

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z4
Core Size	32-Bit Single-Core
Speed	150MHz
Connectivity	CANbus, EBI/EMI, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	118
Program Memory Size	4MB (4M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192К х 8
Voltage - Supply (Vcc/Vdd)	1.14V ~ 1.32V
Data Converters	A/D 34x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc564a80l7cfar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PK50 and MK50.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q K## A M FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
K##	Kinetis family	• K50
A	Key attribute	 D = Cortex-M4 w/ DSP F = Cortex-M4 w/ DSP and FPU
Μ	Flash memory type	 N = Program flash only X = Program flash and FlexMemory

reminology and guidelines

3.6 Relationship between ratings and operating requirements

3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

3.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	bol Description Value		Unit
T _A	Ambient temperature	25	٥°C
V _{DD}	3.3 V supply voltage	3.3	V

Symbol	Description	Min.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. • V_{DD} slew rate ≥ 5.7 kV/s	_	300	μs	1
	• V _{DD} slew rate < 5.7 kV/s	—	1.7 V / (V _{DD} slew rate)		
	• VLLS1 → RUN	_	130	μs	
	• VLLS2 \rightarrow RUN	_	92	μs	
	• VLLS3 → RUN	_	92	μs	
	• LLS → RUN	_	5.9	μs	
	• VLPS → RUN	_	5.0	μs	
	• STOP \rightarrow RUN		5.0	μs	

Table 5. Power mode transition operating behaviors

1. Normal boot (FTFL_OPT[LPBOOT]=1)

5.2.5 Power consumption operating behaviors

 Table 6. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	—	—	See note	mA	1
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash					2
	• @ 1.8V	_	37	63	mA	
	• @ 3.0V		38	64	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from flash					3, 4
	• @ 1.8V	_	46	77	mA	
	• @ 3.0V	_	47	63	mA	
	• @ 25°C	_	58	79	mA	
	• @ 125°C					
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled	_	20	—	mA	2
I _{DD_WAIT}	Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled	_	9	_	mA	5
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks disabled	—	1.12		mA	6

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled	_	1.71	_	mA	7
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled	—	0.77		mA	8
I _{DD_STOP}	Stop mode current at 3.0 V					
	• @ -40 to 25°C	—	0.74	1.41	mA	
	• @ 70°C	—	2.45	11.5	mA	
	• @ 105°C	—	6.61	30	mA	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	• @ –40 to 25°C	—	83	435	μA	
	• @ 70°C	—	425	2000	μA	
	• @ 105°C	—	1280	4000	μA	
I _{DD_LLS}	Low leakage stop mode current at 3.0 V					9
	• @ -40 to 25°C	—	4.58	19.9	μA	
	• @ 70°C	—	30.6	105	μA	
	• @ 105°C	—	137	500	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					9
	• @ -40 to 25°C	—	3.0	23	μA	
	• @ 70°C	—	18.6	43	μA	
	• @ 105°C	—	84.9	230	μA	
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V					
	• @ –40 to 25°C	—	2.2	5.4	μA	
	• @ 70°C	—	9.3	35	μA	
	• @ 105°C	—	41.4	128	μA	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V					
	• @ -40 to 25°C	—	2.1	9	μA	
	• @ 70°C	—	7.6	28	μA	
	• @ 105°C	—	33.5	95.5	μA	
I _{DD_VBAT}	Average current with RTC and 32kHz disabled at 3.0 V					
	• @ -40 to 25°C		0.19	0.22	uА	
	• @ 70°C		0.49	0.64	uA	
	• @ 105°C	_	2.2	3.2	μΑ	

Table 6.	Power	consumption	operating	behaviors	(continued)
			- I J		····/

Symbol	Description	Min.	Max.	Unit	Notes
f _{ERCLK}	External reference clock	—	16	MHz	
f _{LPTMR_pin}	LPTMR clock	_	25	MHz	
f _{LPTMR_ERCLK}	LPTMR external reference clock	_	16	MHz	
f _{FlexCAN_ERCLK}	FlexCAN external reference clock		8	MHz	
f _{I2S_MCLK}	I2S master clock	_	12.5	MHz	
f _{I2S_BCLK}	I2S bit clock	_	4	MHz	

Table 9. Device clock specifications (continued)

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

5.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, CMT, and I²C signals.

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	—	Bus clock cycles	1, 2
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path	100	_	ns	3
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path	16	_	ns	3
	External reset pulse width (digital glitch filter disabled)	100	—	ns	3
	Mode select (EZP_CS) hold time after reset deassertion	2	_	Bus clock cycles	
	Port rise and fall time (high drive strength)				4
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	12	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	6	ns	
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	24	ns	

Table 10. General switching specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Port rise and fall time (low drive strength)				5
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	12	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	6	ns	
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	24	ns	
1	1		1	1	

Table 10. General switching specifications (continued)

- 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater synchronous and asynchronous timing must be met.
- 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.
- 4. 75 pF load
- 5. 15 pF load

5.4 Thermal specifications

5.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	85	°C

5.4.2 Thermal attributes

Board type	Symbol	Description	100 LQFP	Unit	Notes
Single-layer (1s)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	47	°C/W	1
Four-layer (2s2p)	R _{eja}	Thermal 35 resistance, junction ambient (natural convection)		°C/W	1

Board type	Symbol	Description	100 LQFP	Unit	Notes
Single-layer (1s)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	37	°C/W	1
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	29	°C/W	1
	R _{0JB}	Thermal resistance, junction to board	20	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	9	°C/W	3
	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	2	°C/W	4

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 Debug trace timing specifications

 Table 12.
 Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
T _{cyc}	T _{cyc} Clock period		Frequency dependent	
T _{wi}	Low pulse width	2	—	ns
T _{wh} High pulse width		2	_	ns
T _r	Clock and data rise time	_	3	ns

Table continues on the next page...

