Function reserved.
11 J											0	LCD_PWR — LCD panel power enable.
s document is subject to legs 11 January 2017	P2[1]	152	E14	C14	106	74	59	B8	[3]	I; PU	I/O	P2[1] — General purpose digital input/output pin.
subjec											0	PWM1[2] — Pulse Width Modulator 1, channel 2 output.
2017											I	U1_RXD — Receiver input for UART1.
al disc											-	R — Function reserved.
laimers											-	R — Function reserved.
											-	R — Function reserved.
											-	R — Function reserved.
											0	LCD_LE — Line end signal.
© z	P2[2]	150	D15	E11	105	73	58	B9	[3]	I; PU	I/O	P2[2] — General purpose digital input/output pin.
IXP Se											0	PWM1[3] — Pulse Width Modulator 1, channel 3 output.
micono											I	U1_CTS — Clear to Send input for UART1.
fuctors											0	T2_MAT3 — Match output for Timer 2, channel 3.
N.V. 2											-	R — Function reserved.
© NXP Semiconductors N.V. 2017. All rights reserved 31 of 140											0	TRACEDATA[3] — Trace data, bit 3.
1 rights											-	R — Function reserved.
of 140											0	LCD_DCLK — LCD panel clock.

Product data sheet

7.11.1 Features

- Dynamic memory interface support including single data rate SDRAM.
- Asynchronous static memory device support including RAM, ROM, and flash, with or without asynchronous page mode.
- Low transaction latency.
- Read and write buffers to reduce latency and to improve performance.
- 8/16/32 data and 16/20/26 address lines wide static memory support.
- 16 bit and 32 bit wide chip select SDRAM memory support.
- Static memory features include:
 - Asynchronous page mode read.
 - Programmable Wait States.
 - Bus turnaround delay.
 - Output enable and write enable delays.
 - Extended wait.
- Four chip selects for synchronous memory and four chip selects for static memory devices.
- Power-saving modes dynamically control EMC_CKE and EMC_CLK outputs to SDRAMs.
- Dynamic memory self-refresh mode controlled by software.
- Controller supports 2048 (A0 to A10), 4096 (A0 to A11), and 8192 (A0 to A12) row address synchronous memory parts. That is typical 512 MB, 256 MB, and 128 MB parts, with 4, 8, 16, or 32 data bits per device.
- Separate reset domains allow the for auto-refresh through a chip reset if desired.

Note: Synchronous static memory devices (synchronous burst mode) are not supported.

7.12 General purpose DMA controller

The GPDMA is an AMBA AHB compliant peripheral allowing selected peripherals to have DMA support.

The GPDMA enables peripheral-to-memory, memory-to-peripheral, peripheral-to-peripheral, and memory-to-memory transactions. The source and destination areas can each be either a memory region or a peripheral and can be accessed through the AHB master. The GPDMA controller allows data transfers between the various on-chip SRAM areas and supports the SD/MMC card interface, all SSPs, the I²S, all UARTs, the A/D Converter, and the D/A Converter peripherals. DMA can also be triggered by selected timer match conditions. Memory-to-memory transfers and transfers to or from GPIO are supported.

7.12.1 Features

- Eight DMA channels. Each channel can support an unidirectional transfer.
- 16 DMA request lines.

56 of 140

The I²S-bus specification defines a 3-wire serial bus using one data line, one clock line, and one word select signal. The basic I²S connection has one master, which is always the master, and one slave. The I²S interface on the LPC408x/7x provides a separate transmit and receive channel, each of which can operate as either a master or a slave.

7.26.1 Features

- The interface has separate input/output channels each of which can operate in master or slave mode.
- Capable of handling 8-bit, 16-bit, and 32-bit word sizes.
- Mono and stereo audio data supported.
- The sampling frequency can range from 16 kHz to 48 kHz (16, 22.05, 32, 44.1, 48) kHz.
- Configurable word select period in master mode (separately for I²S input and output).
- Two 8 word FIFO data buffers are provided, one for transmit and one for receive.
- Generates interrupt requests when buffer levels cross a programmable boundary.
- Two DMA requests, controlled by programmable buffer levels. These are connected to the GPDMA block.
- Controls include reset, stop and mute options separately for I²S input and I²S output.

7.27 CAN controller and acceptance filters

The LPC408x/7x contain one CAN controller with two channels.

The Controller Area Network (CAN) is a serial communications protocol which efficiently supports distributed real-time control with a very high level of security. Its domain of application ranges from high-speed networks to low cost multiplex wiring.

The CAN block is intended to support multiple CAN buses simultaneously, allowing the device to be used as a gateway, switch, or router between two of CAN buses in industrial or automotive applications.

Each CAN controller has a register structure similar to the NXP SJA1000 and the PeliCAN Library block, but the 8-bit registers of those devices have been combined in 32-bit words to allow simultaneous access in the ARM environment. The main operational difference is that the recognition of received Identifiers, known in CAN terminology as Acceptance Filtering, has been removed from the CAN controllers and centralized in a global Acceptance Filter.

7.27.1 Features

- Dual-channel CAN controller and bus.
- Data rates to 1 Mbit/s on each bus.
- 32-bit register and RAM access.
- Compatible with CAN specification 2.0B, ISO 11898-1.
- Global Acceptance Filter recognizes 11-bit and 29-bit receive identifiers for all CAN buses.
- Acceptance Filter can provide FullCAN-style automatic reception for selected Standard Identifiers.

LPC408X 7X

7.36.4.4 Deep power-down mode

The Deep power-down mode can only be entered from the RTC block. In Deep power-down mode, power is shut off to the entire chip with the exception of the RTC module and the RESET pin.

To optimize power conservation, the user has the additional option of turning off or retaining power to the 32 kHz oscillator. It is also possible to use external circuitry to turn off power to the on-chip regulator via the $V_{DD(REG)(3V3)}$ pins and/or the I/O power via the $V_{DD(3V3)}$ pins after entering Deep Power-down mode. Power must be restored before device operation can be restarted.

The LPC408x/7x can wake up from Deep power-down mode via the $\overline{\text{RESET}}$ pin or an alarm match event of the RTC.

7.36.4.5 Wake-up Interrupt Controller (WIC)

The WIC allows the CPU to automatically wake up from any enabled priority interrupt that can occur while the clocks are stopped in Deep-sleep, Power-down, and Deep power-down modes.

The WIC works in connection with the Nested Vectored Interrupt Controller (NVIC). When the CPU enters Deep-sleep, Power-down, or Deep power-down mode, the NVIC sends a mask of the current interrupt situation to the WIC. This mask includes all of the interrupts that are both enabled and of sufficient priority to be serviced immediately. With this information, the WIC simply notices when one of the interrupts has occurred and then it wakes up the CPU.

The WIC eliminates the need to periodically wake up the CPU and poll the interrupts resulting in additional power savings.

7.36.5 Peripheral power control

A power control for peripherals feature allows individual peripherals to be turned off if they are not needed in the application, resulting in additional power savings.

7.36.6 Power domains

The LPC408x/7x provide two independent power domains that allow the bulk of the device to have power removed while maintaining operation of the RTC and the backup registers.

On the LPC408x/7x, I/O pads are powered by $V_{DD(3V3)}$, while $V_{DD(REG)(3V3)}$ powers the on-chip voltage regulator which in turn provides power to the CPU and most of the peripherals.

Depending on the LPC408x/7x application, a design can use two power options to manage power consumption.

The first option assumes that power consumption is not a concern and the design ties the $V_{DD(3V3)}$ and $V_{DD(REG)(3V3)}$ pins together. This approach requires only one 3.3 V power supply for both pads, the CPU, and peripherals. While this solution is simple, it does not support powering down the I/O pad ring "on the fly" while keeping the CPU and peripherals alive.

LPC408X 7X

32-bit ARM Cortex-M4 microcontroller

Table 8.Thermal characteristics

 $V_{DD} = 3.0$ V to 3.6 V; $T_{amb} = -40$ °C to +85 °C unless otherwise specified;

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{j(max)}	maximum junction temperature		-	-	125	°C

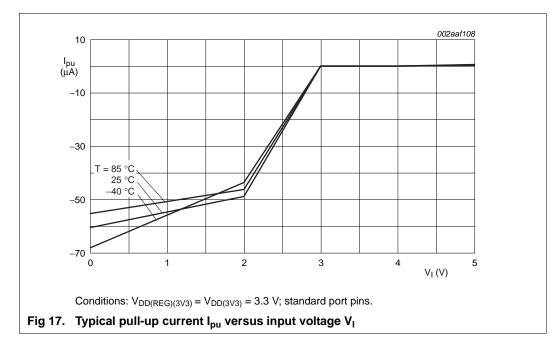
Table 9. Thermal resistance (LQFP packages)

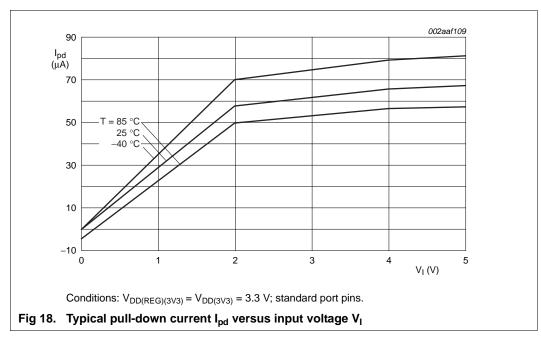
 $T_{amb} = -40$ °C to +85 °C unless otherwise specified.

		Thermal resistar	nce value (°C/W): ±15 %	
		LQFP80	LQFP144	LQFP208
θја				
	JEDEC (4.5 in × 4 in)			
	0 m/s	41	31	27
	1 m/s	35	28	25
	2.5 m/s	32	26	24
	Single-layer (4.5 in \times 3 in)			
	0 m/s	61	43	35
	1 m/s	47	35	31
	2.5 m/s	43	33	29
өјс		7.8	9.2	10.5
θjb		11.6	13.5	15.2

Table 10. Thermal resistance value (TFBGA packages)

 $T_{amb} = -40$ °C to +85 °C unless otherwise specified.