K50 Sub-Family Data Sheet, Rev. 3, 6/2013.

- 1. Assumes 25 MHz flash clock frequency.
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- 3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.

6.4.1.3 Flash high voltage current behaviors Table 22. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	—	1.5	4.0	mA

6.4.1.4 Reliability specifications

Table 23. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes	
	Program Flash						
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	—	years		
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years		
n _{nvmcycp}	Cycling endurance	10 K	50 K	—	cycles	2	
	Data	Flash					
t _{nvmretd10k}	Data retention after up to 10 K cycles	5	50	_	years		
t _{nvmretd1k}	Data retention after up to 1 K cycles	20	100	—	years		
n _{nvmcycd}	Cycling endurance	10 K	50 K	_	cycles	2	
	FlexRAM a	s EEPROM	•	•	•		
t _{nvmretee100}	Data retention up to 100% of write endurance	5	50	—	years		
t _{nvmretee10}	Data retention up to 10% of write endurance	20	100	_	years		
	Write endurance					3	
n _{nvmwree16}	 EEPROM backup to FlexRAM ratio = 16 	35 K	175 K	—	writes		
n _{nvmwree128}	 EEPROM backup to FlexRAM ratio = 128 	315 K	1.6 M	_	writes		
n _{nvmwree512}	 EEPROM backup to FlexRAM ratio = 512 	1.27 M	6.4 M	_	writes		
n _{nvmwree4k}	EEPROM backup to FlexRAM ratio = 4096	10 M	50 M	_	writes		
n _{nvmwree32k}	 EEPROM backup to FlexRAM ratio = 32,768 	80 M	400 M	_	writes		

- Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.
- 2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_i \leq 125°C.
- Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM.

Peripheral operating requirements and behaviors

Figure 9. EEPROM backup writes to FlexRAM

6.4.2 EzPort switching specifications

Table 24. EzPort switching specifications

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
EP1	EZP_CK frequency of operation (all commands except READ)	—	f _{SYS} /2	MHz
EP1a	EZP_CK frequency of operation (READ command)	_	f _{SYS} /8	MHz
EP2	EZP_CS negation to next EZP_CS assertion	2 x t _{EZP_CK}	_	ns
EP3	EZP_CS input valid to EZP_CK high (setup)	5		ns
EP4	EZP_CK high to EZP_CS input invalid (hold)	5		ns
EP5	EZP_D input valid to EZP_CK high (setup)	2	_	ns
EP6	EP6 EZP_CK high to EZP_D input invalid (hold)			ns
EP7	EP7 EZP_CK low to EZP_Q output valid		16	ns
EP8	EP8 EZP_CK low to EZP_Q output invalid (hold)		—	ns
EP9	EZP_CS negation to EZP_Q tri-state	—	12	ns

2. Specification is valid for all FB_AD[31:0] and $\overline{FB_TA}$.

Table 26. Flexbus full voltage range switching specifications

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage		3.6	V	
	Frequency of operation	_	FB_CLK	MHz	
FB1	Clock period	1/FB_CLK	_	ns	
FB2	Address, data, and control output valid		13.5	ns	1
FB3	Address, data, and control output hold	0	—	ns	1
FB4	Data and FB_TA input setup	13.7	_	ns	2
FB5	Data and FB_TA input hold	0.5	_	ns	2

1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

2. Specification is valid for all FB_AD[31:0] and FB_TA.

rempheral operating requirements and behaviors

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	asynchronous clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	† _{ADACK}
† _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample 1	times			
TUE	Total unadjusted	12-bit modes	—	±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 	_	±1.4	±2.1		
DNL	Differential non-	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
	linearity				-0.3 to 0.5		
		 <12-bit modes 	_	±0.2			
INL	Integral non-	12-bit modes		±1.0	-2.7 to +1.9	LSB ⁴	5
	linearity				-0.7 to +0.5		
		 <12-bit modes 	_	±0.5			
E _{FS}	Full-scale error	12-bit modes	—	-4	-5.4	LSB ⁴	V _{ADIN} =
		<12-bit modes	—	-1.4	-1.8		V _{DDA}
	Quantization	• 16 bit modoo		1 to 0			5
⊢Q	error	• 12 hit modes		-1100	+0.5	LOD	
					±0.5		
ENOB	Effective number	16-bit differential mode					6
	01 0113	• Avg = 32	12.8	14.5	-	bits	
		• Avg = 4	11.9	13.8	-	bits	
		16-bit single-ended mode					
		• Avg = 32	10.0	10.0		la ita	
		• Avg = 4	12.2	13.9	_	DIIS	
	Cignal to paico		11.4	13.1		DITS	
SINAD	plus distortion		6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode					7
	distortion	• Avg = 32	_	-94	—	dB	
		16-bit single-ended mode					
		• Avg = 32	_	-85	-	dB	
0555							
SFDR	Spurious free dvnamic range	16-bit differential mode					
		• Avg = 32	82	95	_	dB	
		16-bit single-ended mode	70				
		• Avg = 32	/8	90		uВ	