		Thermal resistance	ce value (°C/W): ±15 %
		TFBGA180	TFBGA208
өја			
	JEDEC (4.5 in × 4 in)		
	0 m/s	47	43
	1 m/s	39	37
	2.5 m/s	35	33
	8-layer (4.5 in × 3 in)		
	0 m/s	39	37
	1 m/s	35	33
	2.5 m/s	31	30
өјс		8.5	7.4
θjb		13	16


32-bit ARM Cortex-M4 microcontroller

Symbol	Parameter	Conditions		Min	Typ[1]	Max	Unit
Standard po	ort pins, RESET						
IIL	LOW-level input current	V _I = 0 V; on-chip pull-up resistor disabled		-	0.5	10	nA
I _{IH}	HIGH-level input current	$V_I = V_{DD(3V3)}$; on-chip pull-down resistor disabled		-	0.5	10	nA
VI	input voltage	pin configured to provide a digital function	[15][16] [17]	0	-	5.0	V
Vo	output voltage	output active		0	-	V _{DD(3V3)}	V
V _{IH}	HIGH-level input voltage			0.7V _{DD(3V3)}	-	-	V
V _{IL}	LOW-level input voltage			-	-	0.3V _{DD(3V3)}	V
V _{hys}	hysteresis voltage			0.4	-	-	V
V _{OH}	HIGH-level output voltage	$I_{OH} = -4 \text{ mA}$		V _{DD(3V3)} - 0.45	-	-	V
V _{OL}	LOW-level output voltage	I _{OL} = 4 mA		-	-	0.45	V
I _{OH}	HIGH-level output current	$V_{OH} = V_{DD(3V3)} - 0.4 V$		-4	-	-	mA
I _{OL}	LOW-level output current	V _{OL} = 0.4 V		4	-	-	mA
I _{OHS}	HIGH-level short-circuit output current	V _{OH} = 0 V	[18]	-	-	-50	mA
I _{OLS}	LOW-level short-circuit output current	$V_{OL} = V_{DD(3V3)}$	[18]	-	-	60	mA
I _{pd}	pull-down current	V _I = 5 V		10	50	150	μΑ
I _{pu}	pull-up current	$V_{I} = 0 V$		-15	-50	-85	μΑ
		$V_{DD(3V3)} < V_{I} < 5 V$		0	0	0	μΑ
I ² C-bus pins	s (P0[27] and P0[28])						
V _{IH}	HIGH-level input voltage			0.7V _{DD(3V3)}	-	-	V
V _{IL}	LOW-level input voltage			-	-	0.3V _{DD(3V3)}	V
V _{hys}	hysteresis voltage			-	$0.05 \times V_{DD(3V3)}$	-	V
V _{OL}	LOW-level output voltage	I _{OLS} = 3 mA		-	-	0.4	V
ILI	input leakage current	$V_{I} = V_{DD(3V3)}$	[19]	-	2	4	μΑ
		V _I = 5 V		-	10	22	μΑ
USB pins							
I _{OZ}	OFF-state output current	0 V < V _I < 3.3 V	[20]	-	-	±10	μA
V _{BUS}	bus supply voltage		[20]	-	-	5.25	V
V _{DI}	differential input sensitivity voltage	(D+) - (D-)	[20]	0.2	-	-	V

Table 11. Static characteristics ... continued

32-bit ARM Cortex-M4 microcontroller

89 of 140

32-bit ARM Cortex-M4 microcontroller

Symbol	Parameter ^[1]	Conditions ^[1]		Min	Тур	Max	Unit
t _{am}	memory access time	RD ₅	<u>[4][3]</u>	WAITOEN + 1) ×	(WAITRD – WAITOEN + 1) ×	(WAITRD – WAITOEN + 1) ×	ns
4	data input hold time		[5][3]	T _{cy(clk)} – 9.6 –5.0	T _{cy(clk)} – 13.2	T _{cy(clk)} – 20.2	
t _{h(D)}	data input hold time	RD ₆	[3][3]		-7.2	-	ns
t _{CSHBLSH}	CS HIGH to BLS HIGH time	PB = 1		2.7	3.4	4.9	ns
t _{CSHOEH}	CS HIGH to OE HIGH time		[3]	2.4	3.1	4.2	ns
t _{oehanv}	OE HIGH to address invalid time		[3]	0.77	1.2	1.86	ns
t _{deact}	deactivation time	RD ₇	[3]	-	-4.3	-6.1	ns
	le parameters ^[2]						
t _{CSLAV}	CS LOW to address valid time	WR ₁		3.3	4.3	6.1	ns
t _{CSLDV}	CS LOW to data valid time	WR ₂		3.4	4.8	6.6	ns
t _{CSLWEL}	CS LOW to WE LOW time	WR ₃ ; PB =1	[3]	$2.6 + T_{cy(clk)} \times$ (1 + WAITWEN)	$3.3 + T_{cy(clk)} \times$ (1 + WAITWEN)	$4.6 + T_{cy(clk)} \times$ (1 + WAITWEN)	ns
t _{CSLBLSL}	CS LOW to BLS LOW time	WR ₄ ; PB = 1	[3]	2.7	3.5	4.9	ns
t _{WELWEH}	WE LOW to WE HIGH time	WR ₅ ; PB =1	[3]	$\begin{array}{l} (WAITWR - \\ WAITWEN + 1) \times \\ T_{cy(clk)} - 2.3 \end{array}$	$\begin{array}{l} (WAITWR - \\ WAITWEN + 1) \times \\ T_{cy(clk)} - 2.8 \end{array}$	$\begin{array}{l} (WAITWR - \\ WAITWEN + 1) \times \\ T_{cy(clk)} - 3.8 \end{array}$	ns
t _{BLSLBLSH}	BLS LOW to BLS HIGH time	PB = 1	[3]	$\begin{array}{l} (WAITWR-\\ WAITWEN + 3) \times \\ T_{cy(clk)} - 2.8 \end{array}$	$\begin{array}{l} (\text{WAITWR}-\\ \text{WAITWEN + 3)}\times\\ \text{T}_{\text{cy(clk)}}-3.5 \end{array}$	$\begin{array}{l} (\text{WAITWR}-\\ \text{WAITWEN + 3)}\times\\ \text{T}_{\text{cy(clk)}}-5.0 \end{array}$	ns
t _{WEHDNV}	WE HIGH to data invalid time	WR ₆ ; PB =1	[3]	3.1 + T _{cy(clk)}	4.3 + T _{cy(clk)}	5.8 + T _{cy(clk)}	ns
t _{WEHEOW}	WE HIGH to end of write time	WR ₇ ; PB = 1	<u>[6][3]</u>	$T_{cy(clk)} - 2.6$	$T_{cy(clk)} - 3.4$	$T_{cy(clk)} - 4.6$	ns
t _{BLSHDNV}	BLS HIGH to data invalid time	PB = 1		3.4	4.8	6.6	ns
t _{WEHANV}	WE HIGH to address invalid time	PB = 1	[3]	3.0 + T _{cy(clk)}	3.8 + T _{cy(clk)}	5.3 + T _{cy(clk)}	ns
t _{deact}	deactivation time	WR ₈ ; PB = 0; PB = 1	[3]	-3.3	-4.3	-6.1	ns
t _{CSLBLSL}	CS LOW to BLS LOW	WR ₉ ; PB = 0	[3]	2.7 + T _{cy(clk)} × (1 + WAITWEN)	3.5 + T _{cy(clk)} × (1 + WAITWEN)	4.9 + T _{cy(clk)} × (1 + WAITWEN)	ns
t _{BLSLBLSH}	BLS LOW to BLS HIGH time	WR ₁₀ ; PB = 0	[3]	$\begin{array}{l} (WAITWR - \\ WAITWEN + 3) \times \\ T_{cy(clk)} - 2.8 \end{array}$	$\begin{array}{l} (WAITWR-\\ WAITWEN + 3)\times\\ T_{cy(clk)}-3.5 \end{array}$	$\begin{array}{l} (\text{WAITWR}-\\ \text{WAITWEN + 3)}\times\\ \text{T}_{\text{cy(clk)}}-5.0 \end{array}$	ns
t _{BLSHEOW}	BLS HIGH to end of write time	WR ₁₁ ; PB = 0	<u>[6][3]</u>	$3.3 + T_{cy(clk)}$	$4.4 + T_{cy(clk)}$	$6.1 + T_{cy(clk)}$	ns
t _{BLSHDNV}	BLS HIGH to data invalid time	WR ₁₂ ; PB = 0	[3]	3.4 + T _{cy(clk)}	4.8 + T _{cy(clk)}	$6.6 + T_{cy(clk)}$	ns

Table 15. Dynamic characteristics: Static external memory interface ... continued

[1] Parameters are shown as RD_n or WD_n in Figure 19 as indicated in the Conditions column.

Table 16. Dynamic characteristics: Dynamic external memory interface, read strategy bits (RD bits) = 00 $C_L = 30 \text{ pF}$, $T_{amb} = -40 \text{ °C}$ to 85 °C, $V_{DD(3V3)} = 3.0 \text{ V}$ to 3.6 V. Values guaranteed by design. t_{fbdly} is programmable delay value for the feedback clock that controls input data sampling; $t_{clk0dly}$ is programmable delay value for the EMC_CLKOUT0 output; $t_{clk1dly}$ is programmable delay value for the EMC_CLKOUT1 output.