Table 28. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
SFDR	Spurious free	Gain=1	85	105	_	dB	16-bit
	dynamic range	• Gain=64	53	88	—	dB	differential
							Average=32,
							f _{in} =100Hz
ENOB	Effective number	 Gain=1, Average=4 	11.6	13.4	—	bits	16-bit
	of bits	• Gain=1, Average=8	8.0	13.6	—	bits	differential mode.fin=100Hz
		Gain=64, Average=4	7.2	9.6	—	bits	
		Gain=64, Average=8	6.3	9.6	—	bits	
		• Gain=1, Average=32	12.8	14.5	—	bits	
		Gain=2, Average=32	11.0	14.3	—	bits	
		• Gain=4, Average=32	7.9	13.8	—	bits	
		Gain=8, Average=32	7.3	13.1	—	bits	
		Gain=16, Average=32	6.8	12.5	—	bits	
		Gain=32, Average=32	6.8	11.5	—	bits	
		• Gain=64, Average=32	7.5	10.6	—	bits	
SINAD	Signal-to-noise plus distortion ratio	See ENOB	6.02	× ENOB +	1.76	dB	

Table 30. 16-bit ADC with PGA characteristics (continued)

- 1. Typical values assume V_{DDA} =3.0V, Temp=25°C, f_{ADCK} =6MHz unless otherwise stated.
- 2. This current is a PGA module adder, in addition to ADC conversion currents.
- Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function of input common mode voltage (V_{CM}) and the PGA gain.
- 4. Gain = 2^{PGAG}
- 5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.
- 6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting.

6.6.2 CMP and 6-bit DAC electrical specifications Table 31. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	—	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	—	—	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	—	—	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	—	—	20	mV

Symbol	Description	Min.	Тур.	Max.	Unit
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10		mV
	• CR0[HYSTCTR] = 10	_	20		mV
	 CR0[HYSTCTR] = 11 	_	30	—	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_		V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	—	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	—	7	—	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

Table 31. Comparator and 6-bit DAC electrical specifications (continued)

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

3. 1 LSB = $V_{reference}/64$

rempheral operating requirements and behaviors

Figure 18. Typical INL error vs. digital code

Peripheral operating requirements and behaviors

Figure 19. Offset at half scale vs. temperature

6.6.4 Op-amp electrical specifications

Table 34.	Op-amp	electrical	specifications
-----------	--------	------------	----------------

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Operating voltage	1.71	—	3.6	V
I _{SUPPLY}	Supply current (I _{OUT} =0mA, CL=0), low-power mode	_	92	195	μA
I _{SUPPLY}	Supply current (I _{OUT} =0mA, CL=0), high-speed mode	—	465	865	μA
V _{OS}	Input offset voltage	—	±3	±10	mV
α _{VOS}	Input offset voltage temperature coefficient		10	—	μV/C
I _{OS}	Typical input offset current across the following temp range (0–50°C)	_	±500	—	рА
I _{OS}	Typical input offset current across the following temp range (-40–105 $^{\circ}$ C)	_	4	_	nA

rempheral operating requirements and behaviors

Figure 25. SDHC timing

6.8.9 I2S/SAI switching specifications

This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

6.8.9.1 Normal Run, Wait and Stop mode performance over a limited operating voltage range

This section provides the operating performance over a limited operating voltage for the device in Normal Run, Wait and Stop modes.

Num.	Characteristic	Min.	Max.	Unit	
	Operating voltage	2.7	3.6	V	
S1	I2S_MCLK cycle time	40	—	ns	
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period	
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	80	—	ns	
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period	
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	-	15	ns	

 Table 51.
 I2S/SAI master mode timing in Normal Run, Wait and Stop modes (limited voltage range)

Table 51. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (limited voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	15	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	—	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	15	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	—	ns

Figure 26. I2S/SAI timing — master modes

Table 52. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (limited voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	—	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	4.5	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	—	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid Multiple SAI Synchronous mode 	_	21	ns
	All other modes	—	15	

rmout

100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
99	PTD6/ LLWU_P15	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI0_PCS3	UART0_RX	FTM0_CH6	FB_AD0	FTM0_FLT0		
100	PTD7	DISABLED		PTD7	CMT_IRO	UART0_TX	FTM0_CH7		FTM0_FLT1		

8.2 K50 pinouts

The figure below shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

Revision history

Figure 32. K50 100 LQFP Pinout Diagram

9 Revision history

The following table provides a revision history for this document.

K50 Sub-Family Data Sheet, Rev. 3, 6/2013.