Symbol	Parameter		Min	Тур	Max	Unit
Common t	o read and write cycles				I	I
T _{cy(clk)}	clock cycle time	[1]	12.5	-	-	ns
t _{d(SV)}	chip select valid delay time	[2]	-	t _{clkndly} + 3.5	t _{clk0dly} + 5.0	ns
t _{h(S)}	chip select hold time	[2]	t _{clkndly} - 1.0	t _{clkndly} - 1.2	-	ns
t _{d(RASV)}	row address strobe valid delay time	[2]	-	t _{clkndly} + 3.6	t _{clkndly} + 5.0	ns
t _{h(RAS)}	row address strobe hold time	[2]	t _{clkndly} - 0.8	t _{clkndly} - 0.9	-	ns
t _{d(CASV)}	column address strobe valid delay time	[2]	-	t _{clkndly} + 3.4	t _{clkndly} + 4.9	ns
t _{h(CAS)}	column address strobe hold time	[2]	t _{clkndly} - 0.9	t _{clkndly} - 1.0	-	ns
t _{d(WV)}	write valid delay time	[2]	-	t _{clkndly} + 4.1	t _{clkndly} + 6.0	ns
t _{h(W)}	write hold time	[2]	t _{clkndly} - 0.9	t _{clkndly} - 0.7		ns
t _{d(AV)}	address valid delay time	[2]	-	t _{clkndly} + 4.6	t _{clkndly} + 6.8	ns
t _{h(A)}	address hold time	[2]	t _{clkndly} - 1.1	t _{clkndly} - 1.2	-	ns
Read cycle	e parameters when EMC_CLKOUT	0 use	d			
t _{su(D)}	data input set-up time		5.6 - t _{fbdly}	4.5 - t _{fbdly}	-	ns
t _{h(D)}	data input hold time		-2.2 + t_{fbdly}	-2.9 + t _{fbdly}	-	ns
Read cycle	e parameters when EMC_CLKOUT	1 use	d	1	1	
t _{su(D)}	data input set-up time		5.6 - t_{fbdly} + ($t_{clk1dly}$ - $t_{clk0dly}$)	4.5 - t_{fbdly} + ($t_{clk1dly}$ - $t_{clk0dly}$)	-	ns
t _{h(D)}	data input hold time		-2.2 + t _{fbdly} - (t _{clk1dly} - t _{clk0dly})	-2.9 + t _{fbdly} - (t _{clk1dly} - t _{clk0dly})	-	ns
Write cycle	e parameters					
t _{d(QV)}	data output valid delay time	[2]	-	t _{clkndly} + 5.4	t _{clkndly} + 7.8	ns
t _{h(Q)}	data output hold time	[2]	t _{clkndly} – 0.4	t _{clkndly}	-	ns

[1] Refers to SDRAM clock signal EMC_CLKOUTn where n = 0 and 1.

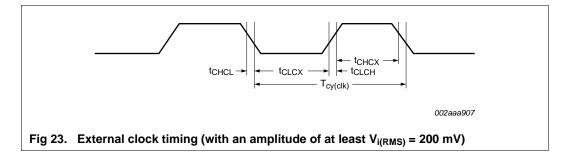
[2] t_{clkndly} represents t_{clk0dly} when EMC_CLKOUT0 clocks SDRAM. t_{clkndly} represents t_{clk1dly} when EMC_CLKOUT1 clocks SDRAM.

Table 17. Dynamic characteristics: Dynamic external memory interface, read strategy bits (RD bits) = 01

 $C_L = 30 \text{ pF}, T_{amb} = -40 \text{ }^{\circ}\text{C} \text{ to } 85 \text{ }^{\circ}\text{C}, V_{DD(3V3)} = 3.0 \text{ V to } 3.6 \text{ V}.$ Values guaranteed by design. t_{cmddly} is programmable delay value for EMC command outputs in command delayed mode; t_{fbdly} is programmable delay value for the feedback clock that controls input data sampling; $t_{clk0dly}$ is programmable delay value for the EMC_CLKOUT0 output; $t_{clk1dly}$ is programmable delay value for the EMC_CLKOUT0 output; $t_{clk1dly}$ is programmable delay value for the EMC_CLKOUT1 output.

Symbol	Parameter		Min	Тур	Max	Unit		
For RD = 1 t _{clk0dly} = 0 and t _{clk1dly} = 0								
Common to	read and write cycles							
T _{cy(clk)}	clock cycle time	[1]	12.5	-	-	ns		
t _{d(SV)}	chip select valid delay time		-	t _{cmddly} + 6.8	t _{cmddly} + 10.4	ns		
t _{h(S)}	chip select hold time		t _{cmddly} + 1.2	t _{cmddly} + 2.1	-	ns		

11.3 External clock


Table 19. Dynamic characteristic: external clock (see Figure 40)

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; V_{DD(3V3)} \text{ over specified ranges.}$

Symbol	Parameter	Min	Typ[2]	Max	Unit
f _{osc}	oscillator frequency	1	-	25	MHz
T _{cy(clk)}	clock cycle time	40	-	1000	ns
t _{CHCX}	clock HIGH time	$T_{cy(clk)} \times 0.4$	-	-	ns
t _{CLCX}	clock LOW time	$T_{cy(clk)} \times 0.4$	-	-	ns
t _{CLCH}	clock rise time	-	-	5	ns
t _{CHCL}	clock fall time	-	-	5	ns

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

11.4 Internal oscillators

Table 20. Dynamic characteristic: internal oscillators

 $T_{amb} = -40 \text{ °C to } +85 \text{ °C}; 2.7 \text{ V} \le V_{DD(3V3)} \le 3.6 \text{ V}.^{[1]}$

Symbol	Parameter	Min	Typ <u>[2]</u>	Max	Unit
f _{osc(RC)}	internal RC oscillator frequency	11.88	12	12.12	MHz
f _{i(RTC)}	RTC input frequency	-	32.768	-	kHz

[1] Parameters are valid over operating temperature range unless otherwise specified.

[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

11.5 I/O pins

Table 21. Dynamic characteristic: I/O pins^[1]

 $T_{amb} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C}; V_{DD(3V3)} \text{ over specified ranges.}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _r	rise time	pin configured as output	3.0	-	5.0	ns
t _f	fall time	pin configured as output	2.5	-	5.0	ns

[1] Applies to standard port pin. For details, see the LPC408x/7x IBIS model available on the NXP website.

32-bit ARM Cortex-M4 microcontroller

11.7 I²C-bus

Table 23. Dynamic characteristic: I²C-bus pins^[1]

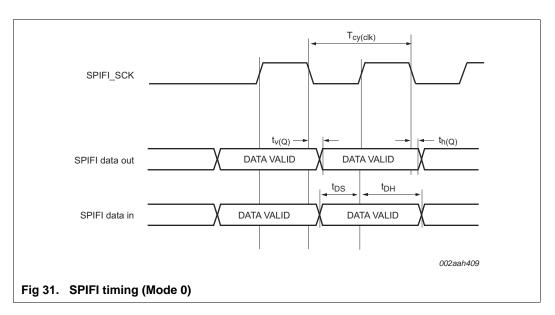
$T_{amb} = -40$	°C to	+85	°C.[2]
-----------------	-------	-----	--------

Symbol	Parameter		Conditions	Min	Max	Unit
f _{SCL}	SCL clock		Standard-mode	0	100	kHz
	frequency		Fast-mode	0	400	kHz
			Fast-mode Plus	0	1	MHz
t _f	fall time	[4][5][6][7]	of both SDA and SCL signals	-	300	ns
		Standard-mode				
			Fast-mode	$20 + 0.1 \times C_b$	300	ns
			Fast-mode Plus	-	120	ns
t _{LOW}	LOW period of		Standard-mode	4.7	-	μS
	the SCL clock		Fast-mode	1.3	-	μS
			Fast-mode Plus	0.5	-	μS
t _{HIGH}	HIGH period of		Standard-mode	4.0	-	μS
	the SCL clock		Fast-mode	0.6	-	μS
			Fast-mode Plus	0.26	-	μS
t _{HD;DAT}	data hold time	[3][4][8]	Standard-mode	0	-	μS
			Fast-mode	0	-	μS
			Fast-mode Plus	0	-	μS
t _{SU;DAT}	data set-up	[9][10]	Standard-mode	250	-	ns
	time		Fast-mode	100	-	ns
			Fast-mode Plus	50	-	ns

[1] See the I²C-bus specification UM10204 for details.

[2] Parameters are valid over operating temperature range unless otherwise specified.

- [3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.
- [4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the $V_{IH}(min)$ of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- [5] C_b = total capacitance of one bus line in pF.
- [6] The maximum t_f for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage t_f is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified t_f.
- [7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should allow for this when considering bus timing.
- [8] The maximum t_{HD;DAT} could be 3.45 μs and 0.9 μs for Standard-mode and Fast-mode but must be less than the maximum of t_{VD;DAT} or t_{VD;ACK} by a transition time (see *UM10204*). This maximum must only be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.
- [9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the acknowledge.
- [10] A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system but the requirement $t_{SU;DAT}$ = 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $t_{r(max)} + t_{SU;DAT} = 1000 + 250 = 1250$ ns (according to the Standard-mode I²C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.


32-bit ARM Cortex-M4 microcontroller

11.11 SPIFI

Table 27. Dynamic characteristics: SPIFI

 $T_{amb} = -40$ °C to 85 °C; 3.0 V $\leq V_{DD(3V3)} \leq$ 3.6 V; $C_L = 30$ pF. Values guaranteed by design.

Symbol	Parameter	Min	Max	Unit
T _{cy(clk)}	clock cycle time	11.8	-	ns
t _{DS}	data set-up time	4.8	-	ns
t _{DH}	data hold time	0	-	ns
t _{v(Q)}	data output valid time	-	8.8	ns
t _{h(Q)}	data output hold time	3	-	ns

12. Characteristics of the analog peripherals

12.1 ADC electrical characteristics

Table 28. 12-bit ADC characteristics

 $V_{DDA} = 2.7 \text{ V to } 3.6 \text{ V}; T_{amb} = -40 \text{ °C to } +85 \text{ °C unless otherwise specified.}$

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{IA}	analog input voltage			0	-	V _{DDA}	V
12-bit res	solution				L		
E _D	differential linearity error		[2][3][4]	-	-	±1	LSB
E _{L(adj)}	integral non-linearity		[2][5]	-	-	±6	LSB
Eo	offset error		[2][6]	-	-	±5	LSB
E _G	gain error		[2][7]	-	-	±5	LSB
ET	absolute error		[2][8]	-	-	< ±8	LSB
f _{clk(ADC)}	ADC clock frequency			-	-	12.4	MHz

Product data sheet

32-bit ARM Cortex-M4 microcontroller

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
DVo	output voltage variation			0	-	V _{DDA}	V
V _{offset}	offset voltage	V _{IC} = 0.1 V		-	-4 to +4.2	-	mV
		V _{IC} = 1.5 V		-	±2	-	mV
		V _{IC} = 2.8 V		-	±2.5		mV
Dynamic	characteristics				1		
t _{startup}	start-up time	nominal process		-	4	-	μS
t _{PD}	propagation delay	HIGH to LOW; $V_{DDA} = 3.3 V$;					
		V_{IC} = 0.1 V; 50 mV overdrive input	[1]	122	130	142	ns
		V _{IC} = 0.1 V; rail-to-rail input	[1]	173	189	233	ns
		V_{IC} = 1.5 V; 50 mV overdrive input	[1]	101	108	119	ns
		V _{IC} = 1.5 V; rail-to-rail input	[1]	114	127	162	ns
		V_{IC} = 2.9 V; 50 mV overdrive input	[1]	123	134	143	ns
		V _{IC} = 2.9 V; rail-to-rail input	[1]	79	91	120	ns
t _{PD}	propagation delay	LOW to HIGH; $V_{DDA} = 3.3 V$;					
		V_{IC} = 0.1 V; 50 mV overdrive input	[1]	221	232	254	ns
		V _{IC} = 0.1 V; rail-to-rail input	[1]	59	63	68	ns
		V _{IC} = 1.5 V; 50 mV overdrive input	[1]	183	229	249	ns
		V _{IC} = 1.5 V; rail-to-rail input	[1]	147	174	213	ns
		V _{IC} = 2.9 V; 50 mV overdrive input	[1]	171	192	216	ns
		V _{IC} = 2.9 V; rail-to-rail input	[1]	235	305	450	ns
V _{hys}	hysteresis voltage	positive hysteresis; $V_{DDA} = 3.0 \text{ V}$; V _{IC} = 1.5 V	[2]	-	5, 10, 20	-	mV
V _{hys}	hysteresis voltage	negative hysteresis; $V_{DDA} = 3.0 \text{ V};$ $V_{IC} = 1.5 \text{ V}$	[2]	-	5, 10, 20	-	mV
R _{lad}	ladder resistance	-		-	1.034	-	MΩ

Table 31.	Comparator characteristicscontin	nued
$V_{DDA} = 3.0$	V and Tamb = 25 °C unless noted other	wise.

[1] $C_L = 10 \text{ pF}$; results from measurements on silicon samples over process corners and over the full temperature range $T_{amb} = -40 \text{ °C}$ to +85 °C.

[2] Input hysteresis is relative to the reference input channel and is software programmable.

 Table 32.
 Comparator voltage ladder dynamic characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _{s(pu)}	power-up settling time	to 99% of voltage ladder output value	[1]	-	-	30	μs
t _{s(sw)}	switching settling time	to 99% of voltage ladder output value	[1] [2]	-	-	15	μs

[1] Maximum values are derived from worst case simulation ($V_{DDA} = 2.6 \text{ V}$; $T_{amb} = 85 \text{ °C}$; slow process models).

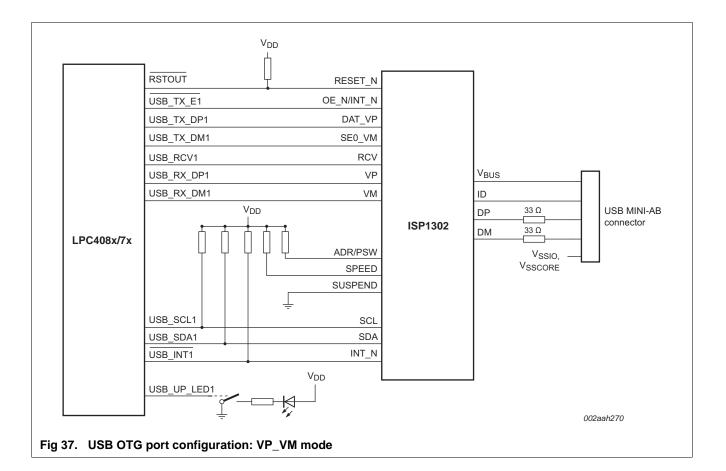
[2] Settling time applies to switching between comparator and ADC channels.

Symbol	Parameter	Conditions		Min	Тур	Max[1]	Unit
E _{V(O)}	output voltage error	Internal V _{DDA} supply					
		decimal code = 00	(0	0	0	%
		decimal code = 08	-	-0.45	-0.5	-0.55	%
		decimal code = 16	-	-0.99	-1.1	-1.21	%
		decimal code = 24	-	-1.26	-1.4	-1.54	%
		decimal code = 30	-	-1.35	-1.5	-1.65	%
		decimal code = 31	-	-1.35	-1.5	-1.65	%
E _{V(O)}	output voltage error	External VDDCMP supply					
		decimal code = 00	(0	0	0	%
		decimal code = 08	(0.44	0.4	0.36	%
		decimal code = 16	-	-0.18	-0.2	-0.22	%
		decimal code = 24	-	-0.45	-0.5	-0.55	%
		decimal code = 30	-	-0.54	-0.6	-0.66	%
		decimal code = 31	-	-0.45	-0.5	-0.55	%

Table 33. Comparator voltage ladder reference static characteristics $V_{DDA} = 3.3 V$; $T_{amb} = -40 \degree C to + 85 \degree C$.

 Measured on typical silicon samples with a 2 kHz input signal and overdrive < 100 µV. Power switched off to all analog peripherals except the comparator.

13. Application information


13.1 Suggested USB interface solutions

Remark: The USB controller is available as a device/Host/OTG controller on parts LPC4088 and LPC4078/76 and as device-only controller on parts LPC4074/72.

NXP Semiconductors

LPC408x/7x

32-bit ARM Cortex-M4 microcontroller

32-bit ARM Cortex-M4 microcontroller

14. Package outline

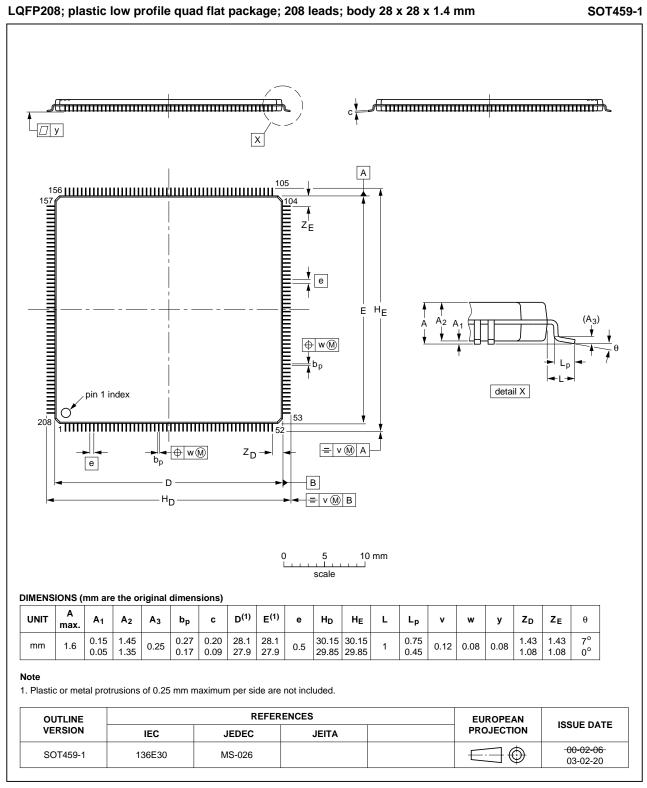
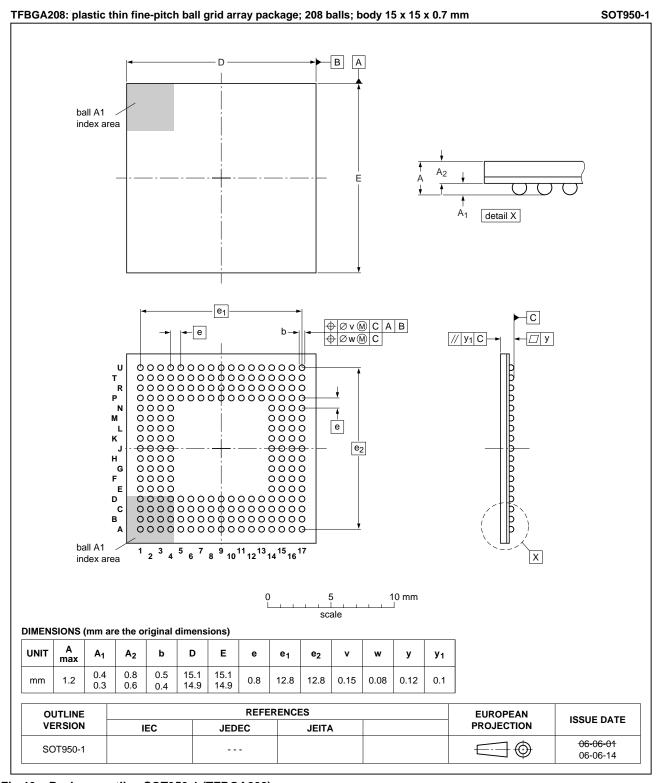



Fig 45. Package outline SOT459-1 (LQFP208)

LPC408X 7X

32-bit ARM Cortex-M4 microcontroller

Fig 46. Package outline SOT950-1 (TFBGA208